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Abstract

In the last decade a broad literature has arisen studying sparse recovery, the estimation of sparse
vectors from low dimensional linear projections. Sparse recovery has a wide variety of applications
such as streaming algorithms, image acquisition, and disease testing. A particularly important
subclass of sparse recovery is the sparse Fourier transform, which considers the computation of a
discrete Fourier transform when the output is sparse. Applications of the sparse Fourier transform
include medical imaging, spectrum sensing, and purely computation tasks involving convolution.

This thesis describes a coherent set of techniques that achieve optimal or near-optimal upper
and lower bounds for a variety of sparse recovery problems. We give the following state-of-the-art
algorithms for recovery of an approximately k-sparse vector in n dimensions:

• Two sparse Fourier transform algorithms, respectively taking O(k log n log(n/k)) time and
O(k log n logc log n) samples. The latter is within logc log n of the optimal sample complexity
when k < n1−ε.

• An algorithm for adaptive sparse recovery using O(k log log(n/k)) measurements, showing
that adaptivity can give substantial improvements when k is small.

• An algorithm for C-approximate sparse recovery with O(k logC(n/k) log∗ k) measurements,
which matches our lower bound up to the log∗ k factor and gives the first improvement for
1� C � nε.

In the second part of this thesis, we give lower bounds for the above problems and more.

Thesis Supervisor: Piotr Indyk
Title: Professor
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Chapter 1

Introduction

This thesis gives algorithms and lower bounds for computing sparse Fourier transforms and for
other problems involving the estimation of sparse vectors from linear sketches.

Sparse Fourier Transforms. The discrete Fourier transform (DFT) is a fundamental tool used
in a wide variety of domains, including signal processing, medical imaging, compression, and mul-
tiplication. The fastest known algorithm for computing the n-dimensional DFT is the O(n log n)
time fast Fourier transform (FFT) [CT65]. Because of its breadth of applications, the FFT is one
of the most heavily optimized algorithms in existence [FJ98].

A natural question is: under what circumstances can we compute the DFT in less than n log n
time? And we might ask for more: when can we compute the DFT in much less than n log n
time, in particular in sublinear time? Sublinear time algorithms are in some ways quite restricted,
since they cannot even read the entire input or output all n values. So a necessary condition for a
sublinear time DFT is that the output be sparse, i.e., have k � n nonzero (or “important”) values.
If the other components are all zero we say that the DFT is exactly k-sparse; otherwise we say that
it is approximately k-sparse.

Fortunately, many signals have sparse Fourier transforms. For example, in compression (includ-
ing standard image, audio and video formats such as JPEG, MP3, and MPEG1) the whole point of
using the DFT is that the resulting vector is sparse. Lossy compression schemes will zero out the
“negligible” components, storing only k � n terms of the DFT. Because we know empirically that
these compression schemes work well for many signals, this means that many signals have sparse
Fourier transforms.

In this thesis, we will give an algorithm to compute the DFT faster than the FFT whenever the
DFT is k-sparse for k = o(n). When the DFT is only approximately k-sparse then the output must
necessarily involve some error; we will achieve 1 + ε times the best possible error of any k-sparse
output. This sparse Fourier transform problem had been studied before [Man92, GGI+02a, AGS03,
GMS05, Iwe10, Aka10] but with slower running times. Ours is the first result that improves over
the FFT in every sublinear sparsity regime.

A broader perspective. The sparse Fourier transform problem is one instance of a general
class of problems involving the estimation of a sparse vector from a low dimensional linear sketch.
This more general class—known variously as sparse recovery, compressed sensing, or compressive
sampling—has applications such as image acquisition [DDT+08b], genetic testing [ECG+09], and
streaming algorithms [CCF02, CM06].

1Some of these use not the DFT but the essentially equivalent discrete cosine transform (DCT).
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Because problems in this class share many of the same properties, techniques developed for
one problem can often be refined and applied other problems. This thesis will demonstrate this,
building techniques in simpler sparse recovery problems before applying them to sparse Fourier
transforms.

1.1 Sparse recovery overview

More formally, the problem of sparse recovery involves the observation of a linear sketch Ax ∈ Rm
of an vector x ∈ Rn, where A ∈ Rm×n is the measurement matrix 2. We would like to use Ax to
recover an estimate x′ of x such that, if x is “close” to k-sparse, then x′ is similarly “close” to x.
In particular, we would like that

‖x′ − x‖ ≤ C min
k-sparse x(k)

‖x− x(k)‖ (1.1)

for some (possibly different) norms ‖·‖ and approximation factor C. We will also allow randomized
algorithms, where A is drawn from a random distribution and (1.1) may fail with some “small”
probability δ.

This thesis gives both upper and lower bounds for several problems in this general class. There
are two types of variation among sparse recovery problems. The first type is variation of sensing
modality : what kinds of matrices A may be chosen in the given application. The second type
is variation of recovery guarantee: the choice of the norms, the approximation factor C, and the
failure probability δ. In every situation, we would like to minimize two objectives: primarily the
number of measurements m, but also the running time of the recovery algorithm.

A foundational result in sparse recovery theory is: if A is a uniformly random projection matrix,
C = Θ(1) > 2, and the norms are `2, then m = Θ(k log(n/k)) is necessary and sufficient to
achieve (1.1) with δ = e−Ω(m) failure probability [CRT06b, BDDW08, Wai09]. Furthermore, it is
possible to perform the recovery in polynomial time using `1 minimization. We will consider more
general C and sensing modalities, getting faster running times and fewer measurements; the main
tradeoff is that our techniques will also yield higher failure probabilities.

1.1.1 Sensing modality

The main differentiator among sparse recovery applications is the sensing modality. Different
applications have different “hardware” to do the observation, which imposes different constraints
on the measurement matrix A. For example:

The single pixel camera [DDT+08b] flips the architecture of a camera from having an array of
a million photosensors to having a single photosensor and an array of a million adjustable mirrors
that can apply many different masks to the pixels. If x is sparse in the wavelet basis W , so Wx
denotes the image in the pixel basis, then one can observe MWx for a binary matrix M . Hence
the sensing modality is that A = MW for a binary matrix M . A more careful model would impose
additional constraints; for example, we want M to be dense so that a good fraction of the light
reaches the photosensor.

The streaming heavy hitters problem [CCF02, GGI+02b] is to estimate the most common
elements of a multiset under a stream of insertions and deletions. If the number of items is very
large (say, the set of all URLs on the web) then one cannot store the histogram x ∈ Zn of counts
directly. Instead one can store a low-dimensional sketch Ax, and use that A(x + ∆) = Ax + A∆

2One can also use C instead of R, which we will do in the Fourier setting.
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to maintain it under insertions and deletions. In this case, we can choose A arbitrarily, but would
prefer it to be sparse (so we can compute the update A∆ quickly) and possible to store implicitly
with sublinear space (for example, using hash functions).

In genetic testing, we would like to determine which k of n people is a carrier for a rare recessive
disease. Rather than test all n people, we can mix together samples and estimate the fraction of the
DNA in the mixture that has the recessive gene [ECG+09]. Because each person’s blood sample can
only be split so finely, the measurement matrix must again be sparse. Additionally, the pipetting
machine that mixes samples may impose constraints; for example, a machine with four heads works
best when placing four adjacent inputs into four adjacent outputs, so the matrix should decompose
into length-four diagonal sequences.

Magnetic resonance imaging (MRI) machines essentially sample from the 2D Fourier transform
of the desired image [LDSP08]. Decreasing the sample complexity directly corresponds to decreasing
the time patients must spend lying still in the machine. If the image is sparse in the pixel domain
(e.g. in angiograms), then the sensing modality is that A is a subset of the 2D Fourier matrix. This
is the same problem as the 2D sparse Fourier transform, except with an emphasis on measurement
complexity rather than time complexity. If instead the image is sparse in another basis like the
wavelet basis W , then A must be a subset of FW .

As we see, there are many different sensing modalities. For this thesis, we consider three simple
ones that represent the breadth of power of the modalities. From most powerful to least powerful,
these are:

• Adaptive: the measurements 〈Ai, x〉 are made in series and subsequent rows Aj may be chosen
arbitrarily and dependent on 〈Ai, x〉 for i < j.

• Standard or nonadaptive: A may be chosen from an arbitrary distribution independent of x.

• Fourier : each row of A must be one of the n rows of the n× n discrete Fourier matrix F .3

Our algorithms in the adaptive and nonadaptive settings will use sparse matrices.

1.1.2 Recovery guarantee

Outside Chapter 7, our thesis uses the `2 norm for (1.1). This norm is appealing because (1) it
is basis independent and (2) vectors are often sparse in the `2 norm but not in the `1 norm. In
Chapter 7 we study the `1 norm, which has been studied in other work. We go into more detail on
the relationship between various norms in Section 1.5.1.

C corresponds to the “noise tolerance” of the algorithm, and our value of C will vary throughout
the thesis. The “default” setting is C = O(1), but we will consider both C = 1 + ε for ε = o(1) and
C = ω(1) at times.

Unfortunately, no deterministic algorithm with m = o(n) satisfies the `2 guarantee [CDD09],
so we must use a randomized algorithm with some chance δ of failure. We will generally allow δ
to be a constant (say, 1/4). This failure probability can be decreased to an arbitrary δ > 0 via
repetition, with an O(log(1/δ)) loss in time and number of measurements.

Thesis overview. This thesis is divided into two parts. Part I gives algorithms for sparse recovery
in the different sensing modalities and with some variation of C. Part II gives lower bounds on

3In the Fourier modality, our algorithms are nonadaptive while our lower bound applies to the more general
adaptive setting.
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Norm Sensing modality m (upper bound) m (lower bound) Running time

`2

Adaptive 1
εk log log(n/k) 1

εk + log log n n logc n

Nonadaptive k logC(n/k) log∗ k k logC(n/k) n logc n

Fourier 1
εk log n log(n/k) 1

εk log(n/k)/ log log n k log n log(n/k)

Fourier log(1/ε)
ε k log n logc log n 1

εk log(n/k)/ log log n k log2 n logc log n

`1
Adaptive 1√

ε log(k/ε)
k

Nonadaptive logc(1/ε)√
ε

k log n 1√
ε log(k/ε)

k n logc n

Figure 1-1: Table of main results for C = (1 + ε)-approximate recovery. Results written in terms
of ε require ε ≤ O(1). Results ignore constant factors and c = Θ(1) is a constant. The 1

εk lower
bound for adaptive sensing is due to [ACD11]; the other results appear in this thesis.

the measurement complexity of these algorithms, as well as some upper and lower bounds for `1
recovery.

The rest of the introduction proceeds as follows. Section 1.2 gives a summary of our main upper
and lower bounds. Section 1.3 gives notation used throughout the thesis. Section 1.4 describes the
key techniques used in our Part I upper bounds. Finally, Section 1.5 surveys the techniques used
in Part II.

1.2 Results and previous work

Figure 1-1 describes the main results of this thesis.

1.2.1 In the `2 guarantee

Adaptive. In the adaptive modality, we give an algorithm usingO(1
εk log log(n/k)) measurements

for 1 + ε-approximate `2 recovery. This is smaller than the Ω(1
εk log(n/k)) measurements necessary

in the nonadaptive modality, and exponentially smaller when k and ε are constants. Moreover, this
exponential improvement is optimal: we also show that Ω(log log n) measurements are necessary in
the adaptive setting.

The adaptive measurement model has received a fair amount of attention [JXC08, CHNR08,
HCN09, HBCN09, MSW08, AWZ08], see also [Def10]. In particular [HBCN09] showed that adap-
tivity can achieve subconstant ε given Θ(k log(n/k)) measurements. Our result was the first to
improve on the Θ(k log(n/k)) bound for general ε. In terms of lower bounds, we also know that
Ω(1

εk) measurements are necessary [ACD11].

Nonadaptive. We give an Ω(k logC(n/k)) lower bound on the number of measurements required,
and an algorithm that uses a nearly matching O(k logC(n/k) log∗ k) measurements for C � 1.

The nonadaptive setting is well studied. For the lower bound, multiple authors [Wai09, IT10,
ASZ10, CD11] have bounds similar to our Ω(k logC(n/k)) but in slightly different settings. The
results of [Wai09, IT10, ASZ10] assume a Gaussian distribution on the measurement matrix, while
the result of [CD11] is essentially comparable to ours (and appeared independently). Moreover, all
these proofs—including ours—have a broadly similar structure.
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For the upper bound, before our work, optimal O(k logC(n/k)) algorithms were known for
ε = Θ(1) [CRT06b] and then for all ε = O(1) [GLPS10]. At the other extreme, when C = nΩ(1), the
situation is close to the “noiseless” setting and O(k) results were essentially known [EG07, BJCC12].
Ours is the first result to perform well in the intermediate regime of C.

Fourier. We devote two chapters to upper bounds in the Fourier modality, which optimize run-
ning time and sample complexity, respectively.

Chapter 4 gives an algorithm using O(k log n log(n/k)) time and measurements. Chapter 5
improves the sample complexity to O(k log n logc log n) and takes O(k log2 n logc log n) time. In
terms of lower bounds, the Ω(k log(n/k)) lower bound for nonadaptive measurements applies if the
Fourier samples are chosen nonadaptively (as is the case in our algorithms). Even if the samples are
chosen adaptively, we show that Ω(k log(n/k)/ log log n) Fourier samples are necessary: adaptivity
cannot help dramatically like it does with arbitrary measurements, because one can only choose
amongst n possibilities.

Our second result is thus within (log log n)c of optimal sample complexity for k < n.99. Our
first result takes one log factor more time than the optimal nonadaptive sample complexity; this
seems like a natural barrier, given that the FFT has the same property.

Our algorithms in the Fourier modality assume that n is a power of two (or more generally,
smooth) and gives an output up to n−O(1) relative precision.

Reference Time Samples Approximation

[CT06, RV08, CGV12] n logc n k log n log3 k C > 2
[CP10] n logc n k log n C > log2 n

[GMS05] k logO(1) n k log3 n any C > 1

Chapter 4 k log n log(n/k) k log n log(n/k) any C > 1
Chapter 5 k log2 n(log log n)c k log n(log log n)c any C > 1

Figure 1-2: Sparse Fourier transform algorithms.

The goal of designing efficient DFT algorithms for (approximately) sparse signals has been a
subject of a large body of research [Man92, GGI+02a, AGS03, GMS05, Iwe10, Aka10, LWC12,
BCG+12, HAKI12, PR13, HKPV13]. These works show that, for a wide range of signals, both
the time complexity and the number of signal samples taken can be significantly sub-linear in n.
From a different perspective, minimizing the sampling complexity for signals that are approximate
sparse in the Fourier domain was also a focus of an extensive research in the area of compressive
sensing [CT06, RV08, CGV12, CP10]. The best known results are summarized in Figure 1-2. Our
first result is the fastest known, and our second result uses the fewest samples to achieve a constant
approximation factor.

1.2.2 In the `1 guarantee

To achieve the `1 guarantee for constant ε, it is known that Θ(k log(n/k)) measurements are nec-
essary and sufficient [CRT06b, GLPS10, DIPW10, FPRU10]. Remaining open, however, was the
dependence on ε.

A number of applications would like ε � 1. For example, a radio wave signal can be modeled
as x = x∗+w where x∗ is k-sparse (corresponding to a signal over a narrow band) and the noise w
is i.i.d. Gaussian with ‖w‖p ≈ D‖x∗‖p [TDB09]. Then sparse recovery with C = 1 + α/D allows
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the recovery of a (1 − α) fraction of the true signal x∗. Since x∗ is concentrated in a small band
while w is located over a large region, it is often the case that α/D � 1.

The previous best upper bounds achieved the same O(1
εk log n) as in the `2 setting [CM04,

GLPS10]. We show that this dependence is not optimal. We give upper and lower bounds that show
that, up to logc n factors, k/

√
ε is the correct dependence in the `1 norm, in both the nonadaptive

and adaptive sensing modalities.

1.3 Notation and definitions

In this section we define notation used throughout the thesis.

• [n] denotes the set {1, . . . , n}.

• For S ⊂ [n], S := [n] \ S.

• xS : for S ⊂ [n] and x ∈ Rn, xS denotes the vector x′ ∈ Rn given by x′i = xi if i ∈ S, and
x′i = 0 otherwise.

• supp(x) denotes the support of x.

• x−i: for i ∈ [n], x−i = x{i}.

• f . g if there exists a universal constant C such that f ≤ Cg, i.e. f = O(g).4

• f � g if f = o(g).

• g = Õ(f) denotes that g ≤ f logc f for some c . 1.

Definition 1.3.1. Define
Hk(x) := arg max

S⊂[n]
|S|=k

‖xS‖2

to be the largest k coefficients in x.

Definition 1.3.2. For any vector x, we define the “heavy hitters” to be those elements that are
both (i) in the top k and (ii) large relative to the mass outside the top k. In particular, we define

Hk,ε(x) := {j ∈ Hk(x) | x2
j ≥

ε

k
‖x

Hk(x)
‖22}

Definition 1.3.3. Define the “noise” or “error” as

Err2
k(x) := ‖x

Hk(x)
‖22 = min

k-sparse y
‖x− y‖22

4We remark in passing that big-O notation is often ill-defined with respect to multiple parameters [How08]. We
will define f = O(g) if f ≤ Cg for some universal constant C, i.e. we drop the “for sufficiently large inputs” clause
in the one-variable definition of big-O notation that causes difficulty with multiple variables. The clause is irrelevant
when f, g ≥ 1 everywhere, and is mainly useful to allow us to claim that 1 = O(logn) despite log 1 = 0. We
instead redefine the log function inside big-O notation to mean loga b := max(1, loga b). This means, for example,
k = O(k logC(n/k)) for all C. It does have the unintuitive result that loga b log a = Θ(log(ab)) for b ≥ 1.
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Hashing O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x′

Figure 1-3: Partial sparse recovery finds 90% of the k heavy hitters

x∗

0

− Partial(k)

+

χ(1)

− Partial(k/2)

+

χ(2)
x′

x∗

Figure 1-4: Full sparse recovery recovers all k heavy hitters. We iteratively refine an estimate χ of
x∗ by running partial sparse recovery on x = x∗ − χ.

Signal-to-noise ratio. A core concept in the intuition behind our `2 results is that of signal-to-
noise ratio, which we generally define as

SNR := ‖xHk(x)‖22/‖xHk(x)
‖22

although we will vary the definition slightly at times. Essentially, one expects to get at most
O(log(1+SNR)) bits of information per measurement (which we show formally in our nonadaptive
lower bound). Sparse recovery therefore becomes harder as the SNR decreases, except that C = 1+ε
approximate recovery is only meaningful for SNR > ε. (At SNR < ε, the zero vector is a valid
output.) Thus, in the “hard” cases, we will have SNR ≈ ε.

1.4 Upper bound techniques

Our Part I sparse recovery algorithms all use the same underlying architecture, which was previously
used e.g. in [GGI+02b, GLPS10] and is represented in Figures 1-3 and 1-4. We first develop efficient
methods of 1-sparse recovery in the given modality. These methods are different in each different
modality, but because k = 1 the problem is fairly simple. We then “hash” the k-sparse problem on
n coordinates into Θ(k) “buckets” of Θ(n/k) coordinates. Most of the k “heavy hitters” (i.e. large
coordinates) will be the only large coordinate in their bucket, and thus found with the 1-sparse
recovery algorithm. This gives partial k-sparse recovery, where we recover “most” of the heavy
hitters. We then iterate partial sparse recovery on the residual until we recover the heavy hitters.
By making k decrease in each iteration, we can turn a partial sparse recovery algorithm into a full
sparse recovery algorithm with only a constant factor overhead in the time and sample complexity.

Our Fourier-modality algorithm that optimizes measurements (Chapter 5) adds another stage
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to the architecture, one of SNR reduction. We discuss this after describing the other results.

1.4.1 1-sparse recovery

Definition 1.4.1 (1-sparse recovery). Suppose x ∈ Cn has a single coordinate i∗ with

|xi∗ | ≥ C‖x−i∗‖2

for some value C. The 1-sparse recovery problem Locate1Sparse(x,C, δ) is to find i∗ using as
few measurements of x as possible (of the desired measurement modality), with success probability
1− δ.

We will only consider 1-sparse recovery for C larger than an arbitrarily large fixed constant.
This makes the algorithms somewhat simpler, and smaller C are dealt with by the same method
that converts from 1-sparse to general k-sparsity. Ignoring constant factors, our results are as
follows:

Sensing modality m Running time

Nonadaptive logC(n/δ) Õ(n)

Adaptive log logC n logC(1/δ) Õ(n)

Fourier log n log(1/δ) log1.1 n

Fourier logC n logC(1
δ log n) logC n logC(1

δ log n)

In the Fourier case, we have two algorithms: one which has optimal sample complexity for constant
C and δ, and one which has better dependence on C at the cost of a log log n factor. The two
techniques could probably be merged into one logC n logC(1/δ) measurement algorithm, but we do
not do so.

Note that in the nonadaptive and adaptive case, we are chiefly concerned with measurement
complexity while in the Fourier case we also care about running time.

We now describe the techniques involved in each modality.

Nonadaptive measurements. Consider the two linear measurements

u(x) =
∑
i∈[n]

s(i)xi and u′(x) =
∑
i∈[n]

i · s(i)xi

for random signs s(i) ∈ {±1}, and consider the distribution of

ĩ := u′(x)/u(x).

If x is zero outside i∗ (i.e., C =∞), then ĩ = i. More generally, we can show that

|̃i− i∗| . n/
√
C

with 1−1/C probability over the signs s. We then consider randomly permuting x before applying
the linear measurements. If we “vote” for every coordinate whose permutation lies within O(n/

√
C)

of the observed u′/u, then i∗ will get a vote with all but C−1 probability and i′ 6= i∗ will get a vote
with O(C−1/2) probability. Hence, if we perform this process r = O(logC(n/δ)) times, then with
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probability 1− δ, by a Chernoff bound i∗ will get more than r/2 votes and every other coordinate
will get fewer than r/2 votes. This lets us recover i∗.

Adaptive measurements. With adaptive measurements, our goal is to “rule out” coordinates
early, to make later stages have a higher “effective” value of C. We keep track of a set S ⊆ [n] of
“candidate” indices at each stage, and observe the same measurements as in the adaptive case but
restricted to S:

u(x) =
∑
i∈S

s(i)xi and u′(x) =
∑
i∈S

π(i) · s(i)xi

for random signs s and a random permutation π. Then as in the previous cases, for ĩ = u′(x)/u(x)
we have

|̃i− π(i∗)| . n/
√
D

with probability 1−1/D, where D = |xi∗ |/‖xS\{i∗}‖2 is the “effective” value of C. We then remove

every i from S that has |̃i− π(i)| > cn/
√
D for an appropriate constant c. This means each i 6= i∗

has a 1− 1/
√
D chance of being ruled out, and i∗ remains in S with 1− 1/D probability.

Therefore in the next iteration, we expect ‖xS\{i∗}‖22 to decrease by a
√
D factor, so the new

value of D is D5/4. Then in O(log logC n) iterations we will have D grow from C to n2, at which
point S will be exactly {i∗}.

Fourier measurements. In the Fourier setting, there are two problems with the above non-
adaptive method to overcome: first, the measurements were not Fourier measurements, and second
in this setting we would like a polylogarithmic in n—rather than superlinear in n—running time.

To use Fourier measurements, we consider the two observations

x̂a =
∑
i

ωaixi and x̂a+t =
∑
i

ω(a+t)ixi.

Then we have that
x̂a+t/x̂a ≈ ωi

∗t.

This is known as the “OFDM trick,” after orthogonal frequency division multiplexing; it is also a
special case of the Prony method. In particular, one can show that for each t as a distribution over
a,

|x̂a+t/x̂a − ωi
∗t| . 1/

√
C (1.2)

with probability 1−1/C. Because there are only O(n/
√
C) different i with ωit inside this circle, we

can now use the same voting technique as in the general nonadaptive method to get an equivalent
result. Essentially, a is taking the place of the random signs s and t is taking the place of the
random permutation. For random t, the true i∗ gets a vote with 1 − 1/C probability and other i
get votes with 1/

√
C probability, so O(logC(n/δ)) random samples would suffice to identify i∗ with

1− δ probability.
However, the running time for this voting procedure would be at least Θ(n/

√
C) in each it-

eration, which is unacceptable for the sparse Fourier transform motivation. We will improve the
running time at some cost to the dependence on δ. To describe this, we will first describe an
alternate method that loses a logC(1

δ logC n) factor in measurements but is fast; we will then see
how to merge these two methods into a fast sample-optimal method.
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Suppose that the property (1.2) held with probability 1 (and, for simplicity, with a suffi-
ciently small constant). Then consider using O(logC n) samples to evaluate x̂a+t/x̂a at t =
1, C1/2, C2/2, C3/2, . . . ,Θ(n). In the first round, we will learn i∗ to a region R1 containing n/

√
C

indices, all consecutive. In the second round, the ωti for indices i ∈ R1 will be uniformly spread
on the unit circle, so we will learn i∗ to a consecutive region R2 of n/C indices, then R3 of n/C3/2

consecutive indices, and so on. In the end, we will identify i∗ exactly. Because our regions contain
consecutive indices, we can compute all this in time linear in the O(logC n) sample complexity.

Of course, (1.2) does not hold with probability 1 for each t. However, if we evaluate x̂a+t/x̂a
for O(logC(1

δ logC n)) random values of a, then for each t with 1− δ/ logC n probability the median
estimate will satisfy (1.2). Then a union bound over t gives a 1− δ failure probability overall, using
O(logC n logC(1

δ logC n)) samples and time. This technique appears in, e.g., [GMS05], and we use
it in Chapter 5 where we are willing to lose log log n factors.

We merge the two techniques in Chapter 4 in the constant C, δ case. One can think of our
first method as a random code that expands log n bits into O(log n) bits—having time and failure
probability exponential in log n. Our second method learns logC = O(1) bits at a time; we can
think of this as partitions the goal into log n blocks of O(1) bits, each of which is randomly coded
into O(log log n) bits, giving failure probability exponential in log log n and time exponential in 1.
To merge the two techniques, we instead use log n/ log log n blocks of log log n bits. Then decoding
each block has time and failure probability exponential in log log n. A union bound then gets an
O(log1.1 n) time, O(log n) sample 1-sparse recovery method with 1/ logc n failure probability. One
could probably extend this technique to general C and δ to get O(logC n logC(1/δ)) measurements
and O(log1.1

C n) time.

This method is related to tree codes [Sch93, GMS11] and spinal codes [PIF+12]. With adaptive
sampling, one could use noisy binary search [KK07] to achieve a better dependence on the failure
probability; however, adaptive sampling would not work in our architecture for building a k-sparse
recovery algorithm.

1.4.2 Partial k-sparse recovery

Our first step in building a k-sparse recovery algorithm from a 1-sparse recovery algorithm is
“partial k-sparse recovery,” which recovers most of the k heavy hitters.

Definition 1.4.2. Let x ∈ Cn. The partial sparse recovery problem PartialSparse(x, k, f, ε, δ)
is to find x′ with

Err2
fk(x

′ − x) ≤ (1 + ε) Err2
k(x)

with probability 1− δ using (the given modality of) measurements on x.

For this intuition, we will describe the case of f and δ being small constants. We describe the
modalities from simplest to most complicated; each analysis builds upon the previous one.

Adaptive. In the adaptive setting, once we locate a heavy coordinate i we can observe xi directly
to make (x′ − x)i = 0.

The idea is to partition the coordinates randomly into Θ(k/ε) “buckets”, then perform 1-sparse
recovery on each bucket. Each coordinate will most likely (i.e., with probability 1− f for constant
f) land in a bucket that both (1) does not include any of the other k heavy hitters and (2) has
roughly the average level of “noise” from non-heavy hitters, i.e. Θ((ε/k) Err2

k(x)). Therefore each i
with |xi|2 > (ε/k) Err2

k(x) will with 1− f probability contain a large constant fraction of the mass
in the bucket that it lies in, in which case the 1-sparse recovery guarantee says that i will probably
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be found and removed from the residual. Therefore of the top k elements, we expect at most O(fk)
elements larger than (ε/k) Err2

k(x) to remain in the residual. This gives the partial sparse recovery
guarantee.

Since the buckets have size nε/k, 1-sparse recovery takes O(log log(nε/k)) measurements per
bucket or O(k log log(nε/k)) measurements overall.

Nonadaptive. In the nonadaptive setting, we cannot simply observe xi after locating i and make
the residual x′i − xi zero. Therefore we need to introduce an estimation stage that lets us estimate
coordinate values using nonadaptive measurements. For any ε . 1, we can randomly partition the
coordinates into O(k/ε) buckets and observe u(x) =

∑
i s(i)xi within each bucket for random signs

s(i) ∈ {±1}. Then s(i)u(x) ≈ xi, in particular |s(i)u(x)− xi|2 ≤ (ε/k) Err2
k(x) with large constant

(say, 3/4) probability5. To estimate xi, we take the median of log(1/fδ) such estimates. With
1− fδ probability, most estimates will have small error and hence so will the median.

For partial sparse recovery with large C, as in the adaptive setting we partition the coordinates
randomly into O(k) buckets and perform C-approximate 1-sparse recovery on each bucket. With
probability 1− δ, this will return a set L of locations such that

Err2
fk(xL − x) ≤ C Err2

k(x)

We then use the estimation stage (run with O(k) buckets) to get x̃L ≈ xL, such that

Err2
2fk(x̃L − x) ≤ Err2

fk(x̃L − xL)︸ ︷︷ ︸
Estimation error

+ Err2
fk(xL − x)︸ ︷︷ ︸

Location error

≤ (1 + C) Err2
k(x)

with probability 1 − 2δ. This gives partial sparse recovery with O(k logC n + k) = O(k logC n)
measurements for constant f and δ.

Fourier. Our algorithm for the Fourier modality is modeled after the previous ones, but somewhat
more tricky to implement. For this discussion, we will assume C = Θ(1) for simplicity. The difficulty
lies in partitioning the coordinates randomly into O(k) buckets and performing 1-sparse recovery
within each bucket. With arbitrary linear measurements we choose matrix rows containing Θ(n/k)
nonzeros; Fourier measurements, by contrast, have n nonzeros.

The trick is to post-process the measurements into ones that are “close” to the desired 1-sparse
measurements of buckets. To do this, we introduce good “filters” G ∈ Cn that are localized in
both time and frequency domains. More specifically, let I ∈ Rn be the rectangular function of
width n/k, so Ii = 1 for |i| ≤ n/(2k) and 0 otherwise, and for intuition suppose that the k large
coordinates of x were in random positions. Then x · I, where · denotes entrywise multiplication,
can be viewed as x restricted to a “bucket” of n/k coordinates. Since x · I is likely to be 1-sparse,
we would ideally like to sample from the Fourier transform of x · I and perform 1-sparse recovery.
This is hard to do exactly, but for some tolerance R, we construct G ∈ Cn such that roughly6

‖G− I‖2 . ‖I‖2/R

| supp(Ĝ)| . k logR

That is, G is an approximation of I with sparse Fourier transform.

5Since the k heavy hitters will probably miss the bucket, and (ε/k) Err2k(x) is the expected contribution of the
other coordinates.

6In particular, if we ignore coordinates near the boundary where I changes from 1 to 0.
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Figure 1-5 shows how to use G, Ĝ to estimate something about x. We can compute Ĝ · x̂ in order
| supp(Ĝ)| . k logR time. If we then took its n-dimensional DFT, we would get the convolution
G ∗ x. To be more efficient in time complexity, we can instead “alias” the observation Ĝ · x̂ into k
terms (i.e., sum up the first k, second k, . . . terms) and take the k-dimensional DFT. This gives
us a subsampling of G ∗ x: a vector u ∈ Ck with ui = (G ∗ x)in/k, using O(k logR) samples and
O(k log(Rk)) time.

We can think of u in another way, as ui =
∑

j((G ∗ ein/k) · x)j , since our G is symmetric. In
this view, (G ∗ ein/k) · x ≈ (I ∗ ein/k) · x approximates x restricted to n/k coordinates; it represents
a “bucketing” of x. Then ui, as the sum of elements in this bucket, represents the 0th Fourier
coefficient of the bucketed signal. More generally, if (as in the figure) we shift Ĝ by an offset a
before multiplying with x̂, then ui will represent the ath Fourier coefficient of the bucketed signal,
for each bucket i ∈ [k].

The resulting u is therefore the desired measurements of buckets achieved by post-processing.
Hence we can run this procedure to compute u for multiple a as desired by our 1-sparse recovery
algorithm, and if the bucketed signal (G ∗ ein/k) · x is 1-sparse then we will recover the large
coordinate with O(k logR log(n/k)) samples.

The above description uses a deterministic bucketing, which will always fail on inputs with
many nearby large coordinates. To randomize it, we imagine sampling from x̂′′i = x̂σiω

−σbi for
random σ, b ∈ [n] with σ invertible mod n. As in [GGI+02a, GMS05], the corresponding inverse
Fourier transform x′′ is an approximately pairwise independent permutation of x. Since we can
easily simulate samples from x̂′′ using samples of x̂, this gives us a randomized bucketing.

To get partial sparse recovery with this setup, we just need R to be large enough that the
“leakage” between buckets is negligible. In our Chapter 4 result optimizing time complexity,
we set R = nO(1). This is simple and easily suffices when our goal is nO(1) precision, but in-
curs a logR = log n loss in sample complexity. In Chapter 5, we show that we only need that
R be at least the “signal-to-noise ratio” ‖x‖22/Err2

k(x). The signal-to-noise ratio may be quite
large; but in those cases C-approximate recovery for C = RΩ(1) gives useful information using
O(k logR logR(n/k) log log n) = O(k log(Rn/k) log log n) measurements. In Section 1.4.4 we de-
scribe the intuition of this procedure.

1.4.3 General k-sparse recovery

Suppose our original signal is x∗. Our first call to PartialSparse recovers a χ(1) where x∗ − χ(1)

is (say) k/2-sparse. We would then like to recursively call PartialSparse on x = x∗ − χ(1) with
different parameters to get χ′ and set χ(2) = χ(1) +χ′, then on x = x∗−χ(2) to get χ(3), and so on.
Two questions arise: first, how can we implement observations of x = x∗ − χ using observations of
x∗ and knowledge of χ? Second, what schedule of of parameters (kr, fr, εr, δr) should we use?

Implementing observations. For any row v of A, we can find 〈v, x〉 by observing 〈v, x∗〉, directly
computing 〈v, χ〉, and subtracting the two. In the adaptive and nonadaptive modalities this works
great because (a) we are not concerned with running time and (b) the running time is fast in
any case because v is sparse. In the Fourier setting neither of these hold. We will implement
observations in different ways in the two Fourier chapters.

In Chapter 4, where R = nΩ(1), we use that the “buckets” are very well isolated and each
coordinate of χ only contributes non-negligibly to a single bucket. That is, the post-processed
measurements u are essentially sparse linear transformations, so we can compute the influence of
χ efficiently.
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(a) Accessible signal x̂ (b) Desired result x

(c) Filter Ĝ at some offset a. (d) Absolute value of G, which is indepen-
dent of a.

(e) Observation Ĝ · x̂

n-dimensional DFT
k-dimensional DFT

(f) Computed k-dimensional Fourier trans-

form of Ĝ · x̂ (red dots) is a subsampling of
G ∗ x (green line).

Figure 1-5: Computation using filters. For clarity, the signal x is exactly k-sparse. The red points
in (f) can be computed in O(| supp(Ĝ)|+ k log k) time.
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In Chapter 5, because R may be smaller this is no longer the case. Instead, we use that the
sampling pattern on x̂ consists of arithmetic sequences of length larger than k. By the semi-
equispaced Fourier transform, we can compute χ̂ at those locations with only a logarithmic loss
in time ([DR93, PST01], see also Section 5.12). We then subtract χ̂ from x̂∗ to get x̂ before
post-processing the measurements.

Parameter schedule. We will vary the schedule, but the basic idea is to choose the fi somehow
and then:

ki = k
∏
j<i

fi

εi =
1

10
ε/i2

δi =
1

10
δ/i2

for i ≤ r where r is such that
∏
i≤r fi < 1/k. Then with probability 1−

∑
i δi > 1− δ, all the calls

to PartialSparse succeed. In this case, by telescoping the guarantee of PartialSparse we have
that the final result has

‖x∗ − χ(r)‖22 = Err2
frkr(x

∗ − χ(r)) ≤ Err2
k(x
∗)
∏
i≤r

(1 + εi) (1.3)

If ε < 1, one can show
∏
i≤r(1 + εi) ≤ 1 + ε which gives the desired guarantee (1.1).

The choice of fi may affect the number of rounds r, the number of measurements, and the
running time, but not correctness. Because of the logarithmic dependence of PartialSparse on
f and linear dependence on k, we will be able to set fi = 2−Ω(1/fi) and still have the sample
complexity dominated by the first call to PartialSparse. Then f decays as a power tower, so
only r . log∗ k rounds are necessary.

When C � 1, (1.3) does not give the guarantee (1.1) but instead

‖x∗ − χ(r)‖22 ≤ CO(log∗ k) Err2
k(x
∗).

Hence in the nonadaptive modality this gives a CO(log∗ k)-approximate sparse recovery algorithm
using O(k logC(n/k)) measurements. Redefining C, this gives a C-approximate algorithm with
O(k logC(n/k) log∗ k) measurements.

1.4.4 SNR reduction

Our Fourier-modality algorithm optimizing measurements (Chapter 5) adds an SNR reduction
stage to the architecture. Let O∗(·) hide log log n factors. The preceding sections describe how,
with arbitrary measurements, we can achieve C-approximate recovery with O∗(k logC(n/k)) mea-
surements. Furthermore with Fourier measurements, if the SNR ‖x‖22/Err2

k(x) . R, we can perform
C-approximate recovery with O∗(k logR logC(n/k)) measurements.

By definition, the C-approximate recovery guarantee states that the residual x − x′ has SNR
C2. Therefore, starting with an upper bound on the SNR of R = nO(1), we can perform R0.1-
approximate recovery using O∗(k log(Rn/k)) measurements and recurse on the residual with R→
R0.2. After log log n iterations, the SNR will be constant and we can solve the problem directly for
the desired approximation factor 1 + ε.
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1.5 Lower bound techniques

1.5.1 `p/`q guarantees

Generally the two norms in (1.1) can be different; an “`p/`q guarantee” uses `p on the left and `q
on the right, and scales C as k1/p−1/q; this scaling compensates for the behavior if the vectors on
both sides were dominated by k comparable large values. The common (p, q) in the literature are
(∞, 2), (2, 2), (2, 1) and (1, 1), in order of decreasing strength of the guarantee. In every chapter
of this thesis except Chapter 7, we choose p = q = 2.

Choosing q = 2 is important because the guarantee (1.1) is trivial on many signals when q = 1.
In particular, vectors are often sparse because their coordinates decay as a power law. Empirically,
power laws xi ≈ i−α typically have decay exponent α ∈ [1/2, 2/3] [CSN09, Mit04]7, which is
precisely the range where the right hand side of (1.1) converges when q = 2 but not when q = 1.
For such signals, the q = 1 guarantee is trivially satisfied by the zero vector. The downside of this
stronger guarantee is that it is harder to achieve. In fact, no deterministic algorithm with m = o(n)
can achieve q = 2 [CDD09], so we must allow randomized algorithms with a δ chance of failure.

For the left hand side, having p = 2 is nice because it is basis independent. So if we sparsify in
one basis (e.g., the wavelet basis for images) we can still get an approximation guarantee in another
basis (e.g. the pixel basis).

A significant fraction of the work on sparse recovery considers post-measurement noise. In this
model, one observes Ax+ w for an exactly k-sparse x and wants to recover x′ with

‖x′ − x‖2 ≤ C‖w‖2.

To be nontrivial, one adds some restriction on size of entries in A, such as that all rows have
unit norm. This model behaves quite similarly to the `2/`2 pre-measurement noise model, and
algorithms that work in one of the two models usually also apply to the other one. We will focus
on pre-measurement noise, but most of our algorithms and lower bounds can be modified to apply
in a post-measurement noise setting.

1.5.2 `2: Gaussian channel capacity

In the `2 setting, we can often get tight lower bounds the number of measurements required for
sparse recovery using the information capacity of an AWGN Gaussian channel. Similar techniques
have appeared in [Wai09, IT10, ASZ10, CD11].

Basic technique. To elucidate the technique, we start with an Ω(logC n) lower bound for arbi-
trary nonadaptive measurements with k = 1 and C ≥ 2. We draw x from the distribution

x = ei∗ + w

for i∗ ∈ [n] uniformly at random and w ∼ N(0,Θ(1/(C2n))In) normally distributed. We will show
that

log n . I(i∗;Ax) . m logC (1.4)

7Corresponding to Pareto distributions with parameter α ∈ [2, 3].
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to get the result, where I(a; b) denotes the Shannon mutual information between a and b. For the
left inequality, we know that sparse recovery must find x′ with

‖x′ − ei∗‖2 ≤ ‖x′ − x‖2 + ‖w‖2 ≤ (C + 1)‖w‖2 (1.5)

with constant probability. But ‖w‖2 is strongly concentrated about its mean Θ(1/C), so with
appropriate constants ‖x′ − ei∗‖2 < 1/4 with constant probability. But then rounding x′ to the
nearest ei will recover the log n-bit i∗ with constant probability. By Fano’s inequality, this means
I(i∗;x′) & log n. Since i∗ → Ax→ x′ is a Markov chain, I(i∗;Ax) ≥ I(i∗;x′) & log n.

For the upper bound on I(i∗, Ax), we note that each individual measurement is of the form

〈v, x〉 = vi∗ + 〈v, w〉

for some row v of A. Since w is isotropic Gaussian, 〈v, w〉 is simply a Gaussian random variable
independent of vi∗ . This channel i∗ → 〈v, x〉 is an additive white Gaussian noise (AWGN) channel,
which is well studied in information theory. In his paper introducing information theory [Sha48],
Shannon proved that it has information capacity

I(i∗, 〈v, x〉) ≤ 1

2
log (1 + SNR) (1.6)

where SNR denotes the “signal to noise ratio”
E[v2

i∗ ]

E[〈v,w〉2]
. In our setting, we have E[v2

i∗ ] = ‖v‖22/n
and E[〈v, w〉2] = ‖v‖22/(C2n), giving

I(i∗, 〈v, x〉) . logC.

Using the chain rule of information and properties of linearity, we then show that I(i∗, Ax) .
m logC to get (1.4), and hence m = Ω(logC n).

General nonadaptive. To support k > 1, we instead set

x = x̃+ w

where x̃ ∈ {0,±1}n is k-sparse and w ∼ N(0, k/(C2n)I). In particular, we draw supp(x̃) from a
code F of 2Ω(k log(n/k)) different supports, where every pair of supports in the code differ in Ω(k)
positions. Then in a very similar fashion to the above, we get the result from

k log(n/k) . I(supp(x̃);Ax) . m logC.

The lower bound follows from the distance property, and the upper bound just needs that

E
x
[〈v, x̃〉2] = k/n (1.7)

for every unit vector v. If x̃ is drawn uniformly conditioned on its support S and the code is
sufficiently “symmetric”, we have

E
x
[〈v, x̃〉2] = E

S
[‖vS‖22] = k/n.

The same framework also supports C = 1 + ε for ε = o(1). First, to make the upper bound
of (1.4) hold, we increase w to N(0, k/(εn)I). The lower bound of (1.4) then requires more care,
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but still holds.

Adaptive Fourier. In the Fourier setting, we would like to lower bound adaptively chosen mea-
surements sampled from the Fourier matrix.

The above technique is mostly independent of adaptivity, with the exception of (1.7). In the
adaptive setting, v is not independent of x, which makes (1.7) not hold. To work around this, we
observe that for any fixed row v of the Fourier matrix and S = supp(x̃), if the signs of x̃ are chosen
uniformly at random, then

Pr[〈v, x̃〉2 > kt/n] < e−Ω(t)

by subgaussian concentration inequalities. Therefore with high probability over the signs,

〈v, x̃〉2 < k(log n)/n

for all v in the Fourier matrix. Then regardless of the choice of v, the SNR is bounded by C2 log n,
giving I(supp(x̃);Ax) . m log(C log n). Thus with Fourier measurements, adaptivity can only give
a log log n factor improvement.

Arbitrary adaptive. When the measurement vector v can be chosen arbitrarily, the above
lower bound (which relies on ‖v‖∞ = 1/

√
n) does not apply. In fact, in this case we know that

O(k log log(n/k)) measurements suffice. Using a more intricate Gaussian channel capacity argu-
ment, we show that Ω(log log n) measurements are necessary. Hence our upper bound is tight for
k = 1.

The core idea of the proof is as follows. At any stage of the adaptive algorithm, we have some
posterior distribution p on i∗. This represents some amount of information b = H(i∗) − H(p).
Intuitively, with b bits of information we can restrict i∗ to a subset of size n/2b, which increases the
SNR by a 2b factor giving channel capacity 1

2 log(1+SNR) . 1+b. For general distributions p this
naive analysis based solely on the SNR does not work; nevertheless, with some algebra we show for
all distributions p that I(i∗; 〈v, x〉 | p) . 1 + b. This means it takes Ω(log log n) measurements to
reach log n bits.

1.5.3 `1: Communication complexity

In Chapter 7, we consider recovery guarantees other than the standard `2 guarantee. The Gaussian
channel technique in the previous section does not extend well to the `1 setting. It relies on the
Gaussian being both 2-stable and the maximum entropy distribution under an `2 constraint. The
corresponding distributions in `1 are not the same as each other, so we need a different technique.

We use communication complexity. Alice has an input x ∈ Rn and Bob has an input y ∈ Rn,
and they want to compute some function f(x, y) of their inputs. Communication complexity studies
how many bits they must transmit between themselves to compute the function; for some functions,
it is known that many bits must be transmitted. We show that a variant of a known hard problem,
Gap`∞, is hard on a particular distribution.

We then show that sparse recovery solves our Gap`∞ variant. In the nonadaptive setting, the
idea is that Alice sends Ax to Bob, who subtracts Ay to compute A(x− y). Bob then runs sparse
recovery on x − y, and the result lets us solve our Gap`∞ variant. This shows that Ax must have
Ω(k/

√
ε) bits. In the adaptive setting, the same idea applies except the communication is two-

way—so Alice and Bob can both compute subsequent rows of the matrix—and we get the same
bound.
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Of course, the entries of A are real numbers so Ax may have arbitrarily many bits. We show
that only O(log n) bits per entry are “important”: rounding A to O(log n) bits per term gives
a negligible perturbation to the result of sparse recovery. Because our lower bound instance has
n ≈ k/ε, this gives a lower bound on the number of measurements of Ω(k/(

√
ε log(k/ε))).
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Algorithms
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Chapter 2

Adaptive Sparse Recovery
(Based on parts of [IPW11])

2.1 Introduction

In this chapter we give an algorithm for 1 + ε approximate `2/`2 sparse recovery using only
O(1

εk log log n) measurements if we allow the measurement process to be adaptive. In the adaptive
case, the measurements are chosen in rounds, and the choice of the measurements in each round
depends on the outcome of the measurements in the previous rounds.

Implications. Our new bounds lead to potentially significant improvements to efficiency of sparse
recovery schemes in a number of application domains. Naturally, not all applications support adap-
tive measurements. For example, network monitoring requires the measurements to be performed
simultaneously, since we cannot ask the network to “re-run” the packets all over again. However,
a surprising number of applications are capable of supporting adaptivity. For example:

• Streaming algorithms for data analysis: since each measurement round can be implemented
by one pass over the data, adaptive schemes simply correspond to multiple-pass streaming
algorithms (see [McG09] for some examples of such algorithms).

• Compressed sensing of signals: several architectures for compressive sensing, e.g., the single-
pixel camera of [DDT+08a], already perform the measurements in a sequential manner. In
such cases the measurements can be made adaptive1. Other architectures supporting adap-
tivity are under development [Def10].

• Genetic data analysis and acquisition: as above.

Running time of the recovery algorithm. In the nonadaptive model, the running time of the
recovery algorithm is well-defined: it is the number of operations performed by a procedure that
takes Ax as its input and produces an approximation x′ to x. The time needed to generate the
measurement vectors A, or to encode the vector x using A, is not included. In the adaptive case, the
distinction between the matrix generation, encoding and recovery procedures does not exist, since

1We note that, in any realistic sensing system, minimizing the number of measurements is only one of several
considerations. Other factors include: minimizing the computation time, minimizing the amount of communication
needed to transfer the measurement matrices to the sensor, satisfying constraints on the measurement matrix imposed
by the hardware etc. A detailed cost analysis covering all of these factors is architecture-specific, and beyond the
scope of this thesis.
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new measurements are generated based on the values of the prior ones. Moreover, the running time
of the measurement generation procedure heavily depends on the representation of the matrix. If
we suppose that we may output the matrix in sparse form and receive encodings in time bounded
by the number of nonzero entries in the matrix, our algorithms run in n logO(1) n time. Moreover, if
we may implicitly output the matrix (e.g. output a circuit that computes each entry of the matrix
in each round) then one could probably implement our algorithm with k logO(1) n time.

2.2 1-sparse recovery

This section discusses recovery of 1-sparse vectors with O(log log n) adaptive measurements. First,
in Lemma 2.2.1 we show that if the heavy hitter xj∗ is B � 1 times larger than the `2 norm of
everything else (the “signal-to-noise ratio” is n2), then with two nonadaptive measurements we can
find an estimate j̃ of j∗ with |j̃ − j∗| . n/B. The idea is quite simple: we observe

u(x) =
∑
i

s(i)xi and u′(x) =
∑
i

i · s(i)xi

for random signs s(i) ∈ {±1}, and round u′(x)/u(x) to get our estimate of j∗.

Lemma 2.2.1. Consider the measurements

u(x) =
∑
i

s(i)xi and u′(x) =
∑
i

i · s(i)xi

for pairwise independent random signs s(i) ∈ {±1}. Then with probability 1− δ,∣∣∣∣u′(x)

u(x)
− j∗

∣∣∣∣ ≤ 2
√

2
n√
δ

‖x−j∗‖2
|xj∗ |

for any j∗ for which this bound is less than n.

Proof. By assumption, we have that j∗ satisfies |xj∗ |2 ≥ (8/δ)‖x−j∗‖22. We have that

u′(x)

u(x)
= j∗ +

∑
i(i− j∗)xis(i)∑

i xis(i)

and will bound the numerator and denominator of this error term. We have by pairwise indepen-
dence of s that

E

(∑
i

(i− j∗)xis(i)

)2
 =

∑
i

(i− j∗)2x2
i ≤ n2‖x−j∗‖22.

so by Markov’s inequality, with probability 1− δ/2 we can bound the numerator by

|
∑
i

(i− j∗)xis(i)| ≤
√

2/δn‖x−j∗‖2

For the denominator, we have

|
∑
i

xis(i)| ≥ |xj∗ | − |
∑
i 6=j∗

xis(i)|.
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Because E[|
∑

i 6=j∗ xis(i)|2] = ‖x−j∗‖22 ≤ δ|xj∗ |2/8 by assumption, by Markov’s inequality we have
with probability 1− δ/2 that

|
∑
i 6=j∗

xis(i)| ≤ |xj∗ |/2

and so the denominator is at least |xj∗ |/2. Combining, we have∣∣∣∣u′(x)

u(x)
− j∗

∣∣∣∣ =

∣∣∣∣∑i(i− j∗)xis(i)∑
i i · xis(i)

∣∣∣∣ ≤
√

2/δn‖x−j∗‖2
|xj∗ |/2

= 2
√

2
n√
δ

‖x−j∗‖2
|xj∗ |

as desired.

This lemma is great if |xj∗ | � n‖x−j∗‖2, in which case u(x)/u′(x) rounds to j∗. At lower
signal-to-noise ratios, it still identifies j∗ among a relatively small set of possibilities. However,
because those possibilities (i.e. the nearby indices) are deterministic this lemma does not allow us
to show that the energy of the extraneous possibilities goes down. To fix this, we extend the result
to allow an arbitrary hash function from [n] to [D]:

Lemma 2.2.2. Let h : [n]→ [D] be fixed and consider the measurements

u(x) =
∑
i

s(i)xi and u′(x) =
∑
i

h(i) · s(i)xi

for pairwise independent random signs s(i) ∈ {±1}. Then with probability 1− δ,∣∣∣∣u′(x)

u(x)
− h(j∗)

∣∣∣∣ ≤ 2
√

2
D√
δ

‖x−j∗‖2
|xj∗ |

for any j∗ for which this bound is less than D.

Proof. The proof is identical to Lemma 2.2.1 but replacing (i − j∗)2 ≤ n2 with (h(i) − h(j∗))2 ≤
D2.

Lemma 2.2.3. Suppose there exists a j∗ with |xj∗ | ≥ C B
δ3/2
‖x−j∗‖2 for some constant C and

parameters B and δ. Then with two nonadaptive measurements, NonAdaptiveShrink(x, B/δ)
returns a set S ⊂ [n] such that j∗ ∈ S, ‖xS\{j∗}‖2 ≤ ‖x−j∗‖2/

√
B, and |S| ≤ 1 + n/B with

probability 1− 3δ.

Proof. Let D = B/δ and h : [n]→ [D] be a pairwise independent hash function. Define Cj∗ = {i 6=
j∗ : h(i) = h(j∗)} to be the set of indices that “collide” with j∗. We have by pairwise independence
that each i 6= j∗ has Pr[i ∈ Cj∗ ] = 1/D, so

E[|Cj∗ |] = (n− 1)/D < δn/B

E[‖xCj∗‖
2
2] = ‖x−j∗‖22/D = δ‖x−j∗‖22/B

and so with probability 1− 2δ we have |Cj∗ | ≤ n/B and ‖xCj∗‖2 ≤ ‖x−j∗‖2/
√
B, so

S = {i : h(i) = h(j∗)} = Cj∗ ∪ {j∗}

would be a satisfactory output. By Lemma 2.2.2, we have with probability 1− δ that

|u
′(x)

u(x)
− h(j∗)| ≤ 2

√
2
D√
δ

‖x−j∗‖2
xj∗

≤ 2
√

2
B

δ3/2

δ3/2

CB
=

2
√

2

C
< 1/2
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procedure NonAdaptiveShrink(x, D) . Find smaller set S containing heavy coordinate xj∗

s : [n]→ {±1} and h : [n]→ [D] pairwise independent.
u←

∑
s(i)xi . Observation

u′ ←
∑
h(i)s(i)xi . Observation

j ← Round(u′/u).
return {i | h(i) = j}.

end procedure

procedure AdaptiveOneSparseRecovery(x) . Recover heavy coordinate xj∗

S ← [n]
B ← 2, δ ← 1/4
while |S| > 1 do

S ← NonAdaptiveShrink(xS , 4B/δ)
B ← B3/2, δ ← δ/2.

end while
return The single index in S

end procedure

Algorithm 2.2.1: Adaptive 1-sparse recovery

for sufficiently large constant C. But then u′(x)
u(x) rounds to h(j∗), so the output is satisfactory with

1− 3δ probability.

Lemma 2.2.4 (1-sparse recovery). Suppose there exists a j∗ with |xj∗ | ≥ C‖x[n]\{j∗}‖2 for some
sufficiently large constant C. Then O(log log n) adaptive measurements suffice to recover j∗ with
probability 1/2.

Proof. Let C ′ be the constant from Lemma 2.2.3. Define B0 = 8 and Br+1 = B
3/2
r /(2

√
2) for r ≥ 0.

Define δr = 2−r/12 for r ≥ 0. Suppose C ≥ C ′B0/δ
3/2
0 .

Define R = O(log log n) so BR ≥ n. Starting with S0 = [n], our algorithm iteratively applies
Lemma 2.2.3 with parameters B = Br and δ = δr to xSr to identify a set Sr+1 ⊂ Sr with j∗ ∈ Sr+1.

We prove by induction that Lemma 2.2.3 applies at the ith iteration. We chose C to match the
base case. For the inductive step, suppose ‖xSr\{j}‖2 ≤ |xj∗ |/(C ′

Br

δ
3/2
r

). Then by Lemma 2.2.3,

‖xSr+1\{j∗}‖2 ≤ ‖xSr\{j∗}‖2/
√
Br ≤ |xj∗ |/(C ′

B
3/2
r

δ
3/2
r

) = |xj∗ |/(C ′
Br+1

δ
3/2
r+1

)

so the lemma applies in the next iteration as well, as desired.

After r iterations, we have Sr ≤ 1 + n/B2
r < 2, so we have uniquely identified j∗ ∈ Sr. The

probability that any iteration fails is at most
∑

r≥0 3δr < 6δ0 = 1/2.

2.3 k-sparse recovery

Given a 1-sparse recovery algorithm using m measurements, one can use subsampling to build a
k-sparse recovery algorithm using O(km) measurements and achieving constant success probability.
Our method for doing so is quite similar to one used in [GLPS10]. The main difference is that, in
order to identify one large coefficient among a subset of coordinates, we use the adaptive algorithm
from the previous section as opposed to error-correcting codes.
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For intuition, straightforward subsampling at rate 1/k will, with constant probability, recover
(say) 90% of the heavy hitters using O(km) measurements. This reduces the problem to k/10-
sparse recovery: we can subsample at rate 10/k and recover 90% of the remainder with O(km/10)
measurements, and repeat log k times. The number of measurements decreases geometrically,
for O(km) total measurements. Naively doing this would multiply the failure probability and
the approximation error by log k; however, we can make the number of measurements decay less
quickly than the sparsity. This allows the failure probability and approximation ratios to also decay
exponentially so their total remains constant.

To determine the number of rounds, note that the initial set of O(km) measurements can be
done in parallel for each subsampling, so only O(m) rounds are necessary to get the first 90% of
heavy hitters. Repeating log k times would require O(m log k) rounds. However, we can actually
make the sparsity in subsequent iterations decay super-exponentially, in particular as a power tower.
This give O(m log∗ k) rounds.

Theorem 2.3.1. There exists an adaptive (1 + ε)-approximate k-sparse recovery scheme with
O(1

εk log 1
δ log log(nε/k)) measurements and success probability 1 − δ. It uses O(log∗ k log log(nε))

rounds.

To prove this, we start from the following lemma:

Lemma 2.3.2. We can perform O(log log(n/k)) adaptive measurements and recover an ı̂ such that,
for any j ∈ Hk,1(x) we have Pr[̂ı = j] = Ω(1/k).

Proof. Let S = Hk(x). Let T ⊂ [n] contain each element independently with probability p =
1/(4C2k), where C is the constant in Lemma 2.2.4. Let j ∈ Hk,1(x). Then we have

E[‖xT\S‖22] = p‖xS‖
2
2

so with probability at least 3/4,

‖xT\S‖2 ≤
√

4p‖xS‖2 =
1

C
√
k
‖xS‖2 ≤ |xj |/C

where the last step uses that j ∈ Hk,1(x). Furthermore we have E[|T \ S|] < pn so |T \ S| < n/k
with probability at least 1 − 1/(4C2) > 3/4. By the union bound, both these events occur with
probability at least 1/2.

Independently of this, we have

Pr[T ∩ S = {j}] = p(1− p)k−1 > p/e

so all these events hold with probability at least p/(2e). Assuming this,

‖xT\{j}‖2 ≤ |xj |/C

and |T | ≤ 1 + n/k. But then Lemma 2.2.4 applies, and O(log log |T |) = O(log log(n/k)) measure-
ments of xT can recover j with probability 1/2. This is independent of the previous probability,
for a total success chance of p/(4e) = Ω(1/k).

Lemma 2.3.3 (Partial k-sparse recovery). With O(1
εk log 1

fδ log log(nε/k)) adaptive measurements,
we can recover T with |T | ≤ k and

Err2
fk(xT ) ≤ (1 + ε) Err2

k(x)
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with probability at least 1− δ. The number of rounds required is O(log log(nε/k)).

Proof. Repeat Lemma 2.3.2 m = O(1
εk log 1

fδ ) times in parallel with parameters n and k/ε to get

coordinates T ′ = {t1, t2, . . . , tm}. For each j ∈ Hk,ε(x) ⊆ Hk/ε,ε(x) and i ∈ [m], the lemma implies

Pr[j = ti] ≥ ε/(Ck) for some constant C. Then Pr[j /∈ T ′] ≤ (1 − ε/(Ck))m ≤ e−εm/(Ck) ≤ fδ for
appropriate m. Thus

E[|Hk,ε(x) \ T ′|] ≤ fδ|Hk,ε(x)| ≤ fδk
Pr
[
|Hk,ε(x) \ T ′| ≥ fk

]
≤ δ.

Now, observe xT ′ directly and set T ⊆ T ′ to be the locations of the largest k values. Then,
since Hk,ε(x) ⊆ Hk(x), |Hk,ε(x) \ T | = |Hk,ε(x) \ T ′| ≤ fk with probability at least 1− δ.

Suppose this occurs, and let y = xT . Then

Err2
fk(y) = min

|S|≤fk
‖yS‖

2
2

≤ ‖y
Hk,ε(x)\T ‖

2
2

≤ ‖x
Hk,ε(x)

‖22
= ‖x

Hk(x)
‖22 + ‖xHk(x)\Hk,ε(x)‖22

≤ ‖x
Hk(x)

‖22 + k‖xHk(x)\Hk,ε(x)‖2∞
≤ (1 + ε)‖x

Hk(x)
‖22

= (1 + ε) Err2
k(x)

as desired.

procedure AdaptiveKSparseRecovery(x, k, ε, δ) . Recover approximation x̂ of x
R0 ← [n]
δ0 ← δ/2, ε0 ← ε/e, f0 ← 1/32, k0 ← k.
J ← {}
for i← 0, . . . , O(log∗ k) do . While ki ≥ 1

for t← 0, . . . ,Θ( 1
εi
ki log 1

δi
) do

St ← Subsample(Ri,Θ(εi/ki))
J.add(AdaptiveOneSparseRecovery(xSt))

end for
Ri+1 ← [n] \ J
δi+1 ← δi/8
εi+1 ← εi/2
fi+1 ← 1/21/(4i+1fi)

ki+1 ← kifi
end for
x̂← xJ . Direct observation
return x̂

end procedure

Algorithm 2.3.1: Adaptive k-sparse recovery
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Theorem 2.3.4. We can perform O(1
εk log 1

δ log log(nε/k)) adaptive measurements and recover a
set T of size at most 2k with

‖xT ‖2 ≤ (1 + ε)‖x
Hk(x)

‖2.

with probability 1− δ. The number of rounds required is O(log∗ k log log(nε)).

Proof. Define δi = δ
2·2i and εi = ε

e·2i . Let f0 = 1/32 and fi = 2−1/(4ifi−1) for i > 0, and define
ki = k

∏
j<i fj . Let R0 = [n].

Let r = O(log∗ k) such that fr−1 < 1/k. This is possible since αi = 1/(4i+1fi) satisfies the
recurrence α0 = 8 and αi = 2αi−1−2i−2 > 2αi−1/2. Thus αr−1 > k for r = O(log∗ k) and then
fr−1 < 1/αr−1 < 1/k.

For each round i = 0, . . . , r− 1, the algorithm runs Lemma 2.3.3 on xRi with parameters εi, ki,
fi, and δi to get Ti. It sets Ri+1 = Ri \ Ti and repeats. At the end, it outputs T = ∪Ti.

The total number of measurements is of order∑ 1

εi
ki log

1

fiδi
log log(nεi/ki) .

∑ 2i(ki/k) log(1/fi)

ε
k(i+ log

1

δ
) log(log(k/ki) + log(nε/k))

.
1

ε
k log

1

δ
log log(nε/k)

∑
2i(ki/k) log(1/fi)(i+ 1) log log(k/ki)

using the very crude bounds i+ log(1/δ) ≤ (i+ 1) log(1/δ) and log(a+ b) ≤ 2 log a log b for a, b ≥ e.
But then ∑

2i(ki/k) log(1/fi)(i+ 1) log log(k/ki) ≤
∑

2i(i+ 1)fi log(1/fi) log log(1/fi)

.
∑

2i(i+ 1)
√
fi

. 1

since fi . /16i, giving O(1
εk log 1

δ log log(nε/k)) total measurements. The probability that any of
the iterations fail is at most

∑
δi < δ. The result has size |T | ≤

∑
ki ≤ 2k. All that remains is the

approximation ratio ‖xT ‖2 = ‖xRr‖2.
For each i, we have

Err2
ki+1

(xRi+1) = Err2
fiki

(xRi\Ti) ≤ (1 + εi) Err2
ki

(xRi).

Furthermore, kr < kfr−1 < 1. Hence

‖xRr‖22 = Err2
kr(xRr) ≤

(
r−1∏
i=0

(1 + εi)

)
Err2

k0(xR0) =

(
r−1∏
i=0

(1 + εi)

)
Err2

k(x)

But
∏r−1
i=0 (1 + εi) < e

∑
εi < e, so

r−1∏
i=0

(1 + εi) < 1 +
∑

eεi ≤ 1 + 2ε

and hence
‖xT ‖2 = ‖xRr‖2 ≤ (1 + ε)‖x

Hk(x)
‖2

as desired.

Once we find the support T , we can observe xT directly with O(k) measurements to get a
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(1 + ε)-approximate k-sparse recovery scheme, proving Theorem 2.3.1.
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Chapter 3

Nonadaptive Upper Bound for High
SNR
(Based on parts of [PW12])

This chapter gives an upper bound for C-approximate sparse recovery that usesO(k log∗ k logC(n/k))
measurements for C � 1. This matches, up to a log∗ k factor, the lower bound in Chapter 6. Pre-
vious results were optimal when C = O(1) or C = nΩ(1) (see [CRT06b] for C = 1 + Θ(1), [GLPS10]
for C = 1 + o(1), and in a slightly different setting [EG07, BJCC12] for C = nΩ(1)), but this is the
first result we are aware of that performs well in the intermediate regime.

We first focus on recovery of a single heavy coordinate. We then study “partial” sparse recovery,
i.e. recovery of 90% of the heavy hitters for general k. We conclude with recovery of all the heavy
hitters.

3.1 1-sparse recovery

We observe 2r measurements, for some r = O(logC n). Let D = C/16. For i ∈ [r], we choose
pairwise independent hash functions h : [n]→ [D] and s : [n]→ {±1}. We then observe

u =
∑
j

s(j)xj u′ =
∑
j

h(j)s(j)xj .

Lemma 3.1.1 (1-sparse recovery). Suppose there exists a j∗ ∈ [n] such that |xj∗ | ≥ C‖x−j∗‖2.
Then if C is larger than a sufficiently large constant, we can choose r = O(logC(n/δ)) and D =
Θ(
√
C) so that Locate1Sparse returns j∗ with probability 1− δ.

Proof. These measurements ui and u′i are identical to those used and analyzed for 1-sparse recovery
in Chapter 2. By Lemma 2.2.2, for each i ∈ [r] with probability 1− 1/C over si we have∣∣∣∣u′iui − hi(j∗)

∣∣∣∣ ≤ 2
√

2
D√
1/C

‖x−j∗‖2
|xj∗ |

< 1/2

for appropriate constant in D = Θ(
√
C). Hence for αi = round(

u′i
ui

), we have

Pr[αi 6= hi(j
∗)] ≤ 1/C. (3.1)
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procedure Locate1Sparse(x, C)
for i ∈ [r] do . r = O(logC(n/δ))

Choose hi : [n]→ [D] and si : [n]→ {±1} pairwise independent. . D =
√
C/16

Sample ui =
∑

j si(j)xj and u′i =
∑

j hi(j)si(j)xj .
αi ← round(u′/u)

end for
cj ← |{i ∈ [r] | hi(j) = αi}| for j ∈ [n].
S ← {j ∈ [n] | cj > r/2}.
if |S| = 1 then

return the single element j ∈ S
else

return ⊥
end if

end procedure

Algorithm 3.1.1: Nonadaptive 1-sparse location

This is independent for each i ∈ [r], so the probability this happens r/2 times is

Pr[j∗ /∈ S] ≤
(
r

r/2

)
(1/C)r/2 ≤ (4/C)r/2 = C−Ω(r) ≤ δ/(2n).

for r = Θ(logC(n/δ)). Similarly, we have for j 6= j∗ that

Pr[αi = hi(j)] ≤ Pr[hi(j) = hi(j
∗)] + Pr[αi 6= hi(j

∗)] ≤ 1/D + 1/C ≤ 2/D.

Hence

Pr[j ∈ S] ≤
(
r

r/2

)
(2/D)r/2 ≤ D−Ω(r) ≤ δ/(2n).

Therefore a union bound gives that S = {j∗} with probability 1− δ.

3.2 Partial k-sparse recovery

3.2.1 Location

For general k, we locate a set L of O(k) coordinates by partitioning the coordinates into B = O(k)
sets of size n/B and applying Locate1Sparse. To be specific, we use pairwise independent hash
functions h : [n]→ [B] to partition into B sets {i : h(i) = u} for each u ∈ [B].

The algorithm LocateMost performs this for R = O(log(1/fδ)) different hash functions h
and outputs the set of indices j ∈ [n] that are located in most of the hashing h.

First we analyze the probability that a “heavy hitter” is located in a single hashing:

Lemma 3.2.1. Each round of LocateMost uses O(k logC(n/k)) measurements and returns a
set L of size O(k) such that each j ∈ Hk,C(x) has j ∈ L with probability at least 3/4.

Proof. Let h : [n] → [B] be the pairwise independent hash function used in this round. Let
S = Hk(x) denote the indices of the largest k coefficients of x, and let j ∈ Hk,C(x) ⊂ S so
|xj |2 ≥ C

k Err2
k(x). Define Cj = {i 6= j : h(i) = h(j)} to be the set of elements that “collide” with

j.
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procedure LocateMost(x, k, f , δ, C)
for r ← [R] do . R = O(log(1/fδ))

Choose h : [n]→ [B] pairwise independent. . B = O(k)
Lr ← {Locate1Sparse(x restricted to {j : h(j) = i},

√
C) | i ∈ [k]}

end for
cj ← |{r | j ∈ Lr}| for j ∈ [n].
L← {j | cj > R/2}
return x̃L

end procedure
procedure EstimateMost(x, k, f , δ, L)

for r ← [R] do . R = O(log(1/fδ))
Choose h : [n]→ [B] and s : [n]→ {±1} pairwise independent. . B = O(k)
Observe yj =

∑
h(i)=j s(i)xi for each j ∈ [B].

x̃
(r)
i ← s(i)yh(i) for each i ∈ L.

end for
x̃i ← medianr x̃

(r)
i

return x̃L
end procedure

Algorithm 3.2.1: Nonadaptive partial k-sparse recovery

By pairwise independence of h we have that

E[|Cj |] ≤ n/B

E[‖xCj\S‖
2
2] =

1

B
Err2

k(x)

E[|Cj ∩ S|] < k/B.

Hence if B ≥ 24k, with 7/8 probability we will have that

|Cj | ≤ n/k

‖xCj\S‖
2
2 =

1

k
Err2

k(x)

|Cj ∩ S| < 1.

In this case, T = {i : h(i) = h(j)} = Cj ∪ {j} has

‖xT\{j}‖2 ≤ |xj |/
√
C

and |T | ≤ 1 + n/k. Therefore x restricted to T is a size 1 + n/k vector, and Lemma 3.1.1 shows
that with 7/8 probability Locate1Sparse(x restricted to T ,

√
C) returns j using log√C(8|T |) .

logC(n/k) measurements.

Corollary 3.2.2. With O(k logC(n/k) log(1/fδ)) measurements, LocateMost returns a set L of
size O(k) such that each j ∈ Hk,C(x) has j ∈ L with probability at least 1− fδ.

Proof. We repeat the method of Lemma 3.2.1 O(log(1/fδ)) times, and take all coordinates that
are listed in more than half the sets Li. This at most doubles the output size, and by a Chernoff
bound each j ∈ Hk,C(x) lies in the output with probability at least 1− fδ.
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Corollary 3.2.2 gives a good method for finding the heavy hitters, but we also need to estimate
them.

3.2.2 Estimation

We estimate using Count-Sketch [CCF02], with R = O(log(1/fδ)) hash tables of size O(k/ε).

Lemma 3.2.3. Suppose |L| . k. With O(k log( 1
fδ )) measurements, EstimateMost returns x̃L

so that with probability 1− δ we have

Err2
fk(xL − x̃L) < Err2

k(x)

Proof. Consider any j ∈ [n] and round r ∈ [R] with hash functions h, s. Let Cj = {i 6= j : h(i) =
h(j)}. We have

x̃(r) − xj = s(j)
∑
i∈Cj

s(i)xi

and so
E
s
[(x̃(r) − xj)2] = ‖xCj‖22.

Hence for each j and r, with 7/8 probability we have

(x̃(r) − xj)2 ≤ 8‖xCj‖22.

Now, by pairwise independence of h we have that

E
h

[|Cj ∩Hk(x)|] ≤ k/B

E
h

[‖xCj\Hk(x)‖22] =
1

B
Err2

k(x)

so if B > 100k then we have that |Cj∩Hk(x)| = 0 with 99/100 probability and with 9/10 probability
8‖xCj\Hk(x)‖22 ≤ 8·10

100
1
k Err2

k(x) < 1
k Err2

k(x).

Hence by a union bound, with 1− 1/100− 1/8− 1/10 > 3/4 probability we have

(x̃(r) − xj)2 <
1

k
Err2

k(x) (3.2)

for each coordinate j and round r. By a Chernoff bound, using R = O(log 1/(fδ)) rounds, with at
least 1− fδ probability we will have that more than R/2 of the r ∈ [R] satisfy (3.2). In this case,
the median x̃j must satisfy it as well.

Therefore with 1− δ probability, at most fk of the |L| ≤ k elements j ∈ L have

(x̃j − xj)2 ≥ 1

k
Err2

k(x),

giving the result.
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3.2.3 Combining the two

Lemma 3.2.4 (Partial sparse recovery). The result x̃L of LocateMost followed by Estimate-
Most satisfies

Err2
fk(x− x̃L) ≤ C Err2

k(x)

with probability 1− δ, and uses O(k logC(n/k) log( 1
fδ )) measurements.

Proof. Let T contain the largest k coordinates of x. By Corollary 3.2.2, each j ∈ Hk,C(x) has j ∈ L
with probability 1− fδ, so with probability 1− δ we have |Hk,C(x) \ L| ≤ fk. Therefore

Err2
fk(xL) ≤ ‖x

Hk,C(x)∪L‖
2
2

≤ ‖x
Hk,C(x)

‖22
= ‖x

Hk(x)
‖22 + ‖xHk(x)\Hk,C(x)‖22

≤ Err2
k(x) + k‖xHk,C(x)‖2∞

≤ (1 + C) Err2
k(x)

and so

Err2
2fk(x− x̃L) ≤ Err2

fk(xL − x̃L) + Err2
fk(xL)

≤ (2 + C) Err2
k(x)

≤ 3C Err2
k(x)

with probability 1− δ by Lemma 3.2.3. Rescale f , δ, and C to get the result.

3.3 General k-sparse recovery

procedure RecoverAll(x, k, C)
Choose kr, fr, δr, D per proof of Theorem 3.3.1
χ(0) ← 0
for r ← 0, 1, . . . , r − 1 do

L(r) ← LocateMost(x− χ(r), kr, fr, δr, D)
x̃(r) ← EstimateMost(x− χ(r), kr, fr, δr, L)
χ(r+1) ← χ(r) + x̃(r)

end for
return χ(R)

end procedure

Algorithm 3.3.1: Nonadaptive general k-sparse recovery

Theorem 3.3.1. RecoverAll achieves C-approximate `2/`2 sparse recovery with O(k logC(n/k) log∗ k)
measurements and 3/4 success probability.

Proof. We will achieve DO(log∗ k)-approximate recovery using O(k logD(n/k)) measurements. Sub-
stituting logC = logD log∗ k gives the result.

Define δi = 1
8·2i . Let f0 = 1/16 and fi+1 = 2−1/(4ifi). Let ki = k

∏
j<i fj . Then for R =

O(log∗ k), kR < 1.
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We set x̃(0) = 0, and iterate LocateMost and EstimateMost on x − χ(r) in each round r
with δr, fr, kr, D as parameters, getting update ṽ(r) and setting χ(r+1) = χ(r) + ṽ(r).

The probability that Lemma 3.2.4 fails at any stage is at most
∑
δi < 1/4. Assuming it does

not fail, the error guarantee telescopes, giving

Err2
kr(x− χ

(r)) ≤ Dr Err2
k(x)

so ‖x− χ(R)‖22 ≤ DR Err2
k(x), which is DO(log∗ k)-approximate recovery.

The total number of measurements is

R∑
i=0

ki logD(n/ki) log(
1

δifi
)

=
R∑
i=0

k(
∏
j<i

fj) logD(
n

k

∏
j<i

(1/fj))(3 + i+
1

4ifi−1
)

≤2
R∑
i=0

k
1

4i
(
∏
j<i−1

fj) logD(
n

k

∏
j<i

(1/fj))

=O(k logD
n

k
) +

k

logD

R∑
i=0

2

4i
(
∏
j<i−1

fj)
∑
j<i

1

4jfj−1

=O(k logD
n

k
).
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Chapter 4

Sparse Fourier Transform: Optimizing
Time
(Based on parts of [HIKP12a])

4.1 Introduction

The discrete Fourier transform (DFT) is one of the most important and widely used computa-
tional tasks. Its applications are broad and include signal processing, communications, and au-
dio/image/video compression. Hence, fast algorithms for DFT are highly valuable. Currently,
the fastest such algorithm is the Fast Fourier Transform (FFT), which computes the DFT of an
n-dimensional signal in O(n log n) time. The existence of DFT algorithms faster than FFT is one
of the central questions in the theory of algorithms.

A general algorithm for computing the exact DFT must take time at least proportional to
its output size, i.e., Ω(n). In many applications, however, most of the Fourier coefficients of a
signal are small or equal to zero, i.e., the output of the DFT is (approximately) sparse. This
is the case for video signals, where a typical 8x8 block in a video frame has on average 7 non-
negligible frequency coefficients (i.e., 89% of the coefficients are negligible) [CGX96]. Images and
audio data are equally sparse. This sparsity provides the rationale underlying compression schemes
such as MPEG and JPEG. Other sparse signals appear in computational learning theory [KM91,
LMN93], analysis of Boolean functions [KKL88, O’D08], compressed sensing [Don06, CRT06a],
multi-scale analysis [DRZ07], similarity search in databases [AFS93], spectrum sensing for wideband
channels [LVS11], and datacenter monitoring [MNL10].

For sparse signals, the Ω(n) lower bound for the complexity of DFT no longer applies. If a
signal has a small number k of nonzero Fourier coefficients – the exactly k-sparse case – the output
of the Fourier transform can be represented succinctly using only k coefficients. Hence, for such
signals, one may hope for a DFT algorithm whose runtime is sublinear in the signal size n. Even
for a general n-dimensional signal x – the general case – one can find an algorithm that computes
the best k-sparse approximation of its Fourier transform x̂ in sublinear time. The goal of such an
algorithm is to compute an approximation vector x̂′ that satisfies the following `2/`2 guarantee:

‖x̂− x̂′‖2 ≤ C min
k-sparse y

‖x̂− y‖2, (4.1)

where C is some approximation factor and the minimization is over k-sparse signals. We allow the
algorithm to be randomized, and only succeed with constant (say, 2/3) probability.

The past two decades have witnessed significant advances in sublinear sparse Fourier algorithms.
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The first such algorithm (for the Hadamard transform) appeared in [KM91] (building on [GL89]).
Since then, several sublinear sparse Fourier algorithms for complex inputs have been discovered
[Man92, GGI+02a, AGS03, GMS05, Iwe10, Aka10, HIKP12c]. These algorithms provide1 the guar-
antee in Equation (4.1).2

The main value of these algorithms is that they outperform FFT’s runtime for sparse signals. For
very sparse signals, the fastest algorithm is due to [GMS05] and has O(k logc(n) log(n/k)) runtime,
for some3 c > 2. This algorithm outperforms FFT for any k smaller than Θ(n/ loga n) for some
a > 1. For less sparse signals, the fastest algorithm is due to [HIKP12c], and has O(

√
nk log3/2 n)

runtime. This algorithm outperforms FFT for any k smaller than Θ(n/ log n).
Despite impressive progress on sparse DFT, the state of the art suffers from two main limitations:

1. None of the existing algorithms improves over FFT’s runtime for the whole range of sparse
signals, i.e., k = o(n).

2. Most of the aforementioned algorithms are quite complex, and suffer from large “big-Oh” con-
stants (the algorithm of [HIKP12c] is an exception, but has a running time that is polynomial
in n).

Results. In this chapter, we address these limitations by presenting two new algorithms for the
sparse Fourier transform. We require that the length n of the input signal is a power of 2. We
show:

• An O(k log n)-time algorithm for the exactly k-sparse case, and

• An O(k log n log(n/k))-time algorithm for the general case.

The key property of both algorithms is their ability to achieve o(n log n) time, and thus improve
over the FFT, for any k = o(n). These algorithms are the first known algorithms that satisfy this
property. Moreover, if one assume that FFT is optimal and hence the DFT cannot be computed
in less than O(n log n) time, the algorithm for the exactly k-sparse case is optimal4 as long as
k = nΩ(1). Under the same assumption, the result for the general case is at most one log log n
factor away from the optimal runtime for the case of “large” sparsity k = n/ logO(1) n.

Furthermore, our algorithm for the exactly sparse case (depicted as Algorithm 4.3.1 on page 5)
is quite simple and has low big-Oh constants. In particular, our preliminary implementation of a
variant of this algorithm is faster than FFTW, a highly efficient implementation of the FFT, for
n = 222 and k ≤ 217 [HIKP12b]. In contrast, for the same signal size, prior algorithms were faster
than FFTW only for k ≤ 2000 [HIKP12c].5

In Chapter 6 we complement our algorithmic results by showing that any algorithm that works
for the general case must use at least Ω(k log(n/k)/ log logn) samples of x. This bound holds
even for adaptive sampling, where the algorithm selects the samples based on the values of the
previously sampled coordinates. Note that our algorithms are nonadaptive, and thus limited by the
more stringent Ω(k log(n/k)) lower bound.

1The algorithm of [Man92], as stated in the paper, addresses only the exactly k-sparse case. However, it can be
extended to the general case using relatively standard techniques.

2All of the above algorithms, as well as the algorithms in this chapter, need to make some assumption about
the precision of the input; otherwise, the right-hand-side of the expression in Equation (4.1) contains an additional
additive term. See Preliminaries for more details.

3The paper does not estimate the exact value of c. We estimate that c = 3.
4One also needs to assume that k divides n. See Section 4.5 for more details.
5Note that both numbers (k ≤ 217 and k ≤ 2000) are for the exactly k-sparse case. The algorithm in [HIKP12c]

can deal with the general case, but the empirical runtimes are higher.
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Techniques – overview. We start with an overview of the techniques used in prior works. At a
high level, sparse Fourier algorithms work by binning the Fourier coefficients into a small number
of bins. Since the signal is sparse in the frequency domain, each bin is likely6 to have only one
large coefficient, which can then be located (to find its position) and estimated (to find its value).
The binning has to be done in sublinear time, and thus these algorithms bin the Fourier coefficients
using an n-dimensional filter vector G that is concentrated both in time and frequency. That is, G
is zero except at a small number of time coordinates, and its Fourier transform Ĝ is negligible except
at a small fraction (about 1/k) of the frequency coordinates, representing the filter’s “pass” region.
Each bin essentially receives only the frequencies in a narrow range corresponding to the pass
region of the (shifted) filter Ĝ, and the pass regions corresponding to different bins are disjoint.
In this chapter, we use filters introduced in [HIKP12c]. Those filters (defined in more detail in
Preliminaries) have the property that the value of Ĝ is “large” over a constant fraction of the pass
region, referred to as the “super-pass” region. We say that a coefficient is “isolated” if it falls into a
filter’s super-pass region and no other coefficient falls into filter’s pass region. Since the super-pass
region of our filters is a constant fraction of the pass region, the probability of isolating a coefficient
is constant.

To achieve the stated running times, we need a fast method for locating and estimating isolated
coefficients. Further, our algorithm is iterative, so we also need a fast method for updating the
signal so that identified coefficients are not considered in future iterations. Below, we describe these
methods in more detail.

New techniques – location and estimation. Our location and estimation methods depends
on whether we handle the exactly sparse case or the general case. In the exactly sparse case, we show
how to estimate the position of an isolated Fourier coefficient using only two samples of the filtered
signal. Specifically, we show that the phase difference between the two samples is linear in the index
of the coefficient, and hence we can recover the index by estimating the phases. This approach is
inspired by the frequency offset estimation in orthogonal frequency division multiplexing (OFDM),
which is the modulation method used in modern wireless technologies (see [HT01], Chapter 2).

In order to design an algorithm7 for the general case, we employ a different approach. Specifi-
cally, we can use two samples to estimate (with constant probability) individual bits of the index
of an isolated coefficient. Similar approaches have been employed in prior work. However, in those
papers, the index was recovered bit by bit, and one needed Ω(log log n) samples per bit to recover
all bits correctly with constant probability. In contrast, in this chapter we recover the index one
block of bits at a time, where each block consists of O(log log n) bits. This approach is inspired by
the fast sparse recovery algorithm of [GLPS10]. Applying this idea in our context, however, re-
quires new techniques. The reason is that, unlike in [GLPS10], we do not have the freedom of using
arbitrary “linear measurements” of the vector x̂, and we can only use the measurements induced by
the inverse Fourier transform.8 As a result, the extension from “bit recovery” to “block recovery”
is the most technically involved part of the algorithm. Section 4.4.1 contains further intuition on
this part.

6One can randomize the positions of the frequencies by sampling the signal in time domain appropriately [GGI+02a,
GMS05]. See Preliminaries for the description.

7We note that although the two-sample approach employed in our algorithm works in theory only for the exactly k-
sparse case, our preliminary experiments show that using a few more samples to estimate the phase works surprisingly
well even for general signals.

8In particular, the method of [GLPS10] uses measurements corresponding to a random error correcting code.
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New techniques – updating the signal. The aforementioned techniques recover the position
and the value of any isolated coefficient. However, during each filtering step, each coefficient be-
comes isolated only with constant probability. Therefore, the filtering process needs to be repeated
to ensure that each coefficient is correctly identified. In [HIKP12c], the algorithm simply performs
the filtering O(log n) times and uses the median estimator to identify each coefficient with high
probability. This, however, would lead to a running time of O(k log2 n) in the k-sparse case, since
each filtering step takes k log n time.

One could reduce the filtering time by subtracting the identified coefficients from the signal.
In this way, the number of nonzero coefficients would be reduced by a constant factor after each
iteration, so the cost of the first iteration would dominate the total running time. Unfortunately,
subtracting the recovered coefficients from the signal is a computationally costly operation, corre-
sponding to a so-called non-uniform DFT (see [GST08] for details). Its cost would override any
potential savings.

In this chapter, we introduce a different approach: instead of subtracting the identified coeffi-
cients from the signal, we subtract them directly from the bins obtained by filtering the signal. The
latter operation can be done in time linear in the number of subtracted coefficients, since each of
them “falls” into only one bin. Hence, the computational costs of each iteration can be decomposed
into two terms, corresponding to filtering the original signal and subtracting the coefficients. For
the exactly sparse case these terms are as follows:

• The cost of filtering the original signal is O(B log n), where B is the number of bins. B is
set to O(k′), where k′ is the the number of yet-unidentified coefficients. Thus, initially B is
equal to O(k), but its value decreases by a constant factor after each iteration.

• The cost of subtracting the identified coefficients from the bins is O(k).

Since the number of iterations is O(log k), and the cost of filtering is dominated by the first iteration,
the total running time is O(k log n) for the exactly sparse case.

For the general case, we need to set k′ and B more carefully to obtain the desired running
time. The cost of each iterative step is multiplied by the number of filtering steps needed to
compute the location of the coefficients, which is Θ(log(n/B)). If we set B = Θ(k′), this would
be Θ(log n) in most iterations, giving a Θ(k log2 n) running time. This is too slow when k is close
to n. We avoid this by decreasing B more slowly and k′ more quickly. In the r-th iteration, we
set B = k/poly(r). This allows the total number of bins to remain O(k) while keeping log(n/B)
small—at most O(log log k) more than log(n/k). Then, by having k′ decrease according to k′ =
k/rΘ(r) rather than k/2Θ(r), we decrease the number of rounds to O(log k/ log log k). Some careful
analysis shows that this counteracts the log log k loss in the log(n/B) term, achieving the desired
O(k log n log(n/k)) running time.

Organization of the chapter. In Section 4.2, we give notation and definitions used throughout
the chapter. Sections 4.3 and 4.4 give our algorithm in the exactly k-sparse and the general case,
respectively. Section 4.5 gives the reduction to the exactly k-sparse case from a k-dimensional DFT.
Section 4.6 describes how to efficiently implement our filters.

4.2 Preliminaries

This section introduces the notation, assumptions, and definitions used in the rest of this chapter.
Note that the Fourier transform and the inverse Fourier transform are equivalent problems.

Therefore, to simplify notation and make it consistent with the rest of this thesis, we will consider
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the inverse Fourier transform problem: approximating a sparse vector x from samples of its Fourier
transform x̂.

Notation. We use [n] to denote the set {1, . . . , n}, and define ω = e−2πi/n to be an nth root of
unity. For any complex number a, we use φ(a) ∈ [0, 2π] to denote the phase of a. For a complex
number a and a real positive number b, the expression a±b denotes a complex number a′ such that
|a− a′| ≤ b. For a vector x ∈ Cn, its support is denoted by supp(x) ⊂ [n]. We use ‖x‖0 to denote
| supp(x)|, the number of nonzero coordinates of x.

The Fourier transform of x is denoted by x̂, with

x̂i =
1√
n

∑
j∈[n]

ωijxj .

The inverse transform is then

xi =
1√
n

∑
j∈[n]

ω−ij x̂j .

For a vector of length n, indices should be interpreted modulo n, so x−i = xn−i. This allows us
to define convolution

(x ∗ y)i =
∑
j∈[n]

xjyi−j

and the coordinate-wise product (x · y)i = xiyi, so x̂ · y = x̂ ∗ ŷ.
When i ∈ Z is an index into an n-dimensional vector, sometimes we use |i| to denote minj≡i (mod n) |j|.

Definitions. We use two tools introduced in previous papers: (pseudorandom) spectrum permu-
tation [GGI+02a, GMS05, GST08] and flat filtering windows [HIKP12c].

Definition 4.2.1. Suppose σ−1 exists mod n. We define the permutation Pσ,a,b by

(Pσ,a,bx̂)i = x̂σ(i+a)ω
−σbi.

We also define πσ,b(i) = σ(i− b) mod n.

Claim 4.2.2. Let F−1(x) denote the inverse Fourier transform of x. Then

(F−1(Pσ,a,bx̂))πσ,b(i) = xiω
aσi.

Proof.

F−1(Pσ,a,bx̂)σ(i−b) =
1√
n

∑
j∈[n]

ω−σ(i−b)j(Pσ,a,bx̂)j

=
1√
n

∑
j∈[n]

ω−σ(i−b)j x̂σ(j+a)ω
−σbj

= ωaσi
1√
n

∑
j∈[n]

ω−iσ(j+a)x̂σ(j+a)

= xiω
aσi.
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Definition 4.2.3. We say that (Ĝ,G′) = (ĜB,δ,α, G
′
B,δ,α) ∈ Rn×Rn is a flat window function with

parameters B ≥ 1, δ > 0, and α > 0 if | supp(Ĝ)| = O(Bα log(n/δ)) and G′ satisfies

• G′i = 1 for |i| ≤ (1− α)n/(2B)

• G′i = 0 for |i| ≥ n/(2B)

• G′i ∈ [0, 1] for all i

• ‖G′ −G‖∞ < δ.

The above notion corresponds to the (1/(2B), (1 − α)/(2B), δ, O(B/α log(n/δ))-flat window
function in [HIKP12c]. In Section 4.6 we give efficient constructions of such window functions,
where Ĝ can be computed in O(Bα log(n/δ)) time and for each i, G′i can be computed in O(log(n/δ))
time. Of course, for i /∈ [(1− α)n/(2B), n/(2B)], G′i ∈ {0, 1} can be computed in O(1) time.

The fact that G′i takes ω(1) time to compute for i ∈ [(1 − α)n/(2B), n/(2B)] will add some
complexity to our algorithm and analysis. We will need to ensure that we rarely need to compute
such values. A practical implementation might find it more convenient to precompute the window
functions in a preprocessing stage, rather than compute them on the fly.

We use the following lemma from [HIKP12c]:

Lemma 4.2.4. (Lemma 3.6 of [HIKP12c]) If j 6= 0, n is a power of two, and σ is a uniformly
random odd number in [n], then Pr[σj ∈ [−C,C] (mod n)] ≤ 4C/n.

Assumptions. Through the chapter, we require that n, the dimension of all vectors, is an integer
power of 2. We also make the following assumptions about the precision of the vectors x:

• For the exactly k-sparse case, we assume that xi ∈ {−L, . . . , L} for some precision parameter
L. To simplify the bounds, we assume that L = nO(1); otherwise the log n term in the running
time bound is replaced by logL.

• For the general case, we only achieve Equation (4.1) if ‖x‖2 ≤ nO(1) ·mink-sparse y‖x− y‖2. In
general, for any parameter δ > 0 we can add δ‖x‖2 to the right hand side of Equation (4.1)
and run in time O(k log(n/k) log(n/δ)).

4.3 Algorithm for the exactly sparse case

In this section we assume xi ∈ {−L, . . . , L}, where L ≤ nc for some constant c > 0, and x is k-sparse.
We choose δ = 1/(4n2L). The algorithm (NoiselessSparseFFT) is described as Algorithm 4.3.1.
The algorithm has three functions:

• HashToBins. This permutes the spectrum of x− χ with Pσ,a,b, then “hashes” to B bins.
The guarantee will be described in Lemma 4.3.3.

• NoiselessSparseFFTInner. Given time-domain access to x̂ and a sparse vector χ such
that x− χ is k′-sparse, this function finds “most” of x− χ.

• NoiselessSparseFFT. This iterates NoiselessSparseFFTInner until it finds x exactly.

We analyze the algorithm “bottom-up”, starting from the lower-level procedures.
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procedure HashToBins(x̂, χ, Pσ,a,b, B, δ, α)
Compute yjn/B for j ∈ [B], where y = GB,α,δ · (Pσ,a,bx)
Compute y′jn/B = yjn/B − (G′B,α,δ ∗ Pσ,a,bχ)jn/B for j ∈ [B]
return u given by uj = y′jn/B.

end procedure
procedure NoiselessSparseFFTInner(x̂, k′, χ, α)

Let B = k′/β, for sufficiently small constant β.
Let δ = 1/(4n2L).
Choose σ uniformly at random from the set of odd numbers in [n].
Choose b uniformly at random from [n].
u← HashToBins(x̂, χ, Pσ,0,b, B, δ, α).
u′ ← HashToBins(x̂, χ, Pσ,1,b, B, δ, α).
w ← 0.
Compute J = {j : |uj | > 1/2}.
for j ∈ J do

a← uj/u
′
j .

i← σ−1(round(φ(a) n2π )) mod n. . φ(a) denotes the phase of a.
v ← round(uj).
wi ← v.

end for
return w

end procedure
procedure NoiselessSparseFFT(x̂, k)

χ← 0
for t ∈ 0, 1, . . . , log k do

kt ← k/2t, αt ← Θ(2−t).
χ← χ+ NoiselessSparseFFTInner(x̂, kt, χ, αt).

end for
return χ

end procedure

Algorithm 4.3.1: Exact k-sparse recovery

Analysis of NoiselessSparseFFTInner and HashToBins.. For any execution of Noise-
lessSparseFFTInner, define the support S = supp(x−χ). Recall that πσ,b(i) = σ(i− b) mod n.
Define hσ,b(i) = round(πσ,b(i)B/n) and oσ,b(i) = πσ,b(i)−hσ,b(i)n/B. Note that therefore |oσ,b(i)| ≤
n/(2B). We will refer to hσ,b(i) as the “bin” that the frequency i is mapped into, and oσ,b(i) as
the “offset”. For any i ∈ S define two types of events associated with i and S and defined over the
probability space induced by σ and b:

• “Collision” event Ecoll(i): holds iff hσ,b(i) ∈ hσ,b(S \ {i}), and

• “Large offset” event Eoff (i): holds iff |oσ,b(i)| ≥ (1− α)n/(2B).

Claim 4.3.1. For any i ∈ S, the event Ecoll(i) holds with probability at most 4|S|/B.
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Proof. Consider distinct i, j ∈ S. By Lemma 4.2.4,

Pr[hσ,b(i) = hσ,b(j)] ≤ Pr[πσ,b(i)− πσ,b(j) mod n ∈ [−n/B, n/B]]

= Pr[σ(i− j) mod n ∈ [−n/B, n/B]]

≤ 4/B.

By a union bound over j ∈ S, Pr[Ecoll(i)] ≤ 4|S|/B.

Claim 4.3.2. For any i ∈ S, the event Eoff (i) holds with probability at most α.

Proof. Note that oσ,b(i) ≡ πσ,b(i) ≡ σ(i − b) (mod n/B). For any odd σ and any l ∈ [n/B], we
have that Prb[σ(i − b) ≡ l (mod n/B)] = B/n. Since only αn/B offsets oσ,b(i) cause Eoff (i), the
claim follows.

Lemma 4.3.3. Suppose B divides n. The output u of HashToBins satisfies

uj =
∑

hσ,b(i)=j

(x− χ)i(G
′
B,δ,α)−oσ,b(i)

ωaσi ± δ‖x‖1.

Let ζ = |{i ∈ supp(χ) | Eoff (i)}|. The running time of HashToBins is O(Bα log(n/δ) + ‖χ‖0 +
ζ log(n/δ)).

Proof. Define the flat window functions G = GB,δ,α and G′ = G′B,δ,α. We have

y = G · Pσ,a,bx = G ∗ Pσ,a,bx
y′ = G′ ∗ Pσ,a,b(x− χ) + (G−G′) ∗ Pσ,a,bx

By Claim 4.2.2, the coordinates of Pσ,a,bx and x have the same magnitudes, just different ordering
and phase. Therefore

‖(G−G′) ∗ Pσ,a,bx‖∞ ≤ ‖G−G′‖∞‖Pσ,a,bx‖1 ≤ δ‖x‖1

and hence

uj = y′jn/B =
∑

|l|<n/(2B)

G′−l(Pσ,a,b(x− χ))jn/B+l ± δ‖x‖1

=
∑

|πσ,b(i)−jn/B|<n/(2B)

G′jn/B−πσ,b(i)(Pσ,a,b(x− χ))πσ,b(i) ± δ‖x‖1

=
∑

hσ,b(i)=j

G′−oσ,b(i)(x− χ)iω
aσi ± δ‖x‖1

as desired.
We can compute HashToBins via the following method:

1. Compute y with ‖y‖0 = O(Bα log(n/δ)) in O(Bα log(n/δ)) time.

2. Compute v ∈ CB given by vi =
∑

j yi+jB.

3. BecauseB divides n, by the definition of the Fourier transform (see also Claim 3.7 of [HIKP12c])
we have yjn/B = vj for all j. Hence we can compute it with a B-dimensional FFT in
O(B logB) time.
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4. For each coordinate i ∈ supp(χ), decrease y n
B
hσ,b(i) by G′−oσ,b(i)χiω

aσi. This takes O(‖χ‖0 +

ζ log(n/δ)) time, since computing G′−oσ,b(i) takes O(log(n/δ)) time if Eoff (i) holds and O(1)
otherwise.

Lemma 4.3.4. Consider any i ∈ S such that neither Ecoll(i) nor Eoff (i) holds. Let j = hσ,b(i).
Then

round(φ(uj/u
′
j))

n

2π
) = σi (mod n),

round(uj) = xi − χi,

and j ∈ J .

Proof. We know that ‖x‖1 ≤ k‖x‖∞ ≤ kL < nL. Then by Lemma 4.3.3 and Ecoll(i) not holding,

uj = (x− χ)iG
′
−oσ,b(i) ± δnL.

Because Eoff (i) does not hold, G′−oσ,b(i) = 1, so

uj = (x− χ)i ± δnL. (4.2)

Similarly,
u′j = (x− χ)iω

σi ± δnL

Then because δnL < 1 ≤ |(x− χ)i|, the phase is

φ(uj) = 0± sin−1(δnL) = 0± 2δnL

and φ(u′j) = −σi2π
n ± 2δnL. Thus φ(uj/u

′
j) = σi2π

n ± 4δnL = σi2π
n ± 1/n by the choice of δ.

Therefore
round(φ(uj/u

′
j)
n

2π
) = σi (mod n).

Also, by Equation (4.2), round(uj) = xi−χi. Finally, |round(uj)| = |xi−χi| ≥ 1, so |uj | ≥ 1/2.
Thus j ∈ J .

For each invocation of NoiselessSparseFFTInner, let P be the the set of all pairs (i, v)
for which the command wi ← v was executed. Claims 4.3.1 and 4.3.2 and Lemma 4.3.4 together
guarantee that for each i ∈ S the probability that P does not contain the pair (i, (x − χ)i) is at
most 4|S|/B + α. We complement this observation with the following claim.

Claim 4.3.5. For any j ∈ J we have j ∈ hσ,b(S). Therefore, |J | = |P | ≤ |S|.

Proof. Consider any j /∈ hσ,b(S). From Equation (4.2) in the proof of Lemma 4.3.4 it follows that
|uj | ≤ δnL < 1/2.

Lemma 4.3.6. Consider an execution of NoiselessSparseFFTInner, and let S = supp(x−χ).
If |S| ≤ k′, then

E[‖x− χ− w‖0] ≤ 8(β + α)|S|.

Proof. Let e denote the number of coordinates i ∈ S for which either Ecoll(i) or Eoff (i) holds.
Each such coordinate might not appear in P with the correct value, leading to an incorrect value
of wi. In fact, it might result in an arbitrary pair (i′, v′) being added to P , which in turn could
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lead to an incorrect value of wi′ . By Claim 4.3.5 these are the only ways that w can be assigned
an incorrect value. Thus we have

‖x− χ− w‖0 ≤ 2e.

Since E[e] ≤ (4|S|/B + α)|S| ≤ (4β + α)|S|, the lemma follows.

Analysis of NoiselessSparseFFT.. Consider the tth iteration of the procedure, and define
St = supp(x − χ) where χ denotes the value of the variable at the beginning of loop. Note that
|S0| = | supp(x)| ≤ k.

We also define an indicator variable It which is equal to 0 iff |St|/|St−1| ≤ 1/8. If It = 1 we say
the the tth iteration was not successful. Let γ = 8 · 8(β + α). From Lemma 4.3.6 it follows that
Pr[It = 1 | |St−1| ≤ k/2t−1] ≤ γ. From Claim 4.3.5 it follows that even if the tth iteration is not
successful, then |St|/|St−1| ≤ 2.

For any t ≥ 1, define an event E(t) that occurs iff
∑t

i=1 Ii ≥ t/2. Observe that if none of the
events E(1) . . . E(t) holds then |St| ≤ k/2t.

Lemma 4.3.7. Let E = E(1) ∪ . . . ∪ E(λ) for λ = 1 + log k. Assume that (4γ)1/2 < 1/4. Then
Pr[E] ≤ 1/3.

Proof. Let t′ = dt/2e. We have

Pr[E(t)] ≤
(
t

t′

)
γt
′ ≤ 2tγt

′ ≤ (4γ)t/2

Therefore

Pr[E] ≤
∑
t

Pr[E(t)] ≤ (4γ)1/2

1− (4γ)1/2
≤ 1/4 · 4/3 = 1/3.

Theorem 4.3.8. Suppose x is k-sparse with entries from {−L, . . . , L} for some known L = nO(1).
Then the algorithm NoiselessSparseFFT runs in expected O(k log n) time and returns the correct
vector x with probability at least 2/3.

Proof. The correctness follows from Lemma 4.3.7. The running time is dominated by O(log k)
executions of HashToBins.

Assuming a correct run, in every round t we have

‖χ‖0 ≤ ‖x‖0 + |St| ≤ k + k/2t ≤ 2k.

Therefore
E[|{i ∈ supp(χ) | Eoff (i)}|] ≤ α‖χ‖0 ≤ 2αk,

so the expected running time of each execution of HashToBins isO(Bα log(n/δ)+k+αk log(n/δ)) =

O(Bα log n+k+αk log n). Setting α = Θ(2−t/2) and β = Θ(1), the expected running time in round

t is O(2−t/2k log n+ k+ 2−t/2k log n). Therefore the total expected running time is O(k log n).

4.4 Algorithm for the general case

This section shows how to achieve Equation (4.1) for C = 1 + ε. Pseudocode is in Algorithm 4.4.1
and 4.4.2.
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Define x̂∗ to be the initial input to the algorithm. Our algorithm will repeatedly construct
refined estimates χ of x∗, and recursively apply itself to x = x∗ − χ.

4.4.1 Intuition

Let S denote the “heavy” O(k/ε) coordinates of x. The overarching algorithm SparseFFT works
by first “locating” a set L containing most of S, then “estimating” xL to get χ. It then repeats
on x− χ. We will show that each heavy coordinate has a large constant probability of both being
in L and being estimated well. As a result, x − χ is probably nearly k/4-sparse, so we can run
the next iteration with k → k/4. The later iterations then run faster and achieve a higher success
probability, so the total running time is dominated by the time in the first iteration and the total
error probability is bounded by a constant.

In the rest of this intuition, we will discuss the first iteration of SparseFFT with simplified
constants. In this iteration, hashes are to B = O(k/ε) bins and, with 3/4 probability, we get χ
so x − χ is nearly k/4-sparse. The actual algorithm will involve a parameter α in each iteration,
roughly guaranteeing that with 1 −

√
α probability, we get χ so x − χ is nearly

√
αk-sparse; the

formal guarantee will be given by Lemma 4.4.8. For this intuition we only consider the first iteration
where α is a constant.

Location. As in the noiseless case, to locate the “heavy” coordinates we consider the “bins”
computed by HashToBins with Pσ,a,b. This roughly corresponds to first permuting the coordinates
according to the (almost) pairwise independent permutation Pσ,a,b, partitioning the coordinates into
B = O(k/ε) “bins” of n/B consecutive indices, and observing the sum of values in each bin. We get
that each heavy coordinate i has a large constant probability that the following two events occur:
no other heavy coordinate lies in the same bin, and only a small (i.e., O(ε/k)) fraction of the mass
from non-heavy coordinates lies in the same bin. For such a “well-hashed” coordinate i, we would
like to find its location τ = πσ,b(i) = σ(i− b) among the εn/k < n/k consecutive values that hash
to the same bin. Let

θ∗j =
2π

n
(j + σb) (mod 2π). (4.3)

so θ∗τ = 2π
n σi. In the noiseless case, we showed that the difference in phase in the bin using Pσ,0,b and

using Pσ,1,b is θ∗τ plus a negligible O(δ) term. With noise this may not be true; however, we can say
for any β ∈ [n] that the difference in phase between using Pσ,a,b and Pσ,a+β,b, as a distribution over
uniformly random a ∈ [n], is βθ∗τ + ν with (for example) E[ν2] = 1/100 (all operations on phases
modulo 2π). We can only hope to get a constant number of bits from such a “measurement”. So
our task is to find τ within a region Q of size n/k using O(log(n/k)) “measurements” of this form.

One method for doing so would be to simply do measurements with random β ∈ [n]. Then each

measurement lies within π/4 of βθ∗τ with at least 1− E[ν2]
π2/16

> 3/4 probability. On the other hand,

for j 6= τ and as a distribution over β, β(θ∗τ −θ∗j ) is roughly uniformly distributed around the circle.
As a result, each measurement is probably more than π/4 away from βθ∗j . Hence O(log(n/k))
repetitions suffice to distinguish among the n/k possibilities for τ . However, while the number of
measurements is small, it is not clear how to decode in polylog rather than Ω(n/k) time.

To solve this, we instead do a t-ary search on the location for t = Θ(log n). At each of
O(logt(n/k)) levels, we split our current candidate regionQ into t consecutive subregionsQ1, . . . , Qt,
each of size w. Now, rather than choosing β ∈ [n], we choose β ∈ [ n

16w ,
n

8w ]. By the upper bound on
β, for each q ∈ [t] the values {βθ∗j | j ∈ Qq} all lie within βw 2π

n ≤ π/4 of each other on the circle.
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On the other hand, if |j−τ | > 16w, then β(θ∗τ−θ∗j ) will still be roughly uniformly distributed about
the circle. As a result, we can check a single candidate element eq from each subregion: if eq is in the
same subregion as τ , each measurement usually agrees in phase; but if eq is more than 16 subregions
away, each measurement usually disagrees in phase. Hence with O(log t) measurements, we can
locate τ to within O(1) consecutive subregions with failure probability 1/tΘ(1). The decoding time
is O(t log t).

This primitive LocateInner lets us narrow down the candidate region for τ to a subregion
that is a t′ = Ω(t) factor smaller. By repeating LocateInner logt′(n/k) times, LocateSignal
can find τ precisely. The number of measurements is then O(log t logt(n/k)) = O(log(n/k)) and
the decoding time is O(t log t logt(n/k)) = O(log(n/k) log n). Furthermore, the “measurements”
(which are actually calls to HashToBins) are nonadaptive, so we can perform them in parallel for
all O(k/ε) bins, with O(log(n/δ)) average time per measurement. This gives O(k log(n/k) log(n/δ))
total time for LocateSignal.

This lets us locate every heavy and “well-hashed” coordinate with 1/tΘ(1) = o(1) failure prob-
ability, so every heavy coordinate is located with arbitrarily high constant probability.

Estimation. By contrast, estimation is fairly simple. As in Algorithm 4.3.1, we can estimate
xi as uhσ,b(i), where u is the output of HashToBins. Unlike in Algorithm 4.3.1, we now have
noise that may cause a single such estimate to be poor even if i is “well-hashed”. However, we
can show that for a random permutation Pσ,a,b the estimate is “good” with constant probability.
EstimateValues takes the median of Rest = O(log 1

ε ) such samples, getting a good estimate with
1− ε/64 probability. Given a candidate set L of size k/ε, with 7/8 probability at most k/8 of the
coordinates are badly estimated. On the other hand, with 7/8 probability, at least 7k/8 of the heavy
coordinates are both located and well estimated. This suffices to show that, with 3/4 probability,
the largest k elements J of our estimate w contains good estimates of 3k/4 large coordinates, so
x− wJ is close to k/4-sparse.

4.4.2 Formal definitions

As in the noiseless case, we define πσ,b(i) = σ(i − b) mod n, hσ,b(i) = round(πσ,b(i)B/n) and
oσ,b(i) = πσ,b(i) − hσ,b(i)n/B. We say hσ,b(i) is the “bin” that frequency i is mapped into, and
oσ,b(i) is the “offset”. We define h−1

σ,b(j) = {i ∈ [n] | hσ,b(i) = j}.
In each iteration of SparseFFT, define x = x∗ − χ, and let

ρ2 = Err2
k(x) + δ2n‖x∗‖21

µ2 = ερ2/k

S = {i ∈ [n] | |xi|2 ≥ µ2}

Then |S| ≤ (1 + 1/ε)k = O(k/ε) and ‖x− xS‖22 ≤ (1 + ε)ρ2. We will show that each i ∈ S is found
by LocateSignal with probability 1−O(α), when B = Ω( kαε).

For any i ∈ S define three types of events associated with i and S and defined over the probability
space induced by σ and b:

• “Collision” event Ecoll(i): holds iff hσ,b(i) ∈ hσ,b(S \ {i});

• “Large offset” event Eoff (i): holds iff |oσ,b(i)| ≥ (1− α)n/(2B); and

• “Large noise” event Enoise(i): holds iff ‖xh−1
σ,b(hσ,b(i))\S

‖22 ≥ Err2
k(x)/(αB).
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procedure SparseFFT(x̂∗, k, ε, δ)
R← O(log k/ log log k) as in Theorem 4.4.9.
χ(1) ← 0
for r ∈ [R] do

Choose Br, kr, αr as in Theorem 4.4.9.
Rest ← O(log( Br

αrkr
)) as in Lemma 4.4.8.

Lr ← LocateSignal(x̂∗, χ(r), Br, αr, δ)
χ(r+1) ← χ(r) + EstimateValues(x̂∗, χ(r), 3kr, Lr, Br, δ, Rest).

end for
return χ(R+1)

end procedure
procedure EstimateValues(x̂∗, χ, k′, L, B, δ, Rest)

for r ∈ [Rest] do
Choose ar, br ∈ [n] uniformly at random.
Choose σr uniformly at random from the set of odd numbers in [n].
u(r) ← HashToBins(x̂∗, χ, Pσ,ar,b, B, δ).

end for
w ← 0
for i ∈ L do

wi ← medianr u
(r)
hσ,b(i)

ω−arσi. . Separate median in real and imaginary axes.

end for
J ← arg max|J |=k′‖wJ‖2.
return wJ

end procedure

Algorithm 4.4.1: k-sparse recovery for general signals, part 1/2.
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procedure LocateSignal(x̂∗, χ, B, α, δ)
Choose uniformly at random σ, b ∈ [n] with σ odd.

Initialize l
(1)
i = (i− 1)n/B for i ∈ [B].

Let w0 = n/B, t = log n, t′ = t/4, Dmax = logt′(w0 + 1).
Let Rloc = Θ(log1/α(t/α)) per Lemma 4.4.5.
for D ∈ [Dmax] do

l(D+1) ← LocateInner(x̂∗, χ,B, δ, α, σ, β, l(D), w0/(t
′)D−1, t, Rloc)

end for
L← {π−1

σ,b(l
(Dmax+1)
j ) | j ∈ [B]}

return L
end procedure

. δ, α parameters for G, G′

. (l1, l1 + w), . . . , (lB, lB + w) the plausible regions.
. B ≈ k/ε the number of bins

. t ≈ log n the number of regions to split into.
. Rloc ≈ log t = log log n the number of rounds to run

procedure LocateInner(x̂∗, χ, B, δ, α, σ, b, l, w, t, Rloc)
Let s = Θ(α1/3).
Let vj,q = 0 for (j, q) ∈ [B]× [t].
for r ∈ [Rloc] do

Choose a ∈ [n] uniformly at random.
Choose β ∈ { snt4w , . . . ,

snt
2w } uniformly at random.

u← HashToBins(x̂∗, χ, Pσ,a,b, B, δ, α).
u′ ← HashToBins(x̂∗, χ, Pσ,a+β,b, B, δ, α).
for j ∈ [B] do

cj ← φ(uj/u
′
j)

for q ∈ [t] do

mj,q ← lj + q−1/2
t w

θj,q ← 2π(mj,q+σb)
n mod 2π

if min(|βθj,q − cj |, 2π − |βθj,q − cj |) < sπ then
vj,q ← vj,q + 1

end if
end for

end for
end for
for j ∈ [B] do

Q∗ ← {q ∈ [t] | vj,q > Rloc/2}
if Q∗ 6= ∅ then

l′j ← minq∈Q∗ lj + q−1
t w

else
l′j ←⊥

end if
end for
return l′

end procedure

Algorithm 4.4.2: k-sparse recovery for general signals, part 2/2.
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By Claims 4.3.1 and 4.3.2, Pr[Ecoll(i)] ≤ 4|S|/B = O(α) and Pr[Eoff (i)] ≤ 2α for any i ∈ S.

Claim 4.4.1. For any i ∈ S, Pr[Enoise(i)] ≤ 4α.

Proof. For each j 6= i, Pr[hσ,b(j) = hσ,b(i)] ≤ Pr[|σj − σi| < n/B] ≤ 4/B by Lemma 4.2.4. Then

E[‖xh−1
σ,b(hσ,b(i))\S

‖22] ≤ 4‖x[n]\S‖22/B

The result follows by Markov’s inequality.

We will show for i ∈ S that if none of Ecoll(i), Eoff (i), and Enoise(i) hold then SparseFFTIn-
ner recovers xi with 1−O(α) probability.

Lemma 4.4.2. Let a ∈ [n] uniformly at random, B divide n, and the other parameters be arbitrary
in

u = HashToBins(x̂∗, χ, Pσ,a,b, B, δ, α).

Then for any i ∈ [n] with j = hσ,b(i) and none of Ecoll(i), Eoff (i), or Enoise(i) holding,

E[|uj − xiωaσi|2] ≤ 2
ρ2

αB

Proof. Let G′ = G′B,δ,α. Let T = h−1
σ,b(j) \ {i}. We have that T ∩ S = {} and G′−oσ,b(i) = 1. By

Lemma 4.3.3,

uj − xiωaσi =
∑
i′∈T

G′−oσ(i′)xi′ω
aσi′ ± δ‖x∗‖1.

Because the σi′ are distinct for i′ ∈ T , we have by Parseval’s theorem

E
a

∣∣∣∣∣∑
i′∈T

G′−oσ(i′)xi′ω
aσi′

∣∣∣∣∣
2

=
∑
i′∈T

(G′−oσ(i′)xi′)
2 ≤ ‖xT ‖22

Since |X + Y |2 ≤ 2|X|2 + 2|Y |2 for any X,Y , we get

E
a
[|uj − xiωaσi|2] ≤ 2‖xT ‖22 + 2δ2‖x∗‖21

≤ 2 Err2
k(x)/(αB) + 2δ2‖x∗‖21

≤ 2ρ2/(αB).

4.4.3 Properties of LocateSignal

In our intuition, we made a claim that if β ∈ [n/(16w), n/(8w)] uniformly at random, and i > 16w,
then 2π

n βi is “roughly uniformly distributed about the circle” and hence not concentrated in any
small region. This is clear if β is chosen as a random real number; it is less clear in our setting
where β is a random integer in this range. We now prove a lemma that formalizes this claim.

Lemma 4.4.3. Let T ⊂ [m] consist of t consecutive integers, and suppose β ∈ T uniformly at
random. Then for any i ∈ [n] and set S ⊂ [n] of l consecutive integers,

Pr[βi mod n ∈ S] ≤ dim/ne(1 + bl/ic)/t ≤ 1

t
+
im

nt
+
lm

nt
+

l

it
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Proof. Note that any interval of length l can cover at most 1 + bl/ic elements of any arithmetic
sequence of common difference i. Then {βi | β ∈ T} ⊂ [im] is such a sequence, and there are at
most dim/ne intervals an + S overlapping this sequence. Hence at most dim/ne(1 + bl/ic) of the
β ∈ [m] have βi mod n ∈ S. Hence

Pr[βi mod n ∈ S] ≤ dim/ne(1 + bl/ic)/t.

Lemma 4.4.4. Let i ∈ S. Suppose none of Ecoll(i), Eoff (i), and Enoise(i) hold, and let j = hσ,b(i).
Consider any run of LocateInner with πσ,b(i) ∈ [lj , lj +w] . Let f > 0 be a parameter such that

B =
Ck

αfε
.

for C larger than some fixed constant. Then πσ,b(i) ∈ [l′j , l
′
j + 4w/t] with probability at least 1 −

tfΩ(Rloc),

Proof. Let τ = πσ,b(i) ≡ σ(i− b) (mod n), and for any j ∈ [n] define

θ∗j =
2π

n
(j + σb) (mod 2π)

so θ∗τ = 2π
n σi. Let g = Θ(f1/3), and C ′ = Bαε

k = Θ(1/g3).

To get the result, we divide [lj , lj +w] into t “regions”, Qq = [lj + q−1
t w, lj + q

tw] for q ∈ [t]. We
will first show that in each round r, cj is close to βθ∗τ with 1− g probability. This will imply that
Qq gets a “vote,” meaning vj,q increases, with 1− g probability for the q′ with τ ∈ Qq′ . It will also
imply that vj,q increases with only g probability when |q − q′| > 3. Then Rloc rounds will suffice
to separate the two with 1− f−Ω(Rloc) probability. We get that with 1− tf−Ω(Rloc) probability, the
recovered Q∗ has |q − q′| ≤ 3 for all q ∈ Q∗. If we take the minimum q ∈ Q∗ and the next three
subregions, we find τ to within 4 regions, or 4w/t locations, as desired.

In any round r, define u = u(r) and a = ar. We have by Lemma 4.4.2 and that i ∈ S that

E[|uj − ωaσixi|2] ≤ 2
ρ2

αB
=

2k

Bαε
µ2

=
2

C ′
µ2 ≤ 2

C ′
|xi|2.

Note that φ(ωaσi) = −aθ∗τ . Thus for any p > 0, with probability 1− p we have

|uj − ωaσixi| ≤
√

2

C ′p
|xi|

‖φ(uj)− (φ(xi)− aθ∗τ )‖© ≤ sin−1(

√
2

C ′p
)

where ‖x − y‖© = minγ∈Z |x − y + 2πγ| denotes the “circular distance” between x and y. The
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analogous fact holds for φ(u′j) relative to φ(xi)−(a+β)θ∗τ . Therefore with at least 1−2p probability,

‖cj − βθ∗τ‖© = ‖φ(uj)− φ(u′j)− βθ∗τ‖©

=

∥∥∥∥ (φ(uj)− (φ(xi)− aθ∗τ ))−
(
φ(u′j)− (φ(xi)− (a+ β)θ∗τ )

) ∥∥∥∥
©

≤ ‖φ(uj)− (φ(xi)− aθ∗τ )‖© + ‖φ(u′j)− (φ(xi)− (a+ β)θ∗τ )‖©

≤ 2 sin−1(

√
2

C ′p
)

by the triangle inequality. Thus for any s = Θ(g) and p = Θ(g), we can set C ′ = 2
p sin2(sπ/4)

=

Θ(1/g3) so that

‖cj − βθ∗τ‖© < sπ/2 (4.4)

with probability at least 1− 2p.

Equation (4.4) shows that cj is a good estimate for i with good probability. We will now show
that this means the appropriate “region” Qq′ gets a “vote” with “large” probability.

For the q′ with τ ∈ [lj + q′−1
t w, lj + q′

t w], we have that mj,q′ = lj + q′−1/2
t w satisfies

|τ −mj,q′ | ≤
w

2t

so

|θ∗τ − θj,q′ | ≤
2π

n

w

2t
.

Hence by Equation (4.4), the triangle inequality, and the choice of B ≤ snt
2w ,

‖cj − βθj,q′‖© ≤ ‖cj − βθ∗τ‖© + ‖βθ∗τ − βθj,q′‖©

<
sπ

2
+
βπw

nt

≤ sπ

2
+
sπ

2
= sπ.

Thus, vj,q′ will increase in each round with probability at least 1− 2p.

Now, consider q with |q − q′| > 3. Then |τ −mj,q| ≥ 7w
2t , and (from the definition of β > snt

4w )
we have

β|τ −mj,q| ≥
7sn

8
>

3sn

4
. (4.5)

We now consider two cases. First, suppose that |τ −mj,q| ≤ w
st . In this case, from the definition

of β it follows that
β|τ −mj,q| ≤ n/2.

Together with Equation (4.5) this implies

Pr[β(τ −mj,q) mod n ∈ [−3sn/4, 3sn/4]] = 0.

On the other hand, suppose that |τ − mj,q| > w
st . In this case, we use Lemma 4.4.3 with
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parameters l = 3sn/2, m = snt
2w , t = snt

4w , i = (τ −mj,q) and n = n, to conclude that

Pr[β(τ −mj,q) mod n ∈ [−3sn/4, 3sn/4]] ≤ 4w

snt
+ 2
|τ −mj,q|

n
+ 3s+

3sn

2

st

w

4w

snt

≤ 4w

snt
+

2w

n
+ 9s

<
6

sB
+ 9s

< 10s

where we used that |i| ≤ w ≤ n/B, the assumption w
st < |i|, t ≥ 1, s < 1, and that s2 > 6/B

(because s = Θ(g) and B = ω(1/g3)).

Thus in either case, with probability at least 1− 10s we have

‖βθj,q − βθ∗τ‖© = ‖2πβ(mj,q − τ)

n
‖© >

2π

n

3sn

4
=

3

2
sπ

for any q with |q − q′| > 3. Therefore we have

‖cj − βθj,q‖© ≥ ‖βθj,q − βθ∗τ‖© − ‖cj − βθ∗τ‖© > sπ

with probability at least 1− 10s− 2p, and vj,q is not incremented.

To summarize: in each round, vj,q′ is incremented with probability at least 1 − 2p and vj,q is
incremented with probability at most 10s+ 2p for |q − q′| > 3. The probabilities corresponding to
different rounds are independent.

Set s = g/20 and p = g/4. Then vj,q′ is incremented with probability at least 1− g and vj,q is
incremented with probability less than g. Then after Rloc rounds, if |q − q′| > 3,

Pr[vj,q > Rloc/2] ≤
(
Rloc
Rloc/2

)
gRloc/2 ≤ (4g)Rloc/2 = fΩ(Rloc)

for g = f1/3/4. Similarly,
Pr[vj,q′ < Rloc/2] ≤ fΩ(Rloc).

Hence with probability at least 1 − tfΩ(Rloc) we have q′ ∈ Q∗ and |q − q′| ≤ 3 for all q ∈ Q∗. But
then τ − l′j ∈ [0, 4w/t] as desired.

Because E[|{i ∈ supp(χ) | Eoff (i)}|] = α‖χ‖0, the expected running time is O(RlocBt +
Rloc

B
α log(n/δ) +Rloc‖χ‖0(1 + α log(n/δ))).

Lemma 4.4.5. Suppose B = Ck
α2ε

for C larger than some fixed constant. The procedure LocateS-
ignal returns a set L of size |L| ≤ B such that for any i ∈ S, Pr[i ∈ L] ≥ 1−O(α). Moreover the
procedure runs in expected time

O((
B

α
log(n/δ) + ‖χ‖0(1 + α log(n/δ))) log(n/B)).

Proof. Consider any i ∈ S such that none of Ecoll(i), Eoff (i), and Enoise(i) hold, as happens with
probability 1−O(α).

Set t = log n, t′ = t/4 and Rloc = O(log1/α(t/α)). Let w0 = n/B and wD = w0/(t
′)D−1, so

wDmax+1 < 1 for Dmax = logt′(w0 + 1) < t. In each round D, Lemma 4.4.4 implies that if πσ,b(i) ∈
[l

(D)
j , l

(D)
j +wD] then πσ,b(i) ∈ [l

(D+1)
j , l

(D+1)
j +wD+1] with probability at least 1−αΩ(Rloc) = 1−α/t.
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By a union bound, with probability at least 1−α we have πσ,b(i) ∈ [l
(Dmax+1)
j , l

(Dmax+1)
j +wDmax+1] =

{l(Dmax+1)
j }. Thus i = π−1

σ,b(l
(Dmax+1)
j ) ∈ L.

Since RlocDmax = O(log1/α(t/α) logt(n/B)) = O(log(n/B)), the running time is

O(Dmax(Rloc
B

α
log(n/δ) +Rloc‖χ‖0(1 + α log(n/δ))))

= O((
B

α
log(n/δ) + ‖χ‖0(1 + α log(n/δ))) log(n/B)).

4.4.4 Properties of EstimateValues

Lemma 4.4.6. For any i ∈ L,

Pr[|wi − xi|2 > µ2] < e−Ω(Rest)

if B > Ck
αε for some constant C.

Proof. Define er = u
(r)
j ω−arσi−xi in each round r. Suppose none of E

(r)
coll(i), E

(r)
off (i), and E

(r)
noise(i)

hold, as happens with probability 1−O(α). Then by Lemma 4.4.2,

E
ar

[|er|2] ≤ 2
ρ2

αB
=

2k

αεB
µ2 <

2

C
µ2

Hence with 3/4−O(α) > 5/8 probability in total,

|er|2 <
8

C
µ2 < µ2/2

for sufficiently large C. Then with probability at least 1− e−Ω(Rest), both of the following occur:

|median
r

real(er)|2 < µ2/2

|median
r

imag(er)|2 < µ2/2.

If this is the case, then |medianr er|2 < µ2. Since wi = xi + median er, the result follows.

Lemma 4.4.7. Let Rest ≥ C log B
γfk for some constant C and parameters γ, f > 0. Then if

EstimateValues is run with input k′ = 3k, it returns wJ for |J | = 3k satisfying

Err2
fk(xL − wJ) ≤ Err2

k(xL) +O(kµ2)

with probability at least 1− γ.

Proof. By Lemma 4.4.6, each index i ∈ L has

Pr[|wi − xi|2 > µ2] <
γfk

B
.

Let U = {i ∈ L | |wi − xi|2 > µ2}. With probability 1− γ, |U | ≤ fk; assume this happens. Then

‖(x− w)L\U‖2∞ ≤ µ2. (4.6)
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Let T contain the top 2k coordinates of wL\U . By Lemma 7.2.1, the `∞ guarantee (4.6) means that

‖xL\U − wT ‖22 ≤ Err2
k(xL\U ) + 3kµ2. (4.7)

Because J is the top 3k > (2 + f)k coordinates of wL, T ⊂ J . Let J ′ = J \ (T ∪ U), so |J ′| ≤ k.
Then

Err2
fk(xL − wJ) ≤ ‖xL\U − wJ\U‖22

= ‖xL\(U∪J ′) − wT ‖22 + ‖(x− w)J ′‖22
≤ ‖xL\U − wT ‖22 + |J ′|‖(x− w)J ′‖2∞
≤ Err2

k(xL\U ) + 3kµ2 + kµ2

= Err2
k(xL\U ) +O(kµ2)

where we used Equations (4.6) and (4.7).

4.4.5 Properties of SparseFFT

We will show that x∗ − χ(r) gets sparser as r increases, with only a mild increase in the error.

Lemma 4.4.8. Define x(r) = x∗ − χ(r). Consider any one loop r of SparseFFT, running with
parameters (B, k, α) = (Br, kr, αr) such that B ≥ Ck

α2ε
for some C larger than some fixed constant.

Then for any f > 0,

Err2
fk(x

(r+1)) ≤ (1 + ε) Err2
k(x

(r)) +O(εδ2n‖x∗‖21)

with probability 1−O(α/f), and the running time is

O((‖χ(r)‖0(1 + α log(n/δ)) +
B

α
log(n/δ))(log

1

αε
+ log(n/B))).

Proof. We use Rest = O(log B
αk ) = O(log 1

αε) rounds inside EstimateValues.

The running time for LocateSignal is

O((
B

α
log(n/δ) + ‖χ(r)‖0(1 + α log(n/δ))) log(n/B)),

and for EstimateValues is

O((
B

α
log(n/δ) + ‖χ(r)‖0(1 + α log(n/δ))) log

1

αε
)

for a total running time as given.

Recall that in round r, µ2 = ε
k (Err2

k(x
(r)) + δ2n‖x∗‖21) and S = {i ∈ [n] | |x(r)

i |2 > µ2}. By
Lemma 4.4.5, each i ∈ S lies in Lr with probability at least 1 − O(α). Hence |S \ L| < fk with
probability at least 1−O(α/f). Then

Err2
fk(x

(r)
[n]\L) ≤ ‖x(r)

[n]\(L∪S)‖
2
2

≤ Err2
k(x

(r)
[n]\(L∪S)) + k‖x(r)

[n]\(L∪S)‖
2
∞

≤ Err2
k(x

(r)
[n]\L) + kµ2. (4.8)
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Let w = χ(r+1)−χ(r) = x(r)−x(r+1) by the vector recovered by EstimateValues. Then supp(w) ⊂
L, so

Err2
2fk(x

(r+1)) = Err2
2fk(x

(r) − w)

≤ Err2
fk(x

(r)
[n]\L) + Err2

fk(x
(r)
L − w)

≤ Err2
fk(x

(r)
[n]\L) + Err2

k(x
(r)
L ) +O(kµ2)

by Lemma 4.4.7. But by Equation (4.8), this gives

Err2
2fk(x

(r+1)) ≤ Err2
k(x

(r)
[n]\L) + Err2

k(x
(r)
L ) +O(kµ2)

≤ Err2
k(x

(r)) +O(kµ2)

= (1 +O(ε)) Err2
k(x

(r)) +O(εδ2n‖x∗‖21).

The result follows from rescaling f and ε by constant factors.

As in previous chapters, repeating this lemma leads to a general sparse recovery algorithm:

Theorem 4.4.9. With 2/3 probability, SparseFFT recovers χ(R+1) such that

‖x∗ − χ(R+1)‖2 ≤ (1 + ε) Errk(x) + δ‖x‖2

in O(kε log(n/k) log(n/δ)) time.

Proof. Define fr = Θ(1/r2) so
∑
fr < 1/4. Choose R so

∏
r≤R fr < 1/k ≤

∏
r<R fr. Then

R = O(log k/ log log k), since
∏
r≤R fr < (fR/2)R/2 = (2/R)R.

Set εr = frε, αr = Θ(f2
r ), kr = k

∏
i<r fi, Br = O(kεαrfr). Then Br = ω( kr

α2
rεr

), so for sufficiently

large constant the constraint of Lemma 4.4.8 is satisfied. For appropriate constants, Lemma 4.4.8
says that in each round r,

Err2
kr+1

(x(r+1)) = Err2
frkr(x

(r+1)) ≤ (1 + frε) Err2
kr(x

(r)) +O(frεδ
2n‖x∗‖21) (4.9)

with probability at least 1− fr. The error accumulates, so in round r we have

Err2
kr(x

(r)) ≤ Err2
k(x)

∏
i<r

(1 + fiε) +
∑
i<r

O(frεδ
2n‖x∗‖21)

∏
i<j<r

(1 + fjε)

with probability at least 1−
∑

i<r fi > 3/4. Hence in the end, since kR+1 = k
∏
i≤R fi < 1,

‖x(R+1)‖22 = Err2
kR+1

(x(R+1)) ≤ Err2
k(x)

∏
i≤R

(1 + fiε) +O(Rεδ2n‖x∗‖21)
∏
i≤R

(1 + fiε)

with probability at least 3/4. We also have∏
i

(1 + fiε) ≤ eε
∑
i fi ≤ e

making ∏
i

(1 + fiε) ≤ 1 + e
∑
i

fiε < 1 + 2ε.
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Thus we get the approximation factor

‖x∗ − χ(R+1)‖22 ≤ (1 + 2ε) Err2
k(x) +O((log k)εδ2n‖x∗‖21)

with at least 3/4 probability. Rescaling δ by poly(n), using ‖x∗‖21 ≤ n‖x‖2, and taking the square
root gives the desired

‖x∗ − χ(R+1)‖2 ≤ (1 + ε) Errk(x) + δ‖x‖2.

Now we analyze the running time. The update χ(r+1) − χ(r) in round r has support size 3kr, so in
round r

‖χ(r)‖0 ≤
∑
i<r

3kr . k.

Thus the expected running time in round r is order

(k(1 + αr log(n/δ)) +
Br
αr

log(n/δ))(log
1

αrεr
+ log(n/Br))

. (k +
k

r4
log(n/δ) +

k

εr2
log(n/δ))(log

r2

ε
+ log(nε/k) + log r)

. (k +
k

εr2
log(n/δ))(log r + log(n/k))

We split the terms multiplying k and k
εr2

log(n/δ), and sum over r. First,

R∑
r=1

(log r + log(n/k)) ≤ R logR+R log(n/k)

. log k + log k log(n/k)

. log k log(n/k).

Next,

R∑
r=1

1

r2
(log r + log(n/k)) . log(n/k)

Thus the total running time is order

k log k log(n/k) +
k

ε
log(n/δ) log(n/k) .

k

ε
log(n/δ) log(n/k).

4.5 Reducing the full k-dimensional DFT to the exact k-sparse
case in n dimensions

In this section we show the following lemma. Assume that k divides n.

Lemma 4.5.1. Suppose that there is an algorithm A that, given an n-dimensional vector ŷ such that
y is k-sparse, computes y in time T (k). Then there is an algorithm A′ that given a k-dimensional
vector x̂ computes x in time O(T (k))).
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Proof. Given a k-dimensional vector x̂, we define ŷi = x̂i mod k, for i ∈ [n]. Whenever A requests
a sample ŷi, we compute it from x̂ in constant time. Moreover, we have that yi = xi/(n/k) if i is a
multiple of (n/k), and yi = 0 otherwise. Thus y is k-sparse. Since x can be immediately recovered
from y, the lemma follows.

Corollary 4.5.2. Assume that the n-dimensional DFT cannot be computed in o(n log n) time.
Then any algorithm for the k-sparse DFT (for vectors of arbitrary dimension) must run in Ω(k log k)
time.

4.6 Efficient Constructions of Window Functions

Claim 4.6.1. Let cdf denote the standard Gaussian cumulative distribution function. Then:

1. cdf(t) = 1− cdf(−t).

2. cdf(t) ≤ e−t2/2 for t < 0.

3. cdf(t) < δ for t < −
√

2 log(1/δ).

4.
∫ t
x=−∞ cdf(x)dx < δ for t < −

√
2 log(3/δ).

5. For any δ, there exists a function c̃dfδ(t) computable in O(log(1/δ)) time such that ‖cdf −c̃dfδ‖∞ <
δ.

Proof.

1. Follows from the symmetry of Gaussian distribution.

2. Follows from a standard moment generating function bound on Gaussian random variables.

3. Follows from (2).

4. Property (2) implies that cdf(t) is at most
√

2π < 3 times larger than the Gaussian pdf. Then
apply (3).

5. By (1) and (3), cdf(t) can be computed as ±δ or 1 ± δ unless |t| <
√

2(log(1/δ)). But then
an efficient expansion around 0 only requires O(log(1/δ)) terms to achieve precision ±δ.

For example, we can truncate the representation [Mar04]

cdf(t) =
1

2
+
e−t

2/2

√
2π

(
t+

t3

3
+

t5

3 · 5
+

t7

3 · 5 · 7
+ · · ·

)
at O(log(1/δ)) terms.

Claim 4.6.2. Define the continuous Fourier transform of f(t) by

f̂(s) =

∫ ∞
−∞

e−2πistf(t)dt.
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For t ∈ [n], define

gt =
√
n
∞∑

j=−∞
f(t+ nj)

and

g′t =
∞∑

j=−∞
f̂(t/n+ j).

Then ĝ = g′, where ĝ is the n-dimensional DFT of g.

Proof. Let ∆1(t) denote the Dirac comb of period 1: ∆1(t) is a Dirac delta function when t is an
integer and zero elsewhere. Then ∆̂1 = ∆1. For any t ∈ [n], we have

ĝt =
n∑
s=1

∞∑
j=−∞

f(s+ nj)e−2πits/n

=
n∑
s=1

∞∑
j=−∞

f(s+ nj)e−2πit(s+nj)/n

=
∞∑

s=−∞
f(s)e−2πits/n

=

∫ ∞
−∞

f(s)∆1(s)e−2πits/nds

= ̂(f ·∆1)(t/n)

= (f̂ ∗∆1)(t/n)

=
∞∑

j=−∞
f̂(t/n+ j)

= g′t.

Lemma 4.6.3. For any parameters B ≥ 1, δ > 0, and α > 0, there exist flat window functions G′

and Ĝ such that Ĝ can be computed in O(Bα log(n/δ)) time, and for each i, G′i can be evaluated in
O(log(n/δ)) time.

Proof. We will show this for a function G′ that is a Gaussian convolved with a rectangular filter.
First we construct analogous window functions for the continuous Fourier transform. We then show
that discretizing these functions gives the desired result.

For some parameters σ and 1 with 1 < σ ≤ n and C < 1 to be determined later, define D and
F to be Gaussian and rectangular filters, respectively, according to:

• D(s) = σ√
2π
e−σ

2s2/2 is a Gaussian pdf with standard deviation 1/σ.

• D̂(t) = e−2π2t2/σ2
is σ/

√
2π times a Gaussian pdf with standard deviation σ/2π

• F (s) = rect(s/(2C)) is 1 if |s| < C and 0 otherwise, is a rectangular filter of length 2C.

• F̂ (t) = 2Csinc(2Ct) = sin(2πCt)
πt .
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Consider the filter

G∗ = D ∗ F

Ĝ∗ = D̂ · F̂ .

We have |Ĝ∗(t)| ≤ 2C|D̂(t)| < 2Cδ for |t| > σ
2π

√
2 log(1/δ). Furthermore, Ĝ∗ is computable in

O(1) time.

Its inverse Fourier transform is G∗(s) = cdf(σ(s+C))− cdf(σ(s−C)). By Claim 4.6.1 we have
for |s| > C +

√
2 log(1/δ)/σ that G∗(s) = ±δ. We also have, for |s| < C −

√
2 log(1/δ)/σ, that

G∗(s) = 1± 2δ.

This gives us efficient continuous flat window functions. To get discrete ones, for i ∈ [n] let
Ĥi =

√
n
∑∞

j=∞ Ĝ
∗(i+ nj). By Claim 4.6.2 it has DFT Hi =

∑∞
j=∞G

∗(i/n+ j).

We show how to approximate H and Ĥ efficiently. First, Ĥ:∑
|i|>1+ σ

2π

√
2 log(1/δ)

|Ĝ∗(i)| ≤ 4C
∑

i<−1− σ
2π

√
2 log(1/δ)

|D̂(i)|

≤ 4C

∫ − σ
2π

√
2 log(1/δ)

−∞
|D̂(x)|dx

≤ 4C
σ√
2π

cdf(−
√

2 log(1/δ))

< 2Cσδ ≤ 2nδ.

Thus if we let
Ĝi =

√
n

∑
|j|< σ

2π

√
2 log(1/δ)

j≡i (mod n)

Ĝ∗(j)

for |i| < σ
2π

√
2 log(1/δ) and Ĝi = 0 otherwise, then ‖Ĝ− Ĥ‖1 ≤ 2δn3/2.

Now consider approximating H. Note that for integer i with |i| ≤ n/2,

Hi −G∗(i/n) =
∑
j∈Z
j 6=0

G∗(i/n+ j)

|Hi −G∗(i/n)| ≤ 2
∞∑
j=0

G∗(−1/2− j)

≤ 2

∞∑
j=0

cdf(σ(−1/2− j + C))

≤ 2

∫ −1/2

−∞
cdf(σ(x+ C))dx+ 2 cdf(σ(−1/2 + C))

≤ 2δ/σ + 2δ ≤ 4δ

by Claim 4.6.1, as long as

σ(1/2− C) >
√

2 log(3/δ). (4.10)
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Let

G′i =


1 |i| ≤ n(C −

√
2 log(1/δ)/σ)

0 |i| ≥ n(C +
√

2 log(1/δ)/σ)

c̃dfδ(σ(i/n+ C))− c̃dfδ(σ(i/n− C)) otherwise

where c̃dfδ(t) computes cdf(t) to precision ±δ in O(log(1/δ)) time, as per Claim 4.6.1. Then
G′i = G∗(i/n)± 2δ = Hi ± 6δ. Hence

‖G−G′‖∞ ≤ ‖G′ −H‖∞ + ‖G−H‖∞
≤ ‖G′ −H‖∞ + ‖G−H‖2
= ‖G′ −H‖∞ + ‖Ĝ− Ĥ‖2
≤ ‖G′ −H‖∞ + ‖Ĝ− Ĥ‖1
≤ (2n3/2 + 6)δ.

Replacing δ by δ/n2 and plugging in σ = 4B
α

√
2 log(n/δ) > 1 and C = (1 − α/2)/(2B) < 1, we

have the required properties of flat window functions:

• |Ĝi| = 0 for |i| ≥ Ω(Bα log(n/δ))

• G′i = 1 for |i| ≤ (1− α)n/(2B)

• G′i = 0 for |i| ≥ n/(2B)

• G′i ∈ [0, 1] for all i.

• ‖G′ −G‖∞ < δ.

• We can compute Ĝ over its entire support in O(Bα log(n/δ)) total time.

• For any i, G′i can be computed in O(log(n/δ)) time for |i| ∈ [(1 − α)n/(2B), n/(2B)] and
O(1) time otherwise.

The only requirement was Equation (4.10), which is that

4B

α

√
2 log(n/δ)(1/2− 1− α/2

2B
) >

√
2 log(3n/δ).

This holds if B ≥ 2. The B = 1 case is trivial using the constant function G′i = 1.
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Chapter 5

Sparse Fourier Transforms:
Optimizing Measurements
(Based on parts of [IKP13])

This chapter revisits the sparse Fourier transform problem. We give a randomized algorithm
that takes O(k log n(log log n)O(1)) samples and uses O(k log2 n(log log n)O(1)) time, assuming that
the entries of the signal are polynomially bounded. The sampling complexity improves over the
O(k log n log(n/k)) bound in Chapter 4, and matches the lower bound of Ω(k log(n/k)/ log log n)
from Chapter 6 up to poly(log log n) factors when k = O(n1−δ) for a constant δ > 0.

As a reminder to set notation, our algorithm has access to the Fourier transform1 x̂ of x. We
would like to compute an approximation x′ to x such that

‖x− x′‖2 ≤ C min
k-sparse y

‖x− y‖2. (5.1)

for some approximation factor C = 1 + ε . 1.

5.1 Techniques

Our algorithm follows a similar approach to [GMS05] and our time-optimizing Chapter 4, which
try to adapt the methods of [CCF02, GLPS10] from arbitrary linear measurements to Fourier ones.
We use a “filter” that lets us “hash” the k large frequencies to B = O(k) buckets. This lets us
“locate”—i.e., find the indices of—many of the large frequencies. We then “estimate” the value of
x at these frequencies, giving a sparse estimate χ of x. To improve this estimate, we can repeat
the process on x− χ by subtracting the influence of χ during hashing. This repetition will yield a
good sparse approximation χ of x.

The methods of [CCF02, GLPS10] will, multiple times, take a set of B linear measurements of
the form

ũj =
∑

i:h(i)=j

sixi

for random hash functions h : [n] → [B] and random sign changes si with |si| = 1. This denotes
hashing to B buckets. With such ideal linear measurements, O(log(n/k)) hashes suffice for sparse
recovery, giving an O(k log(n/k)) sample complexity.

To perform sparse Fourier transforms, both [GMS05] and our Chapter 4 approximate ũ using

1This is the inverse discrete Fourier transform problem. It is equivalent to the forward direction modulo some
conjugation and has simpler notation.
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linear combinations of Fourier samples. They use filters to compute u ≈ ũ using somewhat more
than B Fourier measurements. Choosing a filter involves a tradeoff between the approximation
quality and increase in number of samples. As described in Section 5.3, for any parameter R > 2,
using O(B logR) Fourier measurements we can get (very roughly) that ‖u − ũ‖2 ≤ ‖x‖2/R. We
refer to this error (u− ũ), which is mostly caused by elements xi contributing to buckets other than
h(i), as “leakage.”

The difference between [GMS05] and Chapter 4 is largely driven by a different choice of filters.
[GMS05] uses a filter with R = O(1), which gives efficient sample complexity per hashing but
involves lots of leakage. Dealing with this leakage requires multiple logarithmic factors of overhead
in the number of hashes. By contrast, Chapter 4 uses a filter with R = nO(1). This filter loses
one logarithmic factor in sample complexity, but makes leakage negligible for polynomially bounded
inputs. The rest of the algorithm then can proceed somewhat similarly to [GLPS10] and be optimal,
giving O(k log n log(n/k)) sample complexity.

In this chapter we observe that setting R = nO(1) is often overkill: in many cases the post-
filtering parts of Chapter 4 can tolerate a larger amount of leakage (and hence use a filter that
performs fewer measurements). Moreover, the situations where R must be large are precisely the
situations where the post-filtering parts of Chapter 4 can be made more efficient and use o(log(n/k))
hashings. We give a broad outline of our analysis, starting with a special case.

Similar magnitude heavy hitters. Even with the “ideal” hashing ũ, we expect an average
of around µ2 = Err2

k(x)/B “noise” from the tail in each of the B = O(k) buckets, where Errk(x)
denotes mink-sparse y‖x−y‖2. This means that the post-filtering steps of the algorithm must already
tolerate average noise of order µ2.

For intuition, it is useful to consider recovery of a signal where the largest k coordinates are all
between

√
Rµ and Rµ for a parameter R ≥ 2. Then choosing the filter with O(logR) overhead,

i.e. performing O(B logR) Fourier measurements, the average leakage will be

1

B
‖ũ− u‖22 ≤

1

R2B
‖x‖22 ≤

k · (Rµ)2 + Err2
k(x)

R2B
< µ2.

This means that the post-filtering steps of the algorithm will succeed, giving a sample complexity of
O(k logR log(n/k)). This is a great improvement over the O(k log n log(n/k)) sampling complexity
of Chapter 4 when R is small, but if R is polynomially large we have not gained anything.

The next insight is that we can use fewer than log(n/k) hashings if the smallest heavy hitter
has value

√
Rµ2 � µ2. Indeed, the bottleneck in these algorithms is the location phase, where

we need to recover log(n/k) bits about each large frequency (in order to identify it among the
n/k different frequencies in the bucket). While [GMS05] and Chapter 4 recover O(1) of these bits
per hashing, their methods can actually recover Ω(logR) bits per hashing in this case because
the expected signal to noise ratio in each bucket is Ω(R). This gives a sample complexity of
O(k logR logR(n/k)) = O(k log(Rn/k)).

Our algorithm uses the approach we just outlined, but also needs to cope with additional
difficulties that we ignored in the sketch above. First, in the general case we cannot expect all
heavy hitters to be in the range [

√
Rµ2, Rµ2], and the argument above does not give any guarantees

on recovery of smaller elements. Additionally, the sketch above ignores collisions during hashing,
which cause us to only recover a constant fraction of the heavy hitters in each round. We now give
an outline of our approach to the general problem.
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General vectors. The above algorithm finds most of the large frequencies if they all have
value between

√
Rµ2 and Rµ2 for a known R. More generally, if ‖x‖22 ≤ Rkµ2, the same tech-

niques can recover most of the frequencies of magnitude larger than Rδµ2 with sample complexity
O(1

δk log(Rn/k)), for a parameter δ > 0: we perform O(logRδ(n/k)) hashings that each take
O(k logR) samples. Call this algorithm A(R, δ).

Our algorithm will repeat A(R, δ) multiple times for some δ. After enough repetitions, we will
recover almost every coordinate larger than

√
Rµ2. The residual will then have norm bounded

by O(
√
Rkµ2). Our algorithm takes the following form: we repeat A(

√
R, δ) multiple times, then

A(R1/4, δ), and so on. After log logR rounds of this, the residual will have norm O(kµ2) and we
can perform recovery directly. For this technique to work with (log log(Rn))c overhead, we will
show that log logR repetitions of A(R, δ) suffice to reduce the residual norm to

√
Rkµ2, for some

δ = Ω(1/ log logR).

A first attempt might be to set δ = 1/2, thus recovering most of the coordinates larger than√
Rkµ2 in each stage. This leads to problems if, for example, the vector has k/2 elements of value

R.4µ2 and k/2 elements of value R.6µ2. Then A(R, 1/2) will never recover the first k/2 coordinates,
and collisions with those coordinates mean it will only recover a constant fraction of the second
k/2 coordinates. So it takes Ω(logR) � log logR repetitions to reduce the residual from R.6kµ2

to
√
Rkµ2. This is too slow; we need to make the number of elements above

√
Rµ2 decay doubly

exponentially.

This suggests that we need a more delicate characterization of A(r, δ). We show in our analysis
that coordinates are recovered with high probability if they are “well-hashed,” meaning that the
total noise in the bucket is Rδ smaller than the value of the coordinate. Coordinates of magnitude
Rδµ2 have a constant chance of being well-hashed (leading to singly exponential decay), and co-
ordinates that are much larger than Rδµ2 have a higher chance of being well-hashed (ultimately
yielding the required doubly exponential decay). Our analysis follows this outline, but has to handle
further complications that arise from imperfect estimation phase. For simplicity, we first present
the analysis assuming perfect estimation, and then give the proof without any assumptions.

General vectors: perfect estimation. We classify the elements of the signal into 1/δ “levels”
of elements between [Rδjµ2, Rδ(j+1)µ2] for j = 0, . . . , 1/δ − 1, as opposed to a single range like
[
√
Rµ2, Rµ2]. We then bound the success rate of recovery at each level in terms of the number of

elements in various levels above and below it.

To first approximation, coordinates are recovered and eliminated from the residual if they are
well-hashed, and are not recovered if they are not well-hashed. And in most cases the probability
that a large coordinate j is not well-hashed is dominated by the probability that it collides with a
coordinate of magnitude at least R−δ|xj |2. In this approximation, if we set m`(t) to be the number
of |xj |2 larger than R`δµ2 after t rounds of the algorithm, then E[m`(t + 1)] ≤ m`(t)m`−1(t)/B.
Then m0 doesn’t decay—coordinates less than Rδµ2 will not be recovered by A(R, δ)—but m1

decays exponentially, m2 will then decay as 2−t
2
, and in general m` will decay as 2−(t`). With

δ = 1/ log logR, we find that m1/δ−1 (which contains all coordinates larger than
√
Rµ2) will decay

to 1/Rc in O(log logR) rounds. As a result, the squared norm of the residual will be at most
O(
√
Rµ2). The details of this part of the analysis are presented in Section 5.6.

General vectors: actual behavior. In the actual algorithm, coordinates do not just disappear
if they are located, but are estimated with some error. This means large components can appear in
the residual where no component was before, if lots of small components were hashed to a certain
bucket. This causes the m` to not obey the nice recurrence in the previous paragraph. To deal
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with this, we introduce the notion of splittings of the residual. For analysis purposes, we split each
component of the residual into multiple terms whose total magnitude is the same. We define the
m` in terms of the number of components in the splitting, not the actual residual.

The intuition is that the residual error when estimating an element xi is approximately ‖xC‖2,
where C ⊂ [n] is the set that “collides” with i. Rather than thinking of the residual as a single
coordinate with value ‖xC‖2, we “split” it and imagine duplicating xj for each j ∈ C. Because
j ∈ C was not recovered from the bucket, j was (most likely) not well-hashed. So the contribution
of the duplicated xj to m` is comparable to the contribution of the xj that remain after not being
well-hashed. Hence the m` obey almost the same recurrence as in the perfect estimation setting
above.

As a result, O(log logR) repetitions of A(R, 1/ log logR) reduce the residual norm to
√
Rkµ2.

Repeating for log log n rounds decreases R from nc to O(1), and we can finish off by accepting a
logR loss. The details of this part of the analysis are presented in Section 5.7.

5.2 Notation and definitions

We will use the orthonormal version of the Fourier transform. For x ∈ Rn

x̂j =
1√
n

∑
i∈[n]

ωijxi, (5.2)

where ω is a root of unity of order n. The inverse transform is given by

xj =
1√
n

∑
i∈[n]

ω−ij x̂i. (5.3)

We assume that n is a power of 2.

5.2.1 Notation

We will use the same pseudorandom spectrum permutation as Chapter 4, which we now define.

Definition 4.2.1. Suppose σ−1 exists mod n. We define the permutation Pσ,a,b by

(Pσ,a,bx̂)i = x̂σ(i+a)ω
−σbi.

We also define πσ,b(i) = σ(i− b) mod n.

Claim 4.2.2. Let F−1(x) denote the inverse Fourier transform of x. Then

(F−1(Pσ,a,bx̂))πσ,b(i) = xiω
aσi.

Also, define

• hσ,b(i) = round(πσ,b(i)n/B) to be an [n]→ [B] “hash function” .

• oi(j) = π(j)− (n/B)h(i) to be the “offset” of j relative to i.

This “hashing” h is approximately pairwise independent in the following sense:

Lemma 4.2.4. (Lemma 3.6 of [HIKP12c]) If j 6= 0, n is a power of two, and σ is a uniformly
random odd number in [n], then Pr[σj ∈ [−C,C] (mod n)] ≤ 4C/n.
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In much of the chapter, we use |i| for i ∈ [n] to denote minz∈Z |i + zn|; this is the “absolute
value modulo n.” So the above lemma, for example, bounds Pr[|σj| ≤ C].

Our algorithm will start with an input x̂∗ and find progressively better approximations χ to x∗.
Most of the analysis will depend only on x := x∗ − χ. Our algorithm will involve decreasing the
“signal to noise ratio” R ≈ ‖x‖22/Err2

k(x
∗).

Pseudocode for our algorithm is given below. Due to space constraints, the pseudocode for the
function LocateSignal appears in Section 5.10.

1: procedure SparseFFT(x̂, k, ε, R, p)
2: χ(0) ← 0 . in Cn.
3: R0 ← R
4: r ← Θ(log logR)
5: for i = 0, 1, . . . , r − 1 do
6: χ′ ← ReduceSNR(x̂, χ(i), 3k,Ri, p/(2r))
7: χ(i+1) ← Sparsify(χ(i) + χ′, 2k) . Zero out all but top 2k entries
8: Ri+1 ← c

√
Ri . For some constant c

9: end for
10: χ′ ← RecoverAtConstantSNR(x̂, χ(r), 3k, ε, p/2)
11: return χ(r) + χ′

12: end procedure

Algorithm 5.2.1: Overall algorithm: perform Sparse Fourier Transform

1: procedure ReduceSNR(x̂, χ, k,R, p)
2: B ← 1

αk for sufficiently small α > 0.

3: χ(1) ← χ
4: N ← Θ(log2 log2R)
5: for t = 0, 1, . . . , N − 1 do
6: kt ← O(k4−t)
7: L← LocateSignal(x̂, χ(i), B, σ, b, R, αR−20)
8: x̃← EstimateValues(x̂, χ(i), L,B, 3kt, 13, R)
9: χ(i+1) ← χ(i) + x̃

10: end for
11: return χN − χ
12: end procedure

Algorithm 5.2.2: Reduce the SNR ‖x‖22/ξ2 from R to O(
√
R)

5.2.2 Glossary of terms in ReduceSNR and RecoverAtConstantSNR

In ReduceSNR and RecoverAtConstantSNR, there are a lot of variables with common names
and similar purposes. This section provides a glossary, which may be useful for reference. We have
globally:

• x̂∗ ∈ Cn is the original input, where we want to recover an approximation to x∗.

• k∗ is the original value of k, for which we expect x̂∗ to be approximately k∗-sparse.

• R∗ ≥ ‖x∗‖22/Err2
k(x
∗) is an upper bound on the SNR for the original signal. We have R∗ =

O(poly(n)) by the input assumption.
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1: procedure RecoverAtConstantSNR(x̂, χ, k, ε, p)
2: R← 20
3: B ← Rk/(εαp) for a sufficiently small constant α > 0
4: Choose σ, b uniformly at random in [n], σ odd.
5: L← LocateSignal(x̂, χ,B, σ, b, R, αεp)
6: χ′ ← EstimateValues(x̂, χ, L,B, 3k, log(B/(4k)), R)
7: return χ′

8: end procedure

Algorithm 5.2.3: Recovery when ‖x− χ‖2 . Err2
k(x)

1: procedure EstimateValues(x̂, χ, L,B, k, T,R)
2: for t = 1 to T do
3: Choose σ, b, a ∈ [n] uniformly at random, σ odd
4: u← HashToBins(x, χ, Pσ,a,b, B,R)

5: x̃
(t)
i ← G−1

oi(i)
uhσ,b(i)ω

−aσi for all i ∈ L. . Note that Goi(i) depends on σ, b, a
6: end for
7: x̃i ← mediant(x̃

(t)
i ) for all i ∈ L. . Median in real and imaginary axis separately

8: return Sparsify(x̃, k).
9: end procedure

Algorithm 5.2.4: Estimation: estimate (x− χ)L using T rounds of B-bucket, contrast R hashing.

1: procedure HashToBins(x̂, χ, Pσ,a,b, B,R)
2: G← flat window function with B buckets and contrast R.
3: Compute y′ = Ĝ · Pσ,a,b(x̂− χ̂′), ‖χ̂− χ̂′‖∞ < ‖χ‖2

R∗n12 . Have ‖y′‖0 . B logR

4: Compute uj = ŷ′jn/B for j ∈ [B], where ‖∆‖∞ ≤ ‖χ‖2
R2n11

5: return u.
6: end procedure

Algorithm 5.2.5: Hashing using Fourier samples (analyzed in Lemma 5.11.3)
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and for each different call to ReduceSNR and RecoverAtConstantSNR, we have

• χ ∈ Cn is our current best guess at x, which will (in all calls) be 2k∗-sparse.

• x = x∗ − χ is the “residual” signal that we want to recover in this call. (When analyzing
ReduceSNR, we set x = x∗ − χ(i) in each inner loop.)

• k = 3k∗ is the approximate sparsity of x.

• α > 0 is sufficiently small, but at least 1/(log log n)c.

• B > k/α to be the number of buckets in each hashing.

• T to be the number of hashings done inside EstimateValues.

• x̃(t) ∈ Cn is the estimation of x in EstimateValues for each t ∈ [T ].

• x̃ ∈ Cn is the median of x̃(t) over t.

• R will is a parameter (in ReduceSNR) and sufficiently large constant (in RecoverAtCon-
stantSNR). It roughly represents the “signal-to-noise ratio”.

• δ = 1/(40 log2 log2R).

• γ = R−δ to be the “contrast” our LocateSignal requires.

5.3 Properties of the bucketing scheme

Our algorithm uses filters and various choices of σ, b, a to “hash” the coordinates of x into buckets.
For each (σ, b, a) and each bucket j ∈ [B] we recover an estimate i∗ of the heavy coordinate in that
bucket. Also, for each i ∈ [n] we can recover an estimate x̃i of xi.

We use a modification of the filters from Chapter 4 that allows the noise in a single bucket to
depend on the energy of the signal as well as the energy of the colliding elements.

Definition 5.3.1 (Flat Window Functions). A flat window function G over Cn has B buckets and
contrast R if, for |i| ≤ n/2, we have

• Gi ≥ 1/3 for |i| ≤ n/(2B).

• 0 ≤ Gi ≤ 1 for all i.

• Gi ≤ ( cn
|i|B )logR for all i for some constant c

The filters in Chapter 4 were more stringent, roughly corresponding to the R = nO(1) case. We
will prove in Section 5.11 that

Lemma 5.3.2. There exist flat window functions where | supp(Ĝ)| . B logR. Moreover, supp(Ĝ) ⊂
[−O(B logR), O(B logR)].

Most of the analysis in this chapter will assume we have precomputed Ĝ and G and may access
them with unit cost. This is unnecessary: in Section 5.12.1 we describe how to compute them on
the fly to 1/nc precision without affecting our overall running time. This precision is sufficient for
our purposes.

Lemma 5.3.3. Let (σ, a, b) ∈ [n] be uniform subject to σ being odd. Let u ∈ CB denote the result of
HashToBins(x̂∗, χ, Pσ,a,b, B,R). Fix a coordinate i ∈ [n] and define x = x∗−χ. For each (σ, b), we
can define variables C ⊂ [n] and w > 0 (and in particular, C = {j 6= i : |σ(i− j) mod n| ≤ cn/B}
for some constant c,) so that
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• For all j, as a distribution over (σ, b),

Pr[j ∈ C] . 1/B.

• As a distribution over (σ, b),

E[w2] .
‖x‖22
R2B

+
‖x∗‖22
R∗n11

• Conditioned on (σ, b) and as a distribution over a,

E
a
[|G−1

oi(i)
ω−aσiuh(i) − xi|2] . w2 + ‖xC‖22.

Intuitively, C denotes the elements of x that collide with i, and w denotes the rest of the noise.
The two terms of w correspond to leakage of x from other hash locations and to errors in the
subtraction of χ, respectively. This latter term should be thought of as negligible.

We also define the notion of being “well-hashed,” which depends on another parameter γ = Rδ

from the glossary:

Definition 5.3.4. Let σ, b ∈ [n], σ odd. An element i is well-hashed for a particular σ, b and filter
G if over uniformly random a ∈ [n],

E
a
[|G−1

oi(i)
ω−aσiuh(i) − x′i|2] ≤ γ1/2|x′i|2.

Intuitively, a well-hashed element contains little noise in the bucket that it hashed to, relative
to its own energy, and will hence be likely to be recovered in LocateSignal. This is formalized
in Lemma 5.10.2.

5.4 Proof overview

This section gives the key lemmas that are proven in later sections. Our procedures try to reduce
the `2 norm of the residual to the “noise level” ξ2 := Err2

k∗(x
∗)+‖x∗‖22/(R∗n10). The polynomial n10

can be arbitrary, and only affects the running time of the algorithm; we choose a specific constant
for simplicity of notation. The ‖x∗‖22/(R∗n10) term is essentially irrelevant to the behavior of the
algorithm, and will be ignored when discussing intuition.

First, we give an algorithm RecoverAtConstantSNR that is efficient when ‖x‖22 . Err2
k(x).

Lemma 5.5.1. For x∗, χ ∈ Cn define x = x∗−χ. Then RecoverAtConstantSNR(x̂∗, χ, k, ε, p)
returns χ′ such that

‖x− χ′‖22 ≤ Err2
k(x) + ε‖x‖22 +

‖x∗‖22
n10

with probability 1− p, using O( 1
pεk log(n/k) log log(n/k) log(1/(εp))) measurements and (assuming

‖χ‖0 . k) a log n factor more time.

This is relatively straightforward. To see why it is useful, for k = 3k∗ we have Err2
k(x) ≤

Errk∗(x
∗). Therefore, once χ is close enough to x∗ that x = x∗ − χ has ‖x‖22 . Err2

k∗(x
∗), this

lemma gives that χ + χ′ is within (1 + ε) Err2
k∗(x

∗) of x∗ using only O∗( 1
pεk log(n/k) log(1/(εp)))

measurements. (As stated above, for intuition we are ignoring the negligible
‖x∗‖22
n10 term.)

We then show how to quickly reduce ‖x‖22 to O(Err2
k∗(x

∗)):
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Lemma 5.7.11. For x∗, χ ∈ Cn define x = x∗ − χ and

ξ2 = Err2
k(x) +

‖x‖22
R

+
‖x∗‖22
R∗n10

.

Suppose ‖χ‖0 ≤ k. Then ReduceSNR(x̂∗, χ, k,R, p) returns χ′ such that

‖x− χ′‖22 .
√
Rξ2

with probability 1−p, using O( 1
p2
k log(Rn/k)(log log(Rn/k))c) measurements and a log(Rn) factor

more time.

This is the most technical part of the chapter. By iterating it log logR times and finishing off
with Lemma 5.5.1, we get the final result:

Theorem 5.8.1. Let x ∈ Cn satisfy ‖x‖22 ≤ RErr2
k(x). Then SparseFFT(x̂, k, R, p) returns a χ′

such that
‖x− χ′‖22 ≤ (1 + ε) Err2

k(x) + ‖x‖22/(R∗n10)

with probability 1 − p and using O( 1
p2ε
k log(Rn/k)(log log(Rn/k))c log(1/ε)) measurements and a

log(Rn) factor more time.

We now summarize the proof of Lemma 5.7.11. Let x = x∗ − χ, and define

µ2 =
1

k
ξ2 ≥

(
Err2

k(x) +
‖x‖22
R

)
/k.

If we hash to B = k/α buckets with flat window functions of contrast R, then the expected
magnitude of the contribution of the tail of x to any bucket is O(αµ2).

ReduceSNR involves O(log logR) stages. In each stage, we hash to B bins and call LocateS-
ignal to get a set L of candidate locations for heavy hitters. We then estimate xi for each i ∈ L
as the median x̃i of O(1) random hashings to B bins. We then subtract off x̃L′ , where L′ contains
the largest k′ coordinates of x̃ and k′ starts out Θ(k) in the first stage and decreases exponentially.
So the recurrence in each stage is x→ x− x̃L′ .

This process is somewhat complicated, so we start by analyzing a simpler process in each stage.
Let S denote the set of “well-hashed” coordinates i ∈ [n], i.e. coordinates that are hashed to bins
with noise less than γ1/2|xi|2. In Section 5.6 we analyze the recurrence x→ x− xS . Generally, we
expect larger elements to be more likely to be well-hashed, and so the number of them to decay
more quickly. We analyze the number m`(t) of i with |xi| > µ2γ−` that remain at each stage t,
for each level `. We show that these quantities obey a nice system of equations, causing the m`(t)
to decay doubly exponentially for the first ` rounds. Then after t = O(log logR) rounds, an R−10

fraction of the coordinates larger than µ2
√
R remain. This means that the recurrence x→ x− xS

would leave a remainder of norm O(kµ2
√
R) as desired.

In Section 5.7, we relate this to the true recurrence x→ x− x̃L′ . We study recurrences that are
admissible, meaning that they satisfy a similar system of equations to that in Section 5.6. Admissible
recurrences satisfy composition rules that let us find them sequentially, and using Section 5.6 we
can show the remainder after log logR iterations of any admissible recurrence has small norm. In
a series of results, we show that x→ x− x̃S , x→ x− xL′ , and finally x→ x− x̃L′ are admissible.
This then proves Lemma 5.7.11.
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5.5 Constant SNR

Our procedure for recovery at constant SNR is given by Algorithm 5.2.3. In this section we prove

Lemma 5.5.1. For x∗, χ ∈ Cn define x = x∗−χ. Then RecoverAtConstantSNR(x̂∗, χ, k, ε, p)
returns χ′ such that

‖x− χ′‖22 ≤ Err2
k(x) + ε‖x‖22 +

‖x∗‖22
n10

with probability 1− p, using O( 1
pεk log(n/k) log log(n/k) log(1/(εp))) measurements and (assuming

‖χ‖0 . k) a log n factor more time.

In what follows we define
ξ2 = ‖x‖22 + ‖x∗‖22/(R∗n11).

and µ2 = ξ2/k. By definition of the algorithm, B = Rk/(εαp) for some constants R,α. We will
show that, if R is a sufficiently large constant, then with probability 1− p,

‖x− χ′‖22 − Err2
k(x) . αεξ2.

For sufficiently small α this gives the result.

A simple consequence of Lemma 5.3.3 is that for each i, and for random (σ, a, b), we have

E
a,σ,b

[|G−1
oi(i)

ω−aσiuh(i) − xi|2] . ‖x‖22/B + ‖x∗‖22/(R∗n11) ≤ ξ2/B = εαpµ2/R. (5.4)

There are two sources of error in RecoverAtConstantSNR, coming from location and esti-
mation respectively. The proof of Lemma 5.5.1 proceeds in two stages, bounding the error intro-
duced in both steps.

5.5.1 Energy lost from LocateSignal

Let S contain the largest k coordinates of x and L be the list of locations output by LocateSignal.
In this section we bound the energy of the vector xS\L. Define

Alarge = {i ∈ S : |xi|2 ≥ αεµ2/R}
Asmall = {i ∈ S : |xi|2 ≤ αεµ2/R},

so that
||xAsmall ||

2 ≤ αεµ2k/R ≤ αεξ2. (5.5)

For each i ∈ [n] by (5.4) we have

E
a,σ,b

[|G−1
oi(i)

ω−aσiuh(i) − xi|2] . αεpµ2/R.

Consider i ∈ Alarge, and recall Definition 5.3.4 of being well-hashed. By Markov’s inequality applied
to (5.4) and R > γ−1/2, the probability that i ∈ Alarge is not well-hashed is bounded by

εαpµ2/R

γ1/2|xi|2
≤ εαpµ2

|xi|2
. (5.6)

Each well-hashed element is then located in LocateSignal with probability at least 1 − αεp
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by our choice of parameters. Thus, for i ∈ Alarge one has

Pr[i 6∈ L] ≤ εαpµ2

|xi|2
+O(αεp).

It then follows that

E[||xS\L||2 − ||xAsmall ||
2] = E[||xAlarge\L||

2]

≤
∑

i∈Alarge

εαpµ2

|xi|2
|xi|2 + αεp‖x‖22 ≤ αεpξ2

≤ 2αεpξ2.

(5.7)

Combined with (5.5) one has

||xS\L||2 . αεξ2 (5.8)

with probability at least 1−p/2 by Markov’s inequality. It remains to consider the effect of pruning
in EstimateValues.

5.5.2 Energy of x− χ′

We now analyze the errors introduced in the estimation step. These errors come from two sources:
estimation noise and the pruning step in EstimateValues. Let x̃(t) denote the estimate in each
hashing in EstimateValues (defined to be zero outside L), and x̃ denote the coordinate-wise
median over t of x̃(t). By definition, χ′ = x̃L′ where L′ denotes the largest 3k elements of x̃.
By (5.4), for each i ∈ L and t ∈ [T ] during estimation we have

E[|x̃(t)
i − xi|

2] . εαpµ2/R ≤ εαpµ2,

and so by properties of the median (Lemma 5.9.5),

E[|x̃i − xi|2] ≤ 4E[|x̃(t)
i − xi|

2] . εαpµ2 (5.9)

for all i. Now, by Lemma 5.9.1,

‖x− χ′‖22 = ‖x− x̃L′‖22 ≤ Err2
k(x) + 4‖(x− x̃)S∪L′‖22. (5.10)

The first term appears in our output, so it is sufficient to upper bound the last term by O(αεξ2)
with probability 1− p. We write

‖(x− x̃)S∪L′‖22 ≤ ‖(x− x̃)S\L‖22 + ‖(x− x̃)(S∩L)∪L′‖22. (5.11)

The first term is bounded by (5.8). It remains to bound this last bit, which is entirely the effect of
estimation error since (S ∩ L) ∪ L′ ⊆ L. By the fact that |(S ∩ L) ∪ L′| ≤ 4k, Lemma 5.9.4 with
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T = O(log(B/4k)), and (5.9),

E[‖(x− x̃)(S∩L)∪L′‖22] ≤ max
A⊆L,|A|=4k

‖(x− x̃)A‖22

. 4k · (B/4k)Θ(1/T ) ·max
i

E[|xi − x̃(t)
i |

2]

. k · 1 · εαpµ2

= εαpξ2.

Hence by Markov’s inequality, with probability at least 1− p/2 one has ‖(x− x̃)(S∩L)∪L′‖22 . αεξ2,
and putting this together with (5.10) and (5.11), we get

‖x− χ′‖22 ≤ Err2
k(x) +O(αε)ξ2

≤ Err2
k(x) + εξ2

(5.12)

with probability at least 1− p, for sufficiently small constant α.

Proof of Lemma 5.5.1. The guarantee on the residual error is provided by (5.12), so it remains to
verify sampling complexity. The call to LocateSignal takes order

B log(Rn/B) log logR log log(n/B) log(1/(αεp)) .
1

pε
k log(n/k) log log(n/k) log(1/(εp))

samples by Lemma 5.10.2. The call to EstimateValues takes order

log(B/4k)B logR .
1

εp
k log(1/(εp))

samples, giving the desired total sample complexity.

5.6 Reducing SNR: idealized analysis

5.6.1 Dynamics of the process with simplifying assumptions

The goal of this section and the next is to prove the following lemma:

Lemma 5.7.11. For x∗, χ ∈ Cn define x = x∗ − χ and

ξ2 = Err2
k(x) +

‖x‖22
R

+
‖x∗‖22
R∗n10

.

Suppose ‖χ‖0 ≤ k. Then ReduceSNR(x̂∗, χ, k,R, p) returns χ′ such that

‖x− χ′‖22 .
√
Rξ2

with probability 1−p, using O( 1
p2
k log(Rn/k)(log log(Rn/k))c) measurements and a log(Rn) factor

more time.

In this section we give a description of iterative process in ReduceSNR under simplifying
assumptions, demonstrating the basic dynamics of the process. We will later give a general analysis.
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Define µ2 = ξ2/k, and from the glossary (Section 5.2.2) recall the definitions

δ =
1

40 log2 log2R
, γ = R−δ.

We define the following energy levels. For each j = 1, . . . , 1/δ − 1 let

Lj = [µ2 · γ−j , µ2γ−(j+1)],

and let L0 := [0, µ2γ−(j+1)] and L1/δ := [µ2γ−1/δ,∞) = [µ2R,∞).

Simplifying assumptions. Recall the notion of well-hashedness (Definition 5.3.4). The crucial
property of well-hashed elements is that if i ∈ [n] is well-hashed, then an invocation of LocateS-
ignal locates it with probability at least 1−1/ poly(R). This property is proved in Lemma 5.10.2.
In this section we make the following simplifying assumption: we assume that each well-hashed
element i ∈ [n] is estimated with zero error and removed from the signal. The elements that are not
well-hashed, on the other hand, we assume simply remain in the system untouched. Let H denote
the set of well-hashed elements (which is close to the list of locations output by LocateSignal).
In this section, therefore, we analyze the recursion x→ x− xH .

For each xi ∈ Lj and each t ≥ 1 let 1i,t denote the indicator variable equal to 1 if xi survived
up to the t-th round of the process and 0 otherwise. For each j ∈ [1 : 1/δ] and t ≥ 1 let

mj(t) =
1

k

∑
j′≥j

∑
i∈[k]:(xi)2∈Lj′

1i,t.

Recall that by Definition 5.3.4 an element i ∈ [n] is well-hashed for a particular choice of σ, b ∈ [n], σ
odd, and filter G if over uniformly random a ∈ [n],

E
a
[|G−1

oi(i)
ω−aσiuh(i) − xi|2] ≤ γ1/2|xi|2.

Lemma 5.6.1. Let σ, b ∈ [n] be chosen uniformly at random, σ odd. Let i ∈ [n] denote an index
such that |xi|2 ∈ Lj. Then the probability that i is not well-hashed at time t is at most of order

α

γj−1/2 +
∑

j′<j−1

γj−j
′−3/2mj′(t)

+ αmj−1(t),

where the number of buckets B satisfies B ≥ k/α.

Proof. Let x(h) denote all elements of x in levels Lj−1 and above. Denote the set of such elements
by S+. Let x(t) denote all elements of x in Lj′ , j

′ < j − 1. Since |xi|2 ∈ Lj , we have |xi|2 ≥ γ−jµ2.

Define C to be the indices that “collide with” i as in Lemma 5.3.3. We have that

Pr[C ∩ S+ 6= {}] . |S+|/B = αmj−1(t).

Condition on the event that C ∩ S+ = {}; since this happens with more than 1/2 probability, the
conditioning only loses a constant factor in expectations and we may neglect this influence. We
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have by Lemma 5.3.3 that

E
σ,b,a

[|G−1
oi(i)

ω−aσiuh(i) − xi|2] . ‖x‖22/(R2B) + E
σ,b

[‖xC‖22] +
1

R∗n11
‖x∗‖22. (5.13)

(5.14)

Recall that by the definition of µ2 = ξ2/k,

‖x‖22/(R2B) +
1

R∗n11
‖x∗‖22 ≤ ‖x‖22/(RB) +

1

BR∗n10
‖x∗‖22 ≤ αµ2.

Furthermore, recall that by Lemma 5.3.3, (1) any given element belongs to C with probability
O(1/B). Since the energy of an element in Lj′ is bounded above by γ−(j′+1)µ2 by definition of Lj′ ,
we get that

E
σ,b

[‖xC‖22|C ∩ S+ = {}] ≤ αµ2
∑

j′<j−1

γ−(j′+1)mj′(t).

Putting these two estimates together, we get that the rhs of (5.13) is bounded by

αµ2 + αµ2
∑

j′<j−1

γ−(j′+1)mj′(t),

Therefore, conditioned on C ∩ S+ = {}, we have

Pr[i not well-hashed] = Pr
σ,b

[E
a
[|G−1

oi(i)
ω−aσiuh(i) − xi|2] ≥ γ1/2|xi|2]

≤
Eσ,b,a[|G−1

oi(i)
ω−aσiuh(i) − xi|2]

γ1/2|xi|2

.
1

γ1/2−jµ2
αµ2

1 + µ2
∑

j′<j−1

γ−(j′+1)mj′(t)


= α

γj−1/2 +
∑

j′<j−1

γj−j
′−3/2mj′(t)

 .

Adding the αmj−1(1) chance that C ∩ S+ 6= {} in a union bound gives the result.

Let St denote the state of the system at time t. By Lemma 5.6.1 at each time step t we have

E[m1(t+ 1)|St] ≤ αm1(t) · (m0(t))

E[m2(t+ 1)|St] ≤ αm2(t) · (γ1/2m0(t) +m1(t) +R−20)

E[m3(t+ 1)|St] ≤ αm3(t) · (γ3/2m0(t) + γ1/2m1(t) +m2(t) +R−20)

...

E[mj(t+ 1)|St] ≤ αmj(t) · (γj−3/2m0(t) + . . .+ γ1/2mj−2(t) +mj−1(t) +R−20).

(5.15)

Note that Lemma 5.6.1 in fact yields the bound without the additive term of R−20. We analyze
the weaker recurrence (5.15) in what follows, since the additional term of R−20 will be useful later
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in section 5.7 for handling location errors. Lemma 5.6.1 does not provide any guarantees on the
evolution of m0(t). It will be convenient to assume that m0(t) is chosen arbitrarily from the range
[0, C] for a constant C > 0 and all t ≥ 1. Note that the contribution of µ2 to the rhs in Lemma 5.6.1
disappeared since it is dominated by the contribution of m0(t).

In what follows we first analyze a related deterministic process, and then show that the ran-
domized process closely follows its deterministic version with high probability.

5.6.2 Deterministic process

Let mj(1) ∈ [0, C] for a constant C > 0, and let mdet
0 (t) ∈ [0, C] be chosen arbitrarily for every t.

Further, let for each t ≥ 1 and j ∈ [1 : 1/δ]

mdet
1 (t+ 1) = αmdet

1 (t) · (mdet
0 (t))

mdet
2 (t+ 1) = αmdet

2 (t) · (γ1/2mdet
0 (t) +mdet

1 (t) +R−20)

mdet
3 (t+ 1) = αmdet

3 (t) · (γ3/2mdet
0 (t) + γ1/2mdet

1 (t) +mdet
2 (t) +R−20)

...

mdet
j (t+ 1) = αmdet

j (t) · (γj−1/2mdet
0 (t) + . . .+ γ1/2mdet

j−2(t) +mdet
j−1(t) +R−20).

(5.16)

We now analyze the evolution of solutions to (5.16):

Lemma 5.6.2. For each j = 1, . . . , 1/δ and t ≤ j one has either mdet
j (t) ≤ 2−2t or mdet

j−1(t− 1) =

O(γ1/2).
The same conclusion holds if the equations for mdet

j (t) are modified to include a R−20 additive
term to obtain

mdet
j (t+ 1) = αmdet

j (t) · (γj−1/2mdet
0 (t) + . . .+ γ1/2mdet

j−2(t) +mdet
j−1(t) +R−20).

for j = 1, . . . , 1/δ.

Proof. Induction on j and t.

Base: j = 1, t = 1 Trivial by appropriate choice of α.

Inductive step:(j, t) Suppose that mdet
j′ (t′) ≤ 2−2t

′
for all j′ < j and t′ ≤ j′. Then we have

mdet
j (t+ 1) ≤ αmdet

j (t) · (γj−1/2mdet
0 (t) + . . .+ γ1/2mdet

j−2(t) +mdet
j−1(t))

≤ αmdet
j (t) · (O(γ1/2) +mdet

j−1(t) +R−20)

≤ αmdet
j (t) · (O(γ1/2) +mdet

j−1(t)),

where we used the fact that R−20 = O(γ1/2).

Thus, if t is the first index such that mdet
j−1(t) = O(γ1/2), we are done since mdet

j−1(t) is non-

increasing in t; Otherwise by the inductive hypothesis mdet
j (t) ≤ 2−2t , so

mdet
j (t+ 1) ≤ αmdet

j (t) · (γj−1/2mdet
0 (t) + . . .+ γ1/2mdet

j−2(t) +mdet
j−1(t))

≤ αmdet
j (t) · (O(γ1/2) +mdet

j−1(t))

≤ mdet
j (t) · 2−2t ≤ 2−2t+1
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as long as α is smaller than an appropriate constant.

Thus, we obtain

Lemma 5.6.3. One has for all j ≥ 1/(4δ) and any t ≥ c log logR

mdet
j (t) ≤ R−10,

where c > 0 is a sufficiently large constant.

Proof. We use Lemma 5.6.2. First note that for t ≥ 1/(4δ) ≥ 10 log2 log2R one has 2−2t <

2−210 log2 log2 R < 2− log10
2 R < R−10. Thus, if the first case in Lemma 5.6.2 holds for mj(t), j = t =

(1/(2δ)), we are done. Otherwise if the second case holds, we have

mdet
j (t+ 1) ≤ αmdet

j (t) · (γj−1/2mdet
0 (t) + . . .+ γ1/2mdet

j−2(t) +mdet
j−1(t))

≤ αmdet
j (t) · (O(γ1/2) +mdet

j−1(t)) = αmdet
j (t) · (O(γ1/2) +mdet

j−1(t)),

and thenmdet
j (t+t′) = γO(t′) = RO(t′/ log2 log2R), and hencemdet

j (t+t′) ≤ R−10 for t′ = O(log2 log2R).

We have proved

Lemma 5.6.4. Let γ = R−δ for some parameters R > 1 and δ = Θ(1/ log logR). Let m`(t) ∈ [0, C]
be defined for some constant C, integer ` ∈ [0, 1/δ − 1], and integer t > 0. Suppose it satisfies

m`+1(t+ 1) ≤ αm`+1(t)

(
m`(t) +

∑̀
i=1

γi−1/2m`−i(t) +R−20

)
for ` ≥ 0.

for some sufficiently small constant α. Then there exists a universal constant c such that for all
t > c log logR and ` ≥ 1/(4δ),

m`(t) ≤ R−10.

5.6.3 Bound in expectation

In this section we show similar convergence if the decay is only in expectation, and using a contin-
uous version of the recurrence.

For all η ≥ 0, define the function fη : Cn → [0,∞) by

fη(x) =
1

k
|{i : |xi|2 ≥ η}|

to be roughly the “fraction” of heavy hitters that remain above η.

Lemma 5.6.5. Let k, R, µ2 be arbitrary with δ = Θ(log logR) and γ = Rδ. Consider a recursion
x→ x′ of vectors x ∈ Cn that is repeated N = Θ(log logR) times as x0 → x1 → · · · → xN , and for
all ` ≥ 0 and all inputs x satisfies

E[fη(x
′)] . αfη(x)

(
R−20 +

µ2

γη
+

1

γη

∫ γη

0
ft(x)dt

)
(5.17)
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for some sufficiently small parameter α. Suppose that ‖x0‖22 . Rkµ2 and we know for all i ∈ [0, N ]
that f0(xi) . 1. Then

‖xN‖22 .
√
Rkµ2

with probability 1 − O(αN2). Furthermore, with the same probability we also have for all i ≤ N
that

‖xi‖22 . Rkµ2

fµ2/γ(xi) . 1/4i.

Proof. For simplicity of notation, we will prove the result about xN+1 rather than xN ; adjusting
N gives the lemma statement.

The only properties of f that we use are (5.17), fa(x) ≥ fb(x) for a ≤ b, and that

‖x‖22 = k

∫ ∞
0

fη(x)dη.

The desired claims are made more difficult by increasing the fη(x). Since we know that fη(x) ≤
f0(x) ≤ C for some constant C, we may set

fη(x) = C for η < µ2/γ

for all x without loss of generality.

Then the µ2 term in (5.17) may be absorbed by the integral, giving for each x→ x′ that:

for any η ≥ µ2/γ, E[fη(x
′)] . αfη(x)

(
R−20 +

1

γη

∫ γη

0
ft(x)dt

)
(5.18)

. αfη(x) (5.19)

where the last step uses that ft(x) ≤ C . 1.

For i ≥ 1 we have
E[fµ2/γ(xi)] ≤ (O(α))ifµ2/γ(x0) . α/4i.

for sufficiently small α, so by Markov’s inequality and a union bound, with 1−O(αN) probability
we have fµ2/γ(xi) ≤ 1/4i for all i ≤ N + 1. This gives the last claim in the lemma statement.

Part 1:. We know prove that ‖xi‖22 . Rkµ2 for all i. We have that

1

k
‖x′‖22 =

∫ ∞
0

fη(x
′)dη . µ2/γ +

∫ ∞
µ2/γ

fη(x
′)dη

and by (5.19),

E[

∫ ∞
µ2/γ

fη(x
′)dη] =

∫ ∞
µ2/γ

E[fη(x
′)]dη

. α

∫ ∞
µ2/γ

fη(x)dη

≤ α‖x‖22/k.
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Hence with probability 1−O(αN2), in all N stages this is at most ‖x‖22/(Nk) and we have

1

k
‖x′‖22 . µ2/γ + ‖x‖22/(Nk).

Hence for all i ≤ N ,

‖xi‖22 . kµ2/γ + ‖x0‖22 . Rkµ2. (5.20)

Part 2:. We now prove that

fR1/4µ2(xN ) . R−10 (5.21)

with the desired probability.

Define the functions m` : Cn → [0, C] for integer ` by

m0(x) = f0(x)

m`(x) = fγ−2`µ2(x) for ` > 0

We will show that they satisfy the recurrence in Lemma 5.6.4 with γ2 replacing γ. By (5.18), for
` ≥ 1 we have

E[m`(x)] . αm`(x)

(
R−20 +

γ2`−1

µ2

∫ γ1−2`µ2

0
ft(x)dt

)

and we know that∫ γ1−2`µ2

0
ft(x)dt ≤ Cµ2/γ2 +

`−2∑
i=1

∫ µ2γ−2i−2

µ2γ−2i

ft(x)dt+

∫ µ2γ1−2`

µ2γ2−2`

ft(x)dt

≤ Cµ2/γ2 +
`−2∑
i=1

µ2γ−2i−2mi(x) + µ2γ1−2`m`−1(x)

= µ2γ1−2`m`−1(x) +
`−2∑
i=0

γ−2i−2µ2mi(x)

so

E[m`(x)] . αm`(x)(R−20 +m`−1(x) +

`−2∑
i=0

γ2`−2i−3mi(x))

= αm`(x)(R−20 +m`−1(x) +
∑̀
i=2

(γ2)i−3/2m`−i(x))

for ` ≥ 1. But for the expectation, this is precisely the recurrence of Lemma 5.6.4 after substituting
γ2 for γ. Since Lemma 5.6.4 only considers N/δ . N2 different ` and xi, by Markov’s inequality the
recurrence will hold in all instances for a sufficiently small constant α′ with probability 1−O(αN2).
Assume this happens. Since Lemma 5.6.4 is applied with γ → γ2, δ → δ/2, this implies

m1/8δ(x
N ) . R−10.
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This gives (5.21), because

fR1/4µ2(xN ) = fγ2·1/(8δ)µ2(xN ) = m1/8δ(x
N ) . R−10.

Part 3:. We now prove that ‖xN+1‖22 .
√
Rkµ2 with 1 − O(α) probability conditioned on the

above.
We have

1

k
‖xN+1‖22 =

∫ ∞
0

fη(x
N+1)dη . R1/4µ2 +

∫ ∞
R1/4µ2

fη(x
N+1)dη

Define V to be the latter term. We have by (5.18) and (5.21) that

E[V ] =

∫ ∞
R1/4µ2

E[fη(x
N+1)]dη

.
∫ ∞
R1/4µ2

αfη(x
N )(R−20 +

1

γη

∫ γη

0
ft(x

N )dt)dη

=

∫ ∞
R1/4µ2

αfη(x
N )(R−20 +

1

γη
(

∫ R1/4µ2

0
ft(x

N )dt+

∫ γη

R1/4µ2
ft(x

N )dt))dη

.
∫ ∞
R1/4µ2

αfη(x
N )(R−20 +

1

γη
(R1/4µ2 + γηR−10))dη

. αR−10‖xN‖22/k +

∫ ∞
R1/4µ2

αfη(x
N )
R1/4µ2

γη
dη

In the latter term, for fixed
∫∞

0 fη(x
N )dη = ‖xN‖22/k this is maximized when the mass of fη is

pushed towards smaller η. Hence∫ ∞
R1/4µ2

αfη(x
N )
R1/4µ2

γη
dη ≤

∫ R1/4µ2+‖xN‖22/k

R1/4µ2
α · C · R

1/4µ2

γη
dη

= CαR1/4µ2γ−1 log(1 +
‖xN‖22/k
R1/4µ2

)

≤ CαR1/4+δµ2 logR

. α
√
Rµ2.

by (5.20). But then E[V ] . α
√
Rµ2, so with 1−O(α) probability V .

√
Rµ2 and

‖xN+1‖22 .
√
Rkµ2

as desired.

5.7 Reducing SNR: general analysis

Recall our goal:

Lemma 5.7.11. For x∗, χ ∈ Cn define x = x∗ − χ and

ξ2 = Err2
k(x) +

‖x‖22
R

+
‖x∗‖22
R∗n10

.
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Suppose ‖χ‖0 ≤ k. Then ReduceSNR(x̂∗, χ, k,R, p) returns χ′ such that

‖x− χ′‖22 .
√
Rξ2

with probability 1−p, using O( 1
p2
k log(Rn/k)(log log(Rn/k))c) measurements and a log(Rn) factor

more time.

We will show that each inner loop of ReduceSNR satisfies some nice properties (similar to
those of Lemma 5.6.4) that cause the residual to reduce from signal-to-noise ratio R to

√
R. As in

ReduceSNR and 5.2.2, we define

• B = k/α to be the size of each hash table, where α = O(1/ log logc n)

• T = O(1) to be the number of hashings done in each EstimateValues

• ξ2 = Err2
k(x
∗ − χ) +

‖x∗−χ‖22
R + ‖x∗‖22/(R∗n10).

• µ2 = ξ2/k ≥ 1
k (Err2

k(x
∗ − χ) + ‖x∗ − χ‖22/R) to be the “noise level.”

• δ = 1/(40 log2 log2R).

• γ = R−δ to be the “contrast” our LocateSignal requires.

In round t of the inner loop, we define the following variables:

• χ(t) ∈ Cn: the estimate of x∗ recovered so far.

• x = x∗ − χ(t) ∈ Cn: The vector we want to recover.

• k′ = kt = Θ(k4−t): The number of coordinates to update this round.

• L ⊂ [n]: Indices located by LocateSignal (with |L| ≤ B)

• x̃(t) ∈ Cn for t ∈ T : The estimations of x in each inner loop of EstimateValues.

• x̃ ∈ Cn: x̃i = mediant x̃
(t)
i is the estimation of x that would result from EstimateValues

(although the algorithm only computes x̃L).

• S ⊆ L contains the largest k′/4 coordinates of xL.

• L′ ⊆ L: The indices of the largest k′ coordinates of x̃L

In the algorithm ReduceSNR, the inner loop replaces x with x − x̃L′ . This is then repeated
N = O(log logR) times. We say that this is a “recurrence” x → x − x̃L′ , and will prove that the
final result xN has ‖xN‖22 .

√
Rξ2.

We will split our analysis of ReduceSNR into stages, where the earlier stages analyze the
algorithm with the inner loop giving a simpler recurrence. In subsequent sections, we will consider
the following different recurrences:

1. x→ x− xS

2. x→ x− x̃S

3. x→ x− xL′

4. x→ x− x̃L′

and show that each would reduce the noise level after O(log logR) repetitions.
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Figure 5-1: A representation of a splitting of x. In each column, |xi|2 ≤ ‖zi‖22 + ν2
i .

5.7.1 Splittings and admissibility

We introduce the notion of splittings. These allow us to show that the error introduced by the
estimation phase is of the same order as the error from coordinates that are not well hashed. Since
that level of error is tolerable according to Section 5.6, we get that the total error is also tolerable.

Definition 5.7.1. For x ∈ Cn, (z, ν) is a splitting of x if, for all i ∈ [n], zi is a vector and νi ∈ R
with

‖zi‖22 + ν2
i ≥ |xi|2.

Analogously to the previous section, we can measure the number of elements of z above any
value η ≥ 0:

fη(z) =
1

k
|{(i, j) : |zij |2 ≥ η}|

We will want to deal with “nice” splittings that satisfy additional properties, as described below.

Definition 5.7.2. We say (z, ν) is a concise splitting of x if (z, ν) is a splitting of x and also

‖zi‖22 + ν2
i = |xi|2 for all i

f0(z) . 1

‖ν‖22 . kµ2

fµ2/γ(z) ≤ k′/(4k)∑
i

‖zi‖22 . R2kµ2

For various recurrences x → x′ and any concise splitting (z, ν) of x, we would like to find
methods of assigning splittings (z′, ν ′) to x′ that satisfy some nice properties. In particular, we will
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want decay as in Lemma 5.6.5:

E[fη(z
′)] . αfη(z)

(
R−20 +

µ2

γη
+

1

γη

∫ γη

0
ft(z)dt

)
(D)

and we will want relatively slow growth in the size of the splitting:

E[max

(
0, (
∑
i

‖(z′)i‖0)− (
∑
i

‖zi‖0)

)
] .
√
αk′k

E[max

(
0,
∑
i

(ν ′i)
2 −

∑
i

ν2
i .

)
] .
√
αk′kµ2

(G)

For some recurrences, we will get the stronger condition:

E[
∑
i

‖(z′)i‖0] .
√
αk′k

E[
∑
i

(ν ′i)
2] .

√
αk′kµ2.

(G’)

Definition 5.7.3. A recurrence x→ x′ is

• admissible if for any concise splitting (z, ν) of x, we can assign splittings (z′, ν ′) to x′ that
satisfy (D) and (G).

• fully admissible if (z′, ν ′) can also satisfy (G’).

Note that we require the input (z, ν) to be a concise splitting, but the result (z′, ν ′) may not be
concise.

Analyzing repeated applications of (D) gives the following lemma:

Lemma 5.7.4. Suppose x → x′ is admissible. Then consider r = log logR repetitions of the
recurrence, i.e. x0 → x1 → · · · → xr, where the jth round is run with k′ = kj = k/4j and x0 has a
concise splitting and ‖x0‖22 . Rkµ2. Then for any parameter p, as long as α = Θ(p2/(log logR)2)
is sufficiently small, we get

‖xr‖22 .
√
Rkµ2

with 1− p probability.

Proof. Because x→ x′ is admissible, there is a corresponding recurrence

(z, ν)→ (z′, ν ′)

of splittings of x and x′ that satisfies (D) and (G) whenever (z, ν) is concise. For this analysis, we
will suppose that it satisfies (D) and (G) unconditionally, and bound the probability that (z, ν) is
ever not concise.

The conditions (D) and (G) are only made more true by decreasing z′ and ν ′ in absolute value,
so we may also assume the (z′, ν ′) resulting from the recurrence satisfies the first requirement of
concise splittings,

‖(z′)i‖22 + (ν ′i)
2 = |xi|2.
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At each stage, with probability 1−O(
√
α) we have by Markov’s inequality and a union bound

that

max

(
0, (
∑
i

‖(z′)i‖0)− (
∑
i

‖zi‖0)

)
≤
√
k′k

max

(
0,
∑
i

(ν ′i)
2 −

∑
i

ν2
i .

)
≤
√
k′kµ2

(5.22)

Hence with 1 − O((log logR)
√
α) > 1 − p/2 probability, equation set (5.22) holds for all r stages.

Assume this happens.

Then at any stage j, the resulting (z′, ν ′) has f0(z′) = 1
k

∑
i‖(z′)i‖0 ≤

1
k (k+

∑
t≤j
√
ktk) ≤ 3 and

‖ν ′‖22 ≤ kµ2 +
∑

t≤j
√
ktkµ

2 ≤ 3kµ2. Therefore the second and third requirements for conciseness
are satisfied in every stage.

Now, we apply Lemma 5.6.5 to observe that with 1 − O(αN2) > 1 − p/2 probability, the
remaining two requirements for conciseness are satisfied in all stages and the final splitting (z, ν)
of xr satisfies ∑

i

‖zi‖22 .
√
Rkµ2.

Therefore with probability 1−p, our supposition of conciseness is correct in all stages and the final
xr satisfies

‖xr‖22 ≤
∑
i

‖zi‖22 + ν2
i . (

√
R+ 3)kµ2 .

√
Rkµ2

which is our result.

Given that admissibility is a sufficient condition, we construct tools to prove that recurrences
are admissible.

Lemma 5.7.5. If x → x′ is admissible, x → x# is fully admissible, and x′
supp(x#)

is identically

zero then x→ x′ + x# is admissible.

Proof. For any splitting (z, ν) of x, we have splittings (z′, ν ′) and (z#, ν#) of x′ and x#. We would
like to combine them for a splitting of x′ + x#.

Let A = supp(x#). For i /∈ A, we use ((z′)i, ν ′i). For i ∈ A, we use ((z#)i, ν#
i ). This is a valid

splitting of x′ + x#.

By linearity it satisfies (D) and (G) with a minor loss in the constants.

Lemma 5.7.6. If x→ x′ and x→ x# are both fully admissible, then x→ x′+x# is fully admissible.

Proof. For any splitting (z, ν) of x, we have splittings (z′, ν ′) and (z#, ν#) of x′ and x#. We would
like to combine them for a splitting of x′ + x#.

For each coordinate i, let u = (z′)i and v = (z#)i, and a = |x′i + x#
i |. We will find a vector w

and scalar g such that

‖w‖22 + g2 ≥ a2

‖w‖0 . ‖u‖0 + ‖v‖0
g2 . (ν ′i)

2 + (ν#
i )2

|{i | wi ≥ η}| . |{i | ui ≥ η}|+ |{i | vi ≥ η}|.
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for all thresholds η. This will only lose a constant factor in (G’) and (D). In particular, we set w

to be the concatenation of two copies of u and two copies of v, and g2 = 2(ν ′i)
2 + 2(ν#

i )2. Then

‖w‖22 + g2 = 2(‖u‖22 + (ν ′i)
2) + 2(‖v‖22 + (ν#

i )2) ≥ 2|x′i|2 + 2|x#
i |

2 ≥ a2,

so (w, g) is a valid splitting for each coordinate, giving us that x′ + x# is fully admissible.

5.7.2 Recurrence x→ x− xS
Lemma 5.7.7. Let S contain the largest k′/4 coordinates of L. Then x→ x− xS is admissible.

Proof. Consider any concise splitting (z, ν) of x. Let S′ = {i ∈ L : ‖zi‖2∞ ≥ µ2γ−1}.
We have |S′| ≤ kfµ2/γ(z) ≤ k′/4 because (z, ν) is concise. Since x− xS′ can be permuted to be

coordinate-wise dominated by x− xS , it suffices to split x− xS′ .
For i ∈ S′, we set (z′)i = {} and ν ′i = 0; for i /∈ S′, we set ((z′)i, ν ′i) = (zi, νi). We must only

show (D) holds, because (G) is trivial (the growth is zero). That is, we must show that if |zij |2 ≥ η
then

Pr[i /∈ S′] . α

(
R−20 +

µ2

γη
+

1

γη

∫ γη

0
ft(x)dt

)
=: M. (5.23)

Let M denote the right hand side of (5.23). For such an i, |xi|2 ≥ |zij |2 ≥ µ2γ−1, and

Pr[i /∈ S′] = Pr[i /∈ L] ≤ Pr[i not well-hashed] + Pr[i /∈ L|i well-hashed]

Define H = {i : ‖zi‖2∞ ≥ γη}. Then from Lemma 5.3.3 we get a subset C ⊂ [n] and variable w so
that i is well-hashed if

w2 + ‖xC‖22 ≤ cγ1/2|xi|2

for some constant c, which is implied by w2 + ‖xC‖22 ≤ γη. We have that

Pr[H ∩ C 6= {}] . |H|/B ≤ kfγη(z)/B = αfγη(z)

and that

E[w2 + ‖xC\H‖22] .
‖x‖22
R2B

+
‖x∗‖22
R∗n11

+ ‖xH‖
2
2/B

. αµ2 + ‖xH‖
2
2/B

by the definition of µ2. We know that

‖xH‖
2
2 ≤

∑
(i,j):|zij |2≤γη

|zij |2 = k

∫ γη

0
(ft(z)− fγη(z))dt.

Therefore by Markov’s inequality,

Pr[i not well-hashed] ≤ Pr[C ∩H 6= {}] + Pr[w2 + ‖xC\H‖22 ≥ γη]

. αfγη(z) +
1

γη
(αµ2 + α

∫ γη

0
(ft(z)− fγη(z))dt)

=
1

γη
(αµ2 + α

∫ γη

0
ft(z)dt) < M.
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Next, by Lemma 5.10.2, since we call LocateSignal with failure probability αR−20, we have

Pr[i /∈ L|i well-hashed] . αR−20 < M.

giving Pr[i /∈ S′] .M for each i, as desired.

5.7.3 Recurrence x→ x− x̃S
Lemma 5.7.8. Let L be independent of the estimation phase with |L| ≤ B, and A ⊆ L be possibly
dependent on the estimation phase with |A| . k′. Then x→ xA − x̃A is fully admissible.

Proof. Let (z, ν) be a concise splitting of x. For i ∈ L, we have

|x̃i − xi|2 = |median
t

x̃
(t)
i − xi|

2 ≤ 2 median
t
|x̃(t)
i − xi|

2 (5.24)

because we take the median in real and imaginary components separately. We have by x̃
(t)
i =

G−1
oi(i)

ω−aσiuh(i) and Lemma 5.3.3 that

E
a
[|x̃(t)

i − xi|
2] . w2

i + ‖xCti ‖
2
2

for some C with Pr[j ∈ C] . 1/B for all j, and some w with

E[w2
i ] .

‖x‖22
R2B

+ ‖x∗‖22/(R∗n11) . αµ2, (5.25)

where the last step uses that ‖x‖22 . R2kµ2 because a concise splitting (z, ν) of x exists. Then

E
a
[|x̃(t)

i − xi|
2] . w2

i +
∑
j∈Cti

‖zj‖22 + ν2
j .

Define

(yti)
2 := w2

i +
∑
j∈Cti

‖zj‖22 + ν2
j

τ ti := d2|x̃(t)
i − xi|

2/(yti)
2e

so

E
a
[τ ti ] . 1 (5.26)

even after conditioning on the hash function (σ, b).
For any t ∈ [T ] and i ∈ L, let U (t),i be the concatenation of τ ti copies of zj for each j ∈ Cti and

ν
(t)
i =

√
τ ti ((w

t
i)

2 +
∑

j∈Cti
ν2
j ). Then we have that

‖U (t),i‖22 + (ν
(t)
i )2 ≥ τ ti (yti)2 ≥ 2|x̃(t)

i − xi|
2

and so by (5.24), for at least 1 + bT/2c different t ∈ [T ] we have

|x̃i − xi| ≤ ‖U (t),i‖22 + (ν
(t)
i )2. (5.27)
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For each i ∈ A, our (z̃i, ν̃i) will equal (U (t∗),i, ν
(t∗)
i ) for a t∗ satisfying (5.27) as well as

‖z̃i‖∞ ≤ quant/
t
‖U (t),i‖∞

‖z̃i‖0 ≤ quant/
t
‖U (t),i‖0

ν̃2
i ≤ quant/

t
(ν

(t)
i )2

(5.28)

where quant/ is the “quantile” defined in Section 5.9.1. This is always possible, because the
number of t excluded by these additional conditions is at most 3bT/6c ≤ bT/2c. Choosing such a
t∗ for each i gives us a splitting (z̃, ν̃) of xA − x̃A.

To show (D), for any i ∈ L and threshold η define

m = |{(`, j) : |z`j | ≥ η}|
m̃ = |{(`, j) : |z̃`j | ≥ η}|

mi
t = |{j : U

(t),i
j ≥ η}|

We bound E[mi
t∗ ] using Lemma 5.9.3. Since Pr[j ∈ Cti ] . 1/B and E[τ ti ] . 1 after conditioning on

(σ, b) and so fixing Cti , for fixed i and t we have

E[mi
t] = E[(|{(`, j) : |z`j | ≥ η, ` ∈ Cti}|)τ ti ]

= E[(|{(`, j) : |z`j | ≥ η, ` ∈ Cti}|)E[τ ti | (σ, b)]]
. E[|{(`, j) : |z`j | ≥ η, ` ∈ Cti}|]

=
∑

(`,j):|z`j |≥η

Pr[` ∈ Cti ]

.
∑

(`,j):|z`j |≥η

1/B

= m/B

We also have mi
t∗ = 0 if quant/tm

i
t = 0 and mi

t∗ ≤
∑

tm
i
t always; hence for each fixed index

i ∈ L, by Lemma 5.9.3
E[mi

t∗ ] . (m/B)T/6.

But then for T ≥ 12 we have

E[m̃] = E[
∑
i∈A

mi
t∗ ] ≤

∑
i∈L

E[mi
t∗ ] . B(m/B)2 = m2/B

E[m̃/k] . α(m/k)2

which says that

E[fη(z
′)] . α(fη(z))

2 ≤ αfη(
1

γη

∫ γη

0
ft(z)dt)

for each η, implying (D).

We now show (G’). For any nonnegative random variable Xi,t (which will be either ‖U (t),i‖0
or (ν

(t)
i )2) and Yi ≤ quant/tXi,t (which will be ‖z̃i‖0 or ν̃2

i ), for sufficiently large constant T we
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have by Lemma 5.9.4 with δ = 1/2 that

E[ max
|A′|.k′

∑
i∈A′

Yi] .
√
k′Bmax

i,t
E[Xi,t]

Plugging in that, for each fixed i, by (5.26) and conciseness we have

E
σ,b,a

[‖U (t),i‖0] = E
σ,b,a

∑
j∈Cti

‖zj‖0τ ti

 ≤ E
σ,b

∑
j∈Cti

‖zj‖0 max
σ,b

E[τ ti | (σ, b)]

 . E
σ,b

∑
j∈Cti

‖zj‖0

 . k/B = α

gives

E[ max
|A′|.k′

∑
i∈A′
‖z̃i‖0] .

√
k′Bα =

√
αk′k,

which is the first part of (G’). Similarly, plugging in

E[(ν
(t)
i )2] . (E

σ,b
[w2
i ] + ‖ν‖22/B) max

σ,b
E[τ ti |(σ, b)] . αµ2

gives

E[ max
|A′|.k′

∑
i∈A′

ν̃2
i ] .

√
k′Bαµ2 =

√
αk′kµ2,

which is the second part.
Therefore (z̃, ν̃) is a splitting of xA − x̃A that satisfies (D) and (G’), so x → xA − x̃A is fully

admissible.

5.7.4 Recurrence x→ x− x̃L′

The following lemma has a similar proof structure to Lemma 5.9.1.

Lemma 5.7.9. The recurrence x→ x− xL′ is admissible.

Proof. Recall the set S from Lemma 5.7.7, which has |S| = k′/4 ≤ |L′|/4 and for which x − xS
is admissible. Let A = L′ \ S and B = S \ L′. We have |A| ≥ 4|B|. Furthermore mini∈A |x̃i| ≥
maxi∈B |x̃i| because EstimateValues chose A over B.

By Lemma 5.7.7, x→ x− xS is admissible. Let y = (x− x̃)A + 2(x̃− x)B. Using Lemma 5.7.8,
x→ y is admissible. Hence for every splitting (z, ν) of x there are splittings (zS , νS) of x−xS that
satisfies (D) and (G) and (zAB, νAB) of y that satisfies (D) and (G’).

For i /∈ A ∪ B, we set ((z′)i, ν ′i) = ((zS)i, νSi ). For i ∈ A, we set ((z′)i, ν ′i) = ({}, 0). Finally,
we want to fill ((z′)i, ν ′i) for i ∈ B. To do this, pair up each i ∈ B with a disjoint set Pi of four
elements in A. We know that

2|x̃i| ≤ ‖x̃Pi‖22
|2xi + yi| ≤ ‖xPi + yPi‖2

2|xi| ≤ |yi|+ ‖xPi‖2 + ‖yPi‖2
4|xi|2 ≤ 3(|yi|2 + ‖xPi‖22 + ‖yPi‖22)

|xi|2 ≤ |yi|2 + ‖xPi‖22 + ‖yPi‖22 (5.29)

Set (z′)i to the concatenation of (zAB)i and, for all j ∈ Pi, (zS)j and (zAB)j . Similarly, set
(ν ′i)

2 = (νABi )2 +
∑

j∈Pi(ν
S
j )2 + (νABj )2. By (5.29), this makes (z′, ν ′) be a valid splitting of x−xL′ .
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Then each element of zS , zAB, νS , and νAB appears exactly once in (z′, ν ′); hence (z′, ν ′) satis-
fies (D) and (G) so x→ x− xL′ is admissible.

Lemma 5.7.10. The recurrence x→ x− x̃L′ is admissible.

Proof. We have
x− x̃L′ = (x− xL′) + (xL′ − x̃L′).

The first term is admissible by Lemma 5.7.9 and zero over L′. The second is fully admissible by
Lemma 5.7.8, with support inside L′. Hence x→ x− x̃L′ is admissible by Lemma 5.7.5.

Lemma 5.7.11. For x∗, χ ∈ Cn define x = x∗ − χ and

ξ2 = Err2
k(x) +

‖x‖22
R

+
‖x∗‖22
R∗n10

.

Suppose ‖χ‖0 ≤ k. Then ReduceSNR(x̂∗, χ, k,R, p) returns χ′ such that

‖x− χ′‖22 .
√
Rξ2

with probability 1−p, using O( 1
p2
k log(Rn/k)(log log(Rn/k))c) measurements and a log(Rn) factor

more time.

Proof. The following is a concise splitting (z, ν) of x = x∗−χ(0): place the largest k coordinates of
x into z, and the rest into ν. By Lemma 5.7.10, x∗ − χ(i) → x∗ − χ(i+1) is admissible. Therefore,
by Lemma 5.7.4, χN satisfies

‖x∗ − χ(N)‖22 .
√
Rξ2.

as desired for correctness.

In each of O(log logR) rounds we call LocateSignal and EstimateValues with B = k/α =
O(k(log logR)2/p2) and failure probability R−20. The sampling complexity of each LocateSignal
is

O(B log(Rn/B) log logR log log(n/B) max(1, logR(1/p))) .
1

p2
k log(Rn/B)(log log(Rn/B))4

by Lemma 5.10.2. The complexity of EstimateValues is bounded by O(B logR) = O(k logR)
since we perform O(1) bucketings using a filter with contrast R. The overall sampling complexity
over O(log logR) rounds is hence bounded by

O

(
1

p2
k log(Rn/B)(log log(Rn/B))c

)
for a constant c > 0.

5.8 Final Result

Repeating Lemma 5.7.11 log logR times and applying Lemma 5.5.1 gives the result:

Theorem 5.8.1. Let x ∈ Cn satisfy ‖x‖22 ≤ RErr2
k(x). Then SparseFFT(x̂, k, R, p) returns a χ′

such that
‖x− χ′‖22 ≤ (1 + ε) Err2

k(x) + ‖x‖22/(R∗n10)
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with probability 1 − p and using O( 1
p2ε
k log(Rn/k)(log log(Rn/k))c log(1/ε)) measurements and a

log(Rn) factor more time.

Proof. During this proof, we define x∗ := x.

The algorithm performs r = O(log logR) rounds of ReduceSNR. We may assume that all
the calls succeed, as happens with 1 − p/2 probability. We will show that at each stage i of the
algorithm,

‖x∗ − χ(i)‖22 ≤ Riξ2

for ξ2 = Err2
k(x
∗) + ‖x∗‖22/(R∗n10). This is true by assumption at i = 0, and by Lemma 5.7.11, in

each iteration ReduceSNR causes

‖x∗ − χ(i) − χ′‖22 ≤ c
√
Ri(Err2

3k(x
∗ − χ(i)) + ξ2)

≤ c
√
Ri(Err2

k(x
∗) + ξ2)

≤ 2c
√
Riξ

2

for some constant c. By Lemma 5.9.1,

‖x∗ − Sparsify(χ(i) + χ′, 2k)‖22 ≤ Err2
k(x
∗) + 4‖x∗ − χ(i) − χ′‖22

≤ (1 + 8c
√
Ri)ξ

2

≤ Ri+1ξ
2

for sufficient constant in the recurrence for R. This proves the induction.

For some r = O(log logR), we have Rr = O(1) and so

‖x∗ − χ(r)‖22 . ξ2.

Then Lemma 5.5.1 shows that the χ′ given by RecoverAtConstantSNR satisfies

‖x∗ − χ(r) − χ′‖22 ≤ Err2
3k(x

∗ − χ(r)) + ε‖x− χ(r)‖22 + ‖x∗‖22/n10

≤ Err2
k(x
∗) +O(εξ2)

≤ (1 +O(ε)) Err2
k(x
∗) + ‖x∗‖22/n9

which is the desired bound after rescaling ε.

5.9 Utility Lemmas

This section proves a few standalone technical lemmas.

Lemma 5.9.1. Let x, z ∈ Cn and k ≤ n. Let S contain the largest k terms of x and T contain the
largest 2k terms of z. Then

‖x− zT ‖22 ≤ ‖x− xS‖22 + 4‖(x− z)S∪T ‖22.

Proof. Note that each term in S ∪ T and T appears exactly once on each side. Hence it suffices to
show that

‖xS\T ‖22 ≤ ‖xT\S‖22 + 4‖(x− z)S\T ‖22 + 3‖(x− z)T ‖22.
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Consider any i ∈ S \ T and j ∈ T \ S. Then |zj | ≥ |zi| by the choice of T , so by the triangle
inequality

|xi| ≤ |xi − zi|+ |zi|
≤ |xi − zi|+ |zj |
≤ |xi − zi|+ |xj − zj |+ |xj |

and so by Cauchy-Schwarz inequality

|xi|2 ≤ 2|xj |2 + 4|xi − zi|2 + 4|xj − zj |2. (5.30)

Since |T | = 2|S|, we can match up each element i ∈ S \T with a distinct pair Pi of two elements
of T \ S. Summing up (5.30) for j ∈ Pi and dividing by two,

|xi|2 ≤ ‖xPi‖22 + 4|xi − zi|2 + 2‖(x− z)Pi‖22.

Summing up over i ∈ S \ T , we have

‖xS\T ‖22 ≤ ‖xT\S‖22 + 4‖(x− z)S\T ‖22 + 2‖(x− z)T\S‖22

which gives the desired result.

5.9.1 Lemmas on quantiles

This section proves some elementary lemmas on quantiles of random variables, which are a gener-
alization of the median.

Definition 5.9.2. For f ≥ 0, we define the 1− f quantile quantf of any list x1, . . . , xn ∈ R to be
the d(1− f)neth smallest element in the list.

Then median = quant/ for lists of odd length.

Lemma 5.9.3. Let f > 0 and T be constants. Let X1, . . . , XT be independent nonnegative integer
random variables with E[Xi] ≤ ε < 1 for all i. Let Y satisfy

Y ≤
{

0 if quantf Xi = 0∑
Xi otherwise

Then E[Y ] . εfT .

Proof. For each i, we have Pr[Xi = 0] ≥ 1 − ε. Let Bi be a {0, 1}-valued random variable with
Pr[Bi = 1] = ε and jointly distributed with Xi such that Xi = 0 whenever Bi = 0. Then let X ′i be
a random variable distributed according to (Xi | Bi = 1) independent of Bi, so that Xi = BiX

′
i.

Then E[X ′i] = E[Xi]/E[Bi] ≤ 1, and we have

Y ≤
{

0 if quantf Bi = 0∑
X ′i otherwise.
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Therefore

E[Y ] ≤ E[
∑

X ′i] Pr[quantf

i
Bi 6= 0]

≤ T Pr[
∑

Bi ≥ 1 + bfT c]

≤ T
(

T

1 + bfT c

)
εfT . εfT .

Lemma 5.9.4. Let f, δ > 0 be constants and T be a sufficiently large constant (depending on f
and δ). Let X1, . . . , XT ∈ Rn be independent random variables with nonnegative coordinates and
E[Xt

i ] ≤ µ independent of i and t. Then for any k ≤ n,

E[max
|A|=k

∑
i∈A

quantf
t

Xt
i ] . kµ(n/k)δ

Proof. Let Yi = quantf tX
t
i . We have for any threshold η that

Pr[Yi ≥ η] = Pr[|{t : Xt
i ≥ η}| ≥ 1 + bfT c]

≤
(

T

1 + bfT c

)
(µ/η)fT

. (µ/η)fT .

Therefore E[|{i : Yi ≥ η}|] ≤ n(µ/η)fT . But then

E[max
|A|=k

∑
i∈A

Yi] = E
∫ ∞

0
min(k, |{i : Yi ≥ η}|)dη

≤
∫ ∞

0
min(k, n(µ/η)fT )dη

= kµ(n/k)1/fT

∫ ∞
0

min(1, u−fT )du

= kµ(n/k)1/fT

(
1 +

1

fT − 1

)
.

If T > 1/(δf) and T > 2/f this gives the result.

Lemma 5.9.5. For any x1, . . . , xn ∈ C with n odd we have

E[|median
t

xt|2] ≤ 4 max
t

E[|xt|2]

where the median is taken separately in the real and imaginary axes.

Proof. We will show that if xi ∈ R then

E[(median
t

xt)
2] ≤ 2 max

t
E[x2

t ].

applying this separately to the real and imaginary axes gives the result.
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Let S be jointly distributed with x as a set of (n + 1)/2 coordinates i with x2
i ≥ mediant x

2
t .

This must exist by choosing coordinates less than or greater than xi. Then

E[(median
t

xt)
2] ≤ mean

i∈S
x2
i ≤

2

n+ 1

∑
i

x2
i ≤ 2 mean

i∈[n]
x2
i ≤ 2 max

i
x2
i .

5.10 1-sparse recovery

1: procedure LocateSignal(x̂, χ,B, σ, b, R, p)
2: n← Dim(x̂). . Dimension of vector
3: γ ← R1/40 log2 log2R

4: c← O(log log(n/B) log(1/p)).
5: T ← Locate1SparseSamples(n, γ, c, n/B).
6: ua[B] ← HashToBins(x̂, χ, Pσ,a,b, B,R) for a ∈ T .

7: v̂ja := uaj for a ∈ T and j ∈ [B].
8: L← {}
9: for j ∈ [B] do

10: L← L ∪ {σ−1(Locate1Sparse(v̂j , T, γ, jn/B, n/B))}
11: end for
12: return L
13: end procedure
14: procedure Locate1SparseSamples(n, γ, c, w)
15: δ ← γ1/10

16: tmax ← O(log1/δ w).
17: gi,t ∈ [n] uniformly for i ∈ [c], t ∈ [tmax].
18: ft ∈ [δ1−t/8, δ1−t/4] an arbitrary integer, for all t ∈ [tmax].
19: return T = ∪t∈[tmax],i∈[c]{gi,t, gi,t + ft} for all i, t.
20: end procedure
21: procedure Locate1Sparse(v̂T , T , γ, l, w)
22: δ ← γ1/10

23: wt defined to be wδt−1.
24: ft defined to be any integer in [(n/wt)/8, (n/wt)/4].
25: Expects T = ∪t∈[tmax],i∈[c]{(gi,t, gi,t + ft)} for tmax = O(log1/γ w)

26: Define m
(i)
t = φ(v̂gi,t+ft/v̂gi,t). . Estimates of fti

∗2π/n

27: Define mt = medianim
(i)
t .

28: l1 ← l, w1 ← w. . Location in l1 − w1/2, l1 + w1/2
29: for t = 1, . . . , tmax do
30: ot ← mtn/(2π)−(ftlt mod n)

ft
. Within [−n/2ft, n/2ft]

31: lt+1 ← lt + ot
32: end for
33: return round(ltmax+1).
34: end procedure

Algorithm 5.10.1: Fourier 1-sparse recovery
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We first show that Locate1Sparse solves the 1-sparse recovery problem. This result is indepen-
dent of the rest of the machinery in this chapter: if v has a single component with 1− γ1/2 of the
mass, we find it with Õ(log1/γ n) samples of v̂.

Lemma 5.10.1. Let 1/γ, c be larger than a sufficiently large constant. Let v̂ ∈ Cn, and suppose
that there exists an i∗ ∈ [l − w/2, l + w/2] such that

γ1/2|vi∗ |2 ≥
∑
j 6=i∗
|vj |2.

Then Locate1Sparse(v̂T , T , γ, l1, l1+w1) returns i∗ with all but γΩ(c) logw probability, where the
set T is the output of Locate1SparseSamples(n, γ, c, w) and has size |T | = O(c(1 + log1/γ w)).
The time taken is O(|T |) = O(c(1 + log1/γ w)).

Proof. Note that for uniformly random g ∈ [n], by Parseval’s theorem

E[|
√
nv̂g − ωgi

∗
vi∗ |2] =

∑
j 6=i∗
|vj |2 ≤ γ1/2|vi∗ |2

Set b = γ1/20. By Markov’s inequality, with 1− b probability

|
√
nv̂g − ωgi

∗
vi∗ | ≤

√
γ1/2/b|vi∗ |

and so

‖φ(v̂g)− (
2π

n
gi∗ + φ(vi∗))‖© = ‖φ(

√
nv̂g)− φωgi

∗
vi∗‖© ≤ sin−1(

√
γ1/2/b) ≤ 2

√
γ1/2/b

where ‖a− b‖© = mini∈Z(|a− b− 2πi|) denotes the “circular distance” between a and b. Hence for
any (gi,t, gi,t + ft), we have that

m
(i)
t = φ(v̂gi,t+ft/v̂gi,t)

satisfies

‖m(i)
t − fti∗2π/n‖© ≤ 4

√
γ1/2/b (5.31)

with probability 1 − 2b as a distribution over gi,t. Because this is independent for different i, for

any t by a Chernoff bound we have that (5.31) holds for at least 3c/4 of the m
(i)
t with probability

at least

1−
(
c

c/4

)
(2b)c/4 ≥ 1− 2c(2b)c/4 = 1− (32b)c/4 = 1− γΩ(c).

If so, their median satisfies the same property2

‖mt − fti∗2π/n‖© ≤ 4
√
γ1/2/b ≤ 2πbδ. (5.32)

Since there are log1/γ1/2 w < logw different t, by a union bound (5.32) holds for all t with the
desired probability

1− γ−Ω(c) logw.

2To define a median over the circle, we need to cut the circle somewhere; we may do so at any position not within
4
√
γ1/2/b of at least c/4 of the points.
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We will show that this implies that i∗ is recovered by the algorithm.

We will have by induction that, for all t, i∗ ∈ [lt−wt/2, lt+wt/2]. This certainly holds at t = 1.
Recall that 4wt ≤ n/ft ≤ 8wt by the construction of ft.

For any t, by (5.32) we have that otft lies within δbn of (fti
∗−ftlt) (modulo n). Hence (i∗−lt) lies

within δbn/ft of ot+zn/ft for |ot| < n/(2ft) and some integer z. But since |i∗−lt| ≤ wt/2 ≤ n/(8ft)
and δbn/ft < n/(4ft), this means that z = 0 and we have that (i∗ − lt) lies within δbn/ft of ot.
Since

δbn/ft ≤ δb8wt ≤ δwt/2 ≤ wt+1/2,

i∗ lies within wt+1/2 of lt+1 = lt + ot and the inductive step holds.

In the end, therefore, i∗ lies within wtmax/2 = wδtmax−1/2 < 1/2 of l, so it is returned by the
algorithm.

We now relate Lemma 5.10.1, which guarantees 1-sparse recovery, to k-sparse recovery of well-
hashed signals.

Lemma 5.10.2. Let x be a signal, and B and R larger than sufficiently large constants. An
invocation of LocateSignal returns a list L of size B such that each well-hashed (per Def-
inition 5.3.4) i ∈ [n] is present in L with probability at least 1 − p. The sample complexity
is O(B log(Rn/B) log logR log log(n/B) max(1, logR(1/p)), and the time complexity is O(logR)
larger.

Proof. Consider any well-hashed i and j = h(i). We define the vector yj ∈ Cn by

yjσ` = x`Gπ(`)−jn/B = x`Goi(`).

Then
uaj =

∑
`

ωa`yj` =
√
nŷja,

i.e. v̂j = ŷj/
√
n, so vjσ` = x`Goi(`)/

√
n.

By the definition 5.3.4 of well-hashedness, over uniformly random a ∈ [n],

γ1/2x2
i ≥ E

a
[|G−1

oi(i)
ω−aσivja − xi|2]

If we define v−σi = v[n]\{σi}, we have after multiplying by G2
oi(i)

that

γ1/2|vjσi|
2/n = G2

oi(i)
γ1/2|xi|2 ≥ E

a
[|v̂ja − ωaσiGoi(i)xi|

2]

= E
a
[|v̂ja −

1√
n
ωaσivjσi|

2]

= E
a
[|(v̂j−σi)a|

2]

Therefore by Parseval’s inequality,

γ1/2|vjσi|
2 ≥ ‖vj−σi‖

2
2.

This is precisely the requirement of Lemma 5.10.1. Hence Locate1Sparse will return σi with all
but γΩ(c) log(n/B) probability, in which case i will be in the output set L.
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Recall that log1/γ R . log logR. Setting

c = Θ(max(1, logγ(log(n/B)/p)))

. max(1, (logR log(n/B) + logR(1/p)) log logR)

. log log(n/B) max(1, logR(1/p))

gives the desired probability 1− p. , the number of samples is

|T |B logR = cB logRmax(1, log1/γ(n/B))

. B log(Rn/B) log logR log log(n/B) max(1, logR(1/p)).

The time taken is dominated by HashToBins, which takes sample complexity times logR time.

5.11 Filter construction

Lemma 5.11.1. If G is a flat window function with B buckets and contrast R > 2, then for some
constant c, ∑

|i|>cn/2B

G2
i .

n

R2B

Proof. Let c be the constant such that Gi ≤ ( cn
|i|B )t for t = logR. Then

∑
|i|>2cn/B

G2
i ≤ 2

∞∑
i=2cn/B

(
cn

|i|B
)2 logR

≤ 4cn

B

∞∑
i=1

(
1

2i
)2 logR

=
4cn

R2B

∞∑
i=1

i−2 logR

.
n

R2B

and rescaling c gives the result.

Lemma 5.3.2. There exist flat window functions where | supp(Ĝ)| . B logR. Moreover, supp(Ĝ) ⊂
[−O(B logR), O(B logR)].

Proof. Suppose B is an odd integer; otherwise, replace B with B′ = B − 1. The properties for B′

will imply the properties for B, albeit with a worse constant in the third property.
Define F̂ to be a rectangular filter of length B, scaled so F is the Dirichlet kernel

Fi =
sin(πBi/n)

B sin(πi/n)
.

Noting that 2|x| ≤ | sin(πx)| ≤ π|x| for |x| ≤ 1/2, we have for all i that

|Fi| ≤
| sin(πBi/n)|

2Bi/n
≤ n

2B|i|
(5.33)

109



and for i ∈ [−n/2B,n/2B] that

|Fi| ≥ |
2Bi/n

Bπi/n
| = 2

π
. (5.34)

Define F̂ ′ to be F̂ convolved with itself t = Θ(logR) times for an even integer t, so ‖F̂ ′‖0 . B logR
and F ′i = F ti , and by (5.33)

0 ≤ F ′i ≤
( n

2Bi

)t
. (5.35)

Now, define G to be F ′ convolved with a length ` = 2bn/(2B)c+ 1 rectangular filter, i.e.

Gi =
∑

|j−i|≤n/(2B)

F ′j ,

so Ĝ is F̂ ′ multiplied by a scaled Dirichlet kernel. By the last equation, it follows that ‖Ĝ‖0 ≤
‖F̂ ′‖0 . B logR. We would just like to show that G/‖G‖∞ satisfies the flat window function
requirements.

Since F ′i ≥ 0 per (5.35), we have 0 ≤ Gi/‖G‖∞ ≤ 1 so G/‖G‖∞ passes the second property of
a flat window function.

For the first property of flat window functions, let a =
∑bn/(2B)c

i=0 F ′i . We have that Gi ≥ a for
|i| ≤ n/(2B) because each of those terms (or their symmetries F ′−i) appear in the summation that
forms Gi. So it suffices to show that Gi ≤ 3a for all i.

Define Sk = Z ∩ [kn/(2B), (k + 1)n/(2B)] for k ∈ Z, so |Sk| ≤ dn/(2B)e for all k. For any i,
{j : |j − i| ≤ n/(2B)} has nonzero intersection with at most 3 different Sk. Hence it suffices to
show for all k that

a ≥
∑
j∈Sk

F ′j .

To do this, we extend the definition of F ′x to all x ∈ R. By symmetry, it suffices to consider k ≥ 0.
We have that sin(πx/n) is increasing on [0, n/2], so for 0 ≤ x ≤ n/2− n/B we have

F ′x+n/B/F
′
x =

(
sin(πx/n)

sin(π(x+ n/B)/n)

)t
< 1.

Therefore, for each j ∈ Sk,

F ′j ≤ F ′j−dk/2e(n/B) = F ′|j−dk/2e(n/B)|.

Let Tk = {|j − dk/2e(n/B)| : j ∈ Sk}. By considering the even and odd cases for k, we conclude
that Tk ⊂ [0, n/(2B)] and that for some parameter θ ≥ 0 we have

Tk = {θ, θ + 1, . . . , θ + |T | − 1}.

Since F ′ is decreasing on [0, n/(2B)] we have that

∑
j∈Sk

F ′j ≤
∑
j∈Tk

F ′j =

|T |−1∑
j=0

F ′θ+j ≤
|T |−1∑
j=0

F ′j ≤
bn/(2B)c∑
j=0

F ′j = a.
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Therefore G/‖G‖∞ satisfies the first property of a flat window function.

Lastly, the third property of flat window functions. Consider i = αn/2B with α ≥ 2 (for smaller
i, Gi ≤ 1 suffices as a bound). We have by (5.35) that

Gi ≤ ` max
|j−i|≤n/2B

F ′j ≤ `(
n

2B(|i| − n/(2B))
)t = `(

1

α− 1
)t.

We also have by (5.34) that

‖G‖∞ ≥ G0 ≥ ` min
|i|≤n/(2B)

F ′i ≥ `(2/π)t.

Hence
Gi/‖G‖∞ ≤ (

π

2(α− 1)
)t = (O(1/α))t = (O(

n

B|i|
))t

which is the third property of flat window functions. Thus G/‖G‖∞ is the desired flat window
function.

For a bucketing (σ, b), each coordinate j is permuted to an index π(j) = σj − b, with nearest
multiple of (n/B) being (n/B)h(j). Define the offset of j relative to i to be oi(j) = π(j)−(n/B)h(i).

Given a bucketing (σ, b), for each bucket j ∈ [B] we define the associated “bucket vectors” v(j)

given by

v
(j)
σi := xiGπ(i)−(n/B)j .

This has the property that running the algorithm with offset a yields u ∈ RB given by

uj =
∑
i

v
(j)
i ωia = v̂(j)

a.

For any bucketing (σ, b), we say that a bucket j has noise at most µ2 if ‖v(j)‖22 ≤ µ2. We say
that an index i is hashed with noise at most µ2 if, for j = h(i), we have

‖v(j) − xiGπ(i)−(n/B)j‖22 ≤ µ2.

We show how to relate the pairwise independence property 4.2.4 to flat window functions:

Lemma 5.11.2. Let G be a flat window function with B buckets and contrast R. Then for i 6= j,
there exists a constant c such that

E[G2
oi(j)
· I[|oi(j)| > cn/B]] .

1

R2B
.

where I[a > b] is 1 when a > b and 0 otherwise.

Proof. Note that oi(j) = π(j) − (n/B)h(i) is within n/(2B) of π(j) − π(i) = σ(j − i). Let f ≥ 1
be the constant such that

Goi(j) ≤
(

f

B|oi(j)|/n

)logR

.
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Then

Goi(j) ≤ max
|a−σ(i−j)|<n/(2B)

Ga

≤ max
|a−σ(i−j)|<n/(2B)

(
f

B|a|/n

)logR

≤
∣∣∣∣ f

B|σ(i− j)|/n− 1/2

∣∣∣∣logR

as well as Goi(j) ≤ 1. Define

yb = min

(
1,

∣∣∣∣ f

B|b|/n− 1/2

∣∣∣∣logR
)
.

It suffices to show that, for any a 6= 0 and as a distribution over σ,

E[y2
σa · I[|σa| > cn/B]] .

1

R2B
.

Let D = 3fn/B . n/B. Note that, for d ≥ 1 and |b| ≥ dD > (2df + 1/2)n/B,

yb ≤
(

1

2d

)logR

=
1

R

1

Rlog d
.

Consider the “levels sets” Sl : {b | 2lD ≤ |b| < 2l+1D}, for l ≥ 0. Then by Lemma 4.2.4,

Pr[σa ∈ Sl] ≤ 4 · 2l+1D/n . 2lD/n

and

max
b∈Sl

yb ≤
1

Rl+1
.

Hence

E[y2
σa · I[|σa| ≥ D]] .

∞∑
l=0

(2lD/n)R−2l−2

. D/(R2n) . 1/(R2B)

because R2 > 2. Since D . n/B, this gives the result.

Lemma 5.11.3. HashToBins(x̂, χ, Pσ,a,b, B,R) computes u such that for any i ∈ [n],

uh(i) = ∆h(i) +
∑
j

Goi(j)(x− χ)jω
aσj

where G is the flat window function with B buckets and contrast R from Lemma 5.3.2, and ∆2
h(i) ≤

‖χ‖22/(R∗n11) is a negligible error term. It takes O(B logR) samples, and if ‖χ‖0 . B, it takes
and O(B logR log(Rn) time.

Proof. Let S = supp(Ĝ), so |S| . B logR and in fact S ⊂ [−O(B logR), O(B logR)].
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First, HashToBins computes

y′ = Ĝ · Pσ,a,bx̂− χ′ = Ĝ · Pσ,a,bx̂− χ+ Ĝ · Pσ,a,bχ̂− χ′,

for an approximation χ̂′ to χ̂. This is efficient because one can compute (Pσ,a,bx̂)S with O(|S|)
time and samples, and Pσ,a,bχ̂

′
S is easily computed from χ̂′T for T = {σ(j − b) : j ∈ S}. Since T

is an arithmetic sequence and χ is B-sparse, by Corollary 5.12.2, an approximation χ̂′ to χ̂ can be
computed in O(B logR log(Rn)) time such that

|χ̂i − χ̂′i| <
‖χ‖2
R∗n12

for all i ∈ T . Since ‖Ĝ‖1 ≤
√
n‖Ĝ‖2 =

√
n‖G‖2 ≤ n‖G‖∞ ≤ n and Ĝ is 0 outside S, this implies

that

‖Ĝ · Pσ,a,b(χ̂− χ′)‖2 ≤ ‖Ĝ‖1 max
i∈S
|(Pσ,a,b(χ̂− χ′))i| = ‖Ĝ‖1 max

i∈T
|(χ̂− χ′)i| ≤

‖χ‖2
R∗n11

. (5.36)

Define ∆ by ∆̂ = Ĝ · Pσ,a,b(χ̂− χ′). Next, HashToBins computes u ∈ CB such that for all i,

uh(i) = ŷ′h(i)n/B = ŷh(i)n/B + ∆h(i)n/B,

for y = Ĝ ·Pσ,a,bx̂− χ. This computation takes O(‖y′‖0 +B logB) . B log(Rn) time. Let F(x) = x̂
denote the Fourier transform of x. We have

uh(i) = (G ∗ F(Pσ,a,b ̂(x− χ)))h(i)n/B + ∆h(i)n/B

=
∑

π(j)∈[n]

Gh(i)n/B−π(j)F(Pσ,a,b ̂(x− χ))π(j) + ∆h(i)n/B

=
∑
i∈[n]

Goi(j)(x− χ)jω
aσj + ∆h(i)n/B

where the last step is the definition of oi(j) and Claim 4.2.2.
Finally, we note that

|∆h(i)n/B| ≤ ‖∆‖2 = ‖∆̂‖2 = ‖Ĝ · Pσ,a,b(χ̂− χ′)‖2 ≤
‖χ‖2
R∗n11

,

where we used (5.36) in the last step. This completes the proof.

Lemma 5.3.3. Let (σ, a, b) ∈ [n] be uniform subject to σ being odd. Let u ∈ CB denote the result of
HashToBins(x̂∗, χ, Pσ,a,b, B,R). Fix a coordinate i ∈ [n] and define x = x∗−χ. For each (σ, b), we
can define variables C ⊂ [n] and w > 0 (and in particular, C = {j 6= i : |σ(i− j) mod n| ≤ cn/B}
for some constant c,) so that

• For all j, as a distribution over (σ, b),

Pr[j ∈ C] . 1/B.

• As a distribution over (σ, b),

E[w2] .
‖x‖22
R2B

+
‖x∗‖22
R∗n11
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• Conditioned on (σ, b) and as a distribution over a,

E
a
[|G−1

oi(i)
ω−aσiuh(i) − xi|2] . w2 + ‖xC‖22.

Proof. By Lemma 4.2.4, for any fixed i and j,

Pr[j ∈ C] = Pr[|σ(i− j)| ≤ cn/B] . 1/B

which gives the first part.

Define x′ = x− χ. Per Lemma 5.11.3, HashToBins computes the vector u ∈ CB given by

uh(i) −∆h(i) =
∑
j

Goi(j)x
′
jω

aσj

for some ∆ with ‖∆‖2∞ ≤ ‖x‖22/(R∗n11). We define the vector v ∈ Cn by vσj = x′jGoi(j), so that

uh(i) −∆h(i) =
∑
j

ωajvj =
√
nv̂a

so
uh(i) − ωaσiGoi(i)x

′
i −∆h(i) =

√
n(v̂{σi})a.

By Parseval’s theorem, therefore,

E
a
[|G−1

oi(i)
ω−aσiuh(i) − x′i|2] ≤ 2G−2

oi(i)
(E
a
[|uh(i) − ωaσiGoi(i)x

′
i −∆h(i)|2] + E

a
[∆2

h(i)])

= 2G−2
oi(i)

(‖v{σi}‖
2
2 + ∆2

h(i))

.
‖χ‖22
R∗n11

+
∑
j 6=i
|x′jGoi(j)|

2

≤ ‖χ‖
2
2

R∗n11
+

∑
j /∈C∪{i}

|x′jGoi(j)|
2 +

∑
j∈C
|x′j |2

If we define w2 to be the first two terms, we satisfy the third part of the lemma statement. Next,
we have that

‖χ‖22
R∗n11

≤ 2(
‖x‖22 + ‖x− χ‖22

R∗n11
) .

‖x‖22
R∗n11

+
‖x− χ‖22
R2B

.

From the other term, for j /∈ C∪{i}, |σ(i−j)| > cn/B so oi(j) > (c−1)n/B. Hence for sufficiently
large c, by Lemma 5.11.2,

E[
∑

j /∈C∪{i}

|x′jGoi(j)|
2] ≤

∑
j 6=i
|xj − χj |2 E[G2

oi(j)
· I[oi(j) > (c− 1)n/B]] ≤ ‖x− χ‖

2
2

R2B
.

Hence their sum has

E[w2] .
‖x‖22
R∗n11

+
‖x− χ‖22
R2B

.

This proves the second part of the lemma statement, completing the proof.
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5.12 Semi-equispaced Fourier transform

1: procedure SemiEquispaceFFT(x, c) . x ∈ Cn is k-sparse
2: Round k up to a factor of n.
3: G, Ĝ′ ← Filters(n, k, c).
4: yi ← (x ∗G)in/2k for i ∈ [2k].
5: ŷ ← FFT(y) . 2k dimensional
6: x̂′i ← ŷi for |i| ≤ k/2.
7: return x̂′

8: end procedure

Algorithm 5.12.1: Semi-equispaced Fourier Transform in O(k log(n/δ)) time

The following is similar to results of [DR93, PST01].

Lemma 5.12.1. Let n be a power of two and c ≥ 1. Suppose x ∈ Cn is k-sparse for some k. We
can compute x̂′i for all |i| ≤ k/2 in O(ck log n) time such that

|x̂′i − x̂i| ≤ ‖x‖2/nc.

Proof. Without loss of generality k is a power of two (round up), so 2k divides n.

Let G, Ĝ′ be the flat window functions of [HIKP12c], so that Gi = 0 for all |i| & (n/k)c log n,
‖G−G′‖2 ≤ n−c,

Ĝ′i =

{
1 if |i| ≤ k/2
0 if |i| ≥ k ,

and Ĝ′i ∈ [0, 1] everywhere. The construction is that G approximates a Gaussian convolved with
a rectangular filter and G is a (truncated) Gaussian times a sinc function, and is efficiently com-
putable.

Define
z = x ∗G.

We have that ẑi = x̂iĜi for all i. Furthermore, because subsampling and aliasing are dual under
the Fourier transform, since yi = zin/(2k) is a subsampling of z we have for |i| ≤ k/2 that

x̂′i = ŷi =

n/2k−1∑
j=0

ẑi+2kj

=

n/2k−1∑
j=0

x̂i+2kjĜi+2kj

=

n/2k−1∑
j=0

x̂i+2kjĜ′i+2kj +

n/2k−1∑
j=0

x̂i+2kj(Ĝi+2kj − Ĝ′i+2kj)

= x̂i +

n/2k−1∑
j=0

x̂i+2kj(Ĝi+2kj − Ĝ′i+2kj)

and so
|x̂′i − x̂i| ≤ ‖x̂‖2‖Ĝ− Ĝ′‖2 ≤ ‖x‖2n−c
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as desired.

The time complexity is O(k log k) for a 2k-dimensional FFT, plus the time to construct y.
Because Gi has a localized support, each nonzero coordinate i of x only contributes to O(c log n)
entries of y. Hence the time to construct y is O(ck log n) times the time to evaluate G at an arbitrary
position. Because G is a Gaussian times a sinc function, assuming we can evaluate exponentials in
unit time this is O(ck log n) total.

This can be easily generalized to arbitrary arithmetic sequences of length k:

Corollary 5.12.2. Let n be a power of two, c ≥ 1, and σ odd. Suppose x ∈ Cn is k-sparse for
some k, and S = {σ(i − b) : i ∈ Z, |i| ≤ k}. Then we can compute x̂′i for all i ∈ S in O(ck log n)
time such that

|x̂′i − x̂i| ≤ ‖x‖2/nc.

Proof. Let σ−1 denote the inverse of σ modulo n. Define x∗j = ω−bjxσ−1j . Then for all i ∈ [n],

x̂σ(i−b) =
1√
n

∑
j∈[n]

ωσ(i−b)jxj

=
1√
n

∑
j∈[n]

ωiσjω−bσjxj

=
1√
n

∑
j′=σj∈[n]

ωij
′
ω−bj

′
xσ−1j′

= x̂∗i .

We can sample from x̂∗i with O(1) overhead, so by Lemma 5.12.1 we can approximate x̂σ(i−b) = x̂∗i
for |i| ≤ k in O(ck log n) time.

To compute Goi(i), we take the opposite semi-equispaced Fourier transform.

1: procedure ConverseSemiEquispaceFFT(x̂, S, c) . supp(x) ∈ [−k/2, k/2]
2: Round k up to a factor of n.
3: G, Ĝ′ ← Filters(n, k, c).
4: u← InvFFT(x̂[−k,k]) . 2k dimensional
5: yin/(2k) ← ui for i ∈ [2k].
6: x′i ←

∑
j∈supp(G):i+j≡0 mod n/(2k)Gjyi+j for i ∈ S.

7: return x′

8: end procedure

Algorithm 5.12.2: Converse semi-equispaced Fourier Transform in O(k log(n/δ)) time

Lemma 5.12.3. Let n be a power of two and c ≥ 1. Suppose x̂ ∈ Cn has supp(x) ∈ [−k/2, k/2],
and let S ⊂ [n] have |S| = k. We can compute x′i for all i ∈ S in O(ck log n) time such that

|x′i − xi| ≤ ‖x‖2/nc.

Proof. Without loss of generality k is a power of two (round up), so 2k divides n.
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Let G, Ĝ′ be the flat window functions of [HIKP12c], so that Gi = 0 for all |i| & (n/k)c log n,
‖G−G′‖2 ≤ n−c,

Ĝ′i =

{
1 if |i| ≤ k/2
0 if |i| ≥ k ,

and Ĝ′i ∈ [0, 1] everywhere. The construction is that G approximates a Gaussian convolved with
a rectangular filter and G is a (truncated) Gaussian times a sinc function, and is efficiently com-
putable.

For the y defined in the algorithm, we have that yin/(2k) = xin/(2k)

√
n/(2k) by the definition of

the Fourier transform. Setting yj = 0 elsewhere, y is a scaled subsampling x. Since subsampling
and aliasing are dual under the Fourier transform, we have that ŷi =

∑∞
j=−∞ x̂i+2kj .

Therefore x̂ = ŷ · Ĝ′, so x = y ∗G′. Then for any i,

|x′i − xi| = |
∑
j

(Gj −G′j)yi+j |

≤ ‖G−G′‖2‖y‖2
. n−c

√
n/(2k)‖x‖2.

Rescaling c gives the result.
The time complexity is O(k log k) for the Fourier transform and O(ck log n) for the summation

to form x′, giving O(ck log n) time total.

5.12.1 Computing G, Ĝ

Our algorithm needs to know, for each R, both Ĝi for |i| ≤ B logR and Goi(j) for various j. Here
we show how to compute these up to 1/nc precision for an arbitrary constant c with no additional
time overhead beyond the already existing log(Rn) factor.

Computing Ĝi for all i is possible in O(B log2R) time, because it is a sinc function times a
degree logR polynomial at each position i. Since we only need this once for each R, the total time
is at most a logR factor above the sample complexity.

For each hashing in estimation phases, we will need to compute Goi(j) for the set L of O(B)

coordinates. We will already know Ĝ, which is O(B logR) sparse and dense around the origin.
Hence Lemma 5.12.3 can compute Goi(j) in O(B logR log n) time, which is only log n more than
the sample complexity to perform the hashing.
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Part II

Impossibility Results
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Chapter 6

Gaussian Channel-Based Lower
Bounds: `2
(Based on parts of [PW11, HIKP12a, PW12])

This section gives lower bounds for the measurement complexity required to achieve the `2/`2
recovery guarantee, in the three sensing modalities considered in Part I. Namely, we show:

• Nonadaptive, arbitrary measurements: Ω(k logC(n/k)) for C-approximate recovery.

• Adaptive, Fourier measurements: Ω(k log(n/k)/ log log n) for O(1)-approximate recovery.

• Adaptive, arbitrary measurements: Ω(log log n) for O(1)-approximate recovery.

These proofs all involve the information capacity of the additive white Gaussian noise channel.

6.1 Notation

We use log x to denote log2 x, and lnx to denote loge x. For a discrete random variable X with
probability distribution p, we use H(X) or H(p) to denote its entropy

H(X) = H(p) =
∑
−p(x) log p(x).

For a continuous random variable X with pdf p, we use h(X) to denote its differential entropy

h(X) =

∫
x∈X
−p(x) log p(x)dx.

Let y be drawn from a random variable Y . Then (X | y) = (X | Y = y) denotes the random
variable X conditioned on Y = y. We define h(X | Y ) = Ey∼Y h(X | y). The mutual information
between X and Y is denoted I(X;Y ) = h(X)− h(X | Y ).

We will also use the following lemma, which shows that mutual information is additive for linear
measurements with independent noise. This means that it suffices to bound the mutual information
of a individual measurements in isolation.

Lemma 6.1.1. Suppose ai = bi + wi for i ∈ [s] and the wi are independent of each other and the
bi. Then

I(a; b) ≤
∑
i

I(ai; bi)
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Proof. Note that h(a | b) = h(a− b | b) = h(w | b) = h(w). Thus

I(a; b) = h(a)− h(a | b) = h(a)− h(w)

≤
∑
i

h(ai)− h(wi)

=
∑
i

h(ai)− h(ai | bi) =
∑
i

I(ai; bi)

6.2 Nonadaptive, arbitrary linear measurements

Our goal in this section is to lower bound the number of rows of a distribution of matrices A if one
can recover x′ from Ax such that

‖x′ − x‖2 ≤ C min
k-sparse y

‖x− y‖2

with at least 3/4 probability for all x. We will give a lower bound of Ω(k logC(n/k)), for all C > 1.

Define ε = C − 1.

We will set up a communication game. Let F ⊂ {S ⊂ [n] | |S| = k} be a family of k-sparse
supports such that:

• |S ⊕ S′| ≥ k for S 6= S′ ∈ F , where ⊕ denotes the exclusive difference between two sets,

• PrS∈F [i ∈ S] = k/n for all i ∈ [n], and

• log |F| = Ω(k log(n/k)).

This is possible; for example, a random linear code on [n/k]k with relative distance 1/2 has these
properties [Gur10].1

Let X = {x ∈ {0,±1}n | supp(x) ∈ F}. Let w ∼ N(0, α knIn) be i.i.d. normal with variance
αk/n in each coordinate for some parameter α which will be Θ(1/ε). Consider the following process:

Procedure. First, Alice chooses S ∈ F uniformly at random, then x ∈ X uniformly at random
subject to supp(x) = S. Alice independently chooses w ∼ N(0, α knIn). She sets y = A(x + w)
and sends y to Bob. Bob performs sparse recovery on y to recover x′ ≈ x, rounds to X by
x̂ = arg minx∗∈X‖x∗ − x′‖2, and sets S′ = supp(x̂). This gives a Markov chain S → x→ y → x′ →
x̂→ S′.

We will show that deterministic sparse recovery algorithms require large m to succeed on this
input distribution x+w with 3/4 probability. By Yao’s minimax principle, this means randomized
sparse recovery algorithms also require large m to succeed with 3/4 probability.

Our strategy is to give upper and lower bounds on I(S;S′), the mutual information between S
and S′.

Lemma 6.2.1. I(S;S′) = O(m log(1 + 1
α)).

1This assumes n/k is a prime power larger than 2. If n/k is not prime, we can choose n′ ∈ [n/2, n] to be a
prime multiple of k, and restrict to the first n′ coordinates. This works unless n/k < 3, in which case a bound of
Θ(min(n, k logC(n/k))) = Θ(k) is trivial.
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Proof. Let the columns of AT be v1, . . . , vm. We may assume that the vi are orthonormal, because
this can be accomplished via invertible postprocessing of A, by multiplying Ax on the left to
orthogonalize A. Then we have that yi = 〈vi, x+w〉 = 〈vi, x〉+w′i, where w′i ∼ N(0, αk‖vi‖22/n) =
N(0, αk/n). Let z = Ax, so we have that

E
x
[z2
i ] = E

x
[〈vi, x〉2] = E

S
[
∑
j∈S

(vij)
2] =

k

n
.

Hence yi = zi + w′i is a Gaussian channel with power constraint E[z2
i ] ≤ k

n and noise variance

E[(w′i)
2] = α kn . Hence by the Shannon-Hartley theorem this channel has information capacity

max
vi

I(zi; yi) = C ≤ 1

2
log(1 +

1

α
).

Then by the data processing inequality for Markov chains and Lemma 6.1.1, this means

I(S;S′) ≤ I(z; y) ≤
∑
i

I(zi; yi) ≤
m

2
log(1 +

1

α
).

We will show that successful recovery either recovers most of x, in which case I(S;S′) =
Ω(k log(n/k)), or recovers an ε fraction of w. First we show that recovering w requires m = Ω(εn).

Lemma 6.2.2. Suppose w ∈ Rn with wi ∼ N(0, σ2) for all i and n = Ω( 1
ε2

log(1/δ)), and A ∈ Rm×n
for m < δεn. Then any algorithm that finds w′ from Aw must have ‖w′ − w‖22 > (1− ε)‖w‖22 with
probability at least 1−O(δ).

Proof. Note that Aw merely gives the projection of w onto m dimensions, giving no information
about the other n−m dimensions. Since w and the `2 norm are rotation invariant, we may assume
WLOG that A gives the projection of w onto the first m dimensions, namely T = [m]. By the norm
concentration of Gaussians, with probability 1− δ we have ‖w‖22 < (1 + ε)nσ2, and by Markov with
probability 1− δ we have ‖wT ‖22 ≤ mσ2/δ < εnσ2. Assume both of these events happen.

For any fixed value d, since w is uniform Gaussian and w′
T

is independent of wT ,

Pr[‖w′ − w‖22 < d] ≤ Pr[‖(w′ − w)T ‖
2
2 < d] ≤ Pr[‖wT ‖

2
2 < d].

Therefore

Pr[‖w′ − w‖22 < (1− 4ε)‖w‖22] ≤Pr[‖w′ − w‖22 < (1− 2ε)nσ2]

≤Pr[‖wT ‖
2
2 < (1− 2ε)nσ2]

≤Pr[‖wT ‖
2
2 < (1− ε)(n−m)σ2] ≤ δ

as desired. Rescaling ε gives the result.

Lemma 6.2.3. Suppose n = Ω(1/ε2+(k/ε) log(k/ε)) and m = O(εn). Then I(S;S′) = Ω(k log(n/k))
for some α = Ω(1/ε).

Proof. Consider the x′ recovered from A(x+w), and let T = S∪S′. Suppose that ‖w‖2∞ . αk
n log n

and ‖w‖22/(αk) ∈ [1 ± ε], as happens with probability at least (say) 3/4. Then we claim that if
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recovery is successful, one of the following must be true:

‖x′T − x‖22 ≤ 9ε‖w‖22 (6.1)

‖x′
T
− w‖22 ≤ (1− 2ε)‖w‖22 (6.2)

To show this, suppose ‖x′T − x‖22 > 9ε‖w‖22 ≥ 9‖wT ‖22 (the last by |T | = 2k = O(εn/ log n)). Then

‖(x′ − (x+ w))T ‖22 ≥ (‖x′ − x‖2 − ‖wT ‖2)2

> (2‖x′ − x‖2/3)2 ≥ 4ε‖w‖22.

Because recovery is successful,

‖x′ − (x+ w)‖22 ≤ (1 + ε)‖w‖22.

Therefore

‖x′
T
− wT ‖

2
2 + ‖x′T − (x+ w)T ‖22 = ‖x′ − (x+ w)‖22
‖x′

T
− wT ‖

2
2 + 4ε‖w‖22 < (1 + ε)‖w‖22

‖x′
T
− w‖22 − ‖wT ‖22 < (1− 3ε)‖w‖22 ≤ (1− 2ε)‖w‖22

as desired. Thus with 3/4 probability, at least one of (6.1) and (6.2) is true.
Suppose Equation (6.2) holds with at least 1/4 probability. There must be some x and S such

that the same equation holds with 1/4 probability. For this S, given x′ we can find T and thus
x′
T

. Hence for a uniform Gaussian wT , given AwT we can compute A(x + wT ) and recover x′
T

with ‖x′
T
− wT ‖22 ≤ (1 − ε)‖wT ‖22. By Lemma 6.2.2 this is impossible, since n − |T | = Ω( 1

ε2
) and

m = Ω(εn) by assumption.
Therefore Equation (6.1) holds with at least 1/2 probability, namely ‖x′T − x‖22 ≤ 9ε‖w‖22 ≤

9ε(1− ε)αk < k/2 for appropriate α. But if the nearest x̂ ∈ X to x is not equal to x,

‖x′ − x̂‖22 =‖x′
T
‖22 + ‖x′

T
− x̂‖22 ≥ ‖x′T ‖

2
2 + (‖x− x̂‖2 − ‖x′T − x‖2)2

>‖x′
T
‖22 + (k − k/2)2 > ‖x′

T
‖22 + ‖x′

T
− x‖22 = ‖x′ − x‖22,

a contradiction. Hence S′ = S. Then Fano’s inequality states H(S|S′) ≤ 1 + Pr[S′ 6= S] log |F| and
hence

I(S;S′) = H(S)−H(S|S′) ≥ −1 +
1

4
log |F| = Ω(k log(n/k))

as desired.

Theorem 6.2.4. Any nonadaptive (1 + ε)-approximate `2/`2 recovery scheme with ε >
√

k logn
n

and failure probability δ < 1/2 requires m = Ω(k log1+ε(n/k)).

Proof. Combine Lemmas 6.2.3 and 6.2.1 with α = 1/ε to get m = Ω(k log(n/k)
log(1+ε) ), m = Ω(εn), or

n = O(1
εk log(k/ε)). For ε as in the theorem statement, the first bound is the relevant one.

6.3 Fourier lower bound

In this section, we show any `2 recovery algorithm using (possibly adaptive) Fourier samples of x
must take Ω(k log(n/k)/ log log n) samples:
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Theorem 6.3.1. Let F ∈ Cn×n be orthonormal and satisfy |Fi,j | = 1/
√
n for all i, j. Suppose an

algorithm takes m adaptive samples of Fx and computes x′ with

‖x− x′‖2 ≤ 2 min
k-sparse x∗

‖x− x∗‖2,

with probability at least 3/4 for any x. Then it must have m = Ω(k log(n/k)/ log log n).

Corollary 6.3.2. Any algorithm computing the O(1)-approximate sparse Fourier transform must
access Ω(k log(n/k)/ log logn) samples.

If the samples were chosen nonadaptively, we would immediately have m = Ω(k log(n/k)) by
Theorem 6.2.4. However, an algorithm could choose samples based on the values of previous
samples. In the sparse recovery framework allowing general linear measurements, this adaptivity
can decrease the number of measurements to O(k log log(n/k)) (see Chapter 2); in this section, we
show that adaptivity is much less effective in our setting where adaptivity only allows the choice
of Fourier coefficients.

In essence, in the previous section we showed that any nonadaptive measurement has constant
signal-to-noise ratio for the hard instance. In this section, we show that with high probability all
n Fourier measurements have O(log n) signal-to-noise ratio.

As in the previous section, let F ⊂ {S ⊂ [n] : |S| = k} be a family of k-sparse supports such
that:

• |S ⊕ S′| ≥ k for S 6= S′ ∈ F , where ⊕ denotes the exclusive difference between two sets, and

• log |F| = Ω(k log(n/k)).

For each S ∈ F , let XS = {x ∈ {0,±1}n | supp(xS) = S}. Let x ∈ XS uniformly at random.
The variables xi, i ∈ S, are i.i.d. subgaussian random variables with parameter σ2 = 1, so for any
row Fj of F , Fjx is subgaussian with parameter σ2 = k/n. Therefore

Pr
x∈XS

[|Fjx| > t
√
k/n] < 2e−t

2/2.

By a union bound over the n rows of F , for each S we can choose an xS ∈ XS with

‖FxS‖∞ < O(

√
k log n

n
). (6.3)

Let X = {xS | S ∈ F} be the set of such xS .

Let w ∼ N(0, α knIn) be i.i.d. normal with variance αk/n in each coordinate.

Consider the following process:

Procedure. First, Alice chooses S ∈ F uniformly at random, then selects the x ∈ X with
supp(x) = S. Alice independently chooses w ∼ N(0, α knIn) for a parameter α = Θ(1) sufficiently
small. For j ∈ [m], Bob chooses ij ∈ [n] and observes yj = Fij (x+w). He then computes the result
x′ ≈ x of sparse recovery, rounds to X by x̂ = arg minx∗∈X‖x∗ − x′‖2, and sets S′ = supp(x̂). This
gives a Markov chain S → x→ y → x′ → x̂→ S′.

We will show that deterministic sparse recovery algorithms require large m to succeed on this
input distribution x+w with 3/4 probability. By Yao’s minimax principle, this means randomized
sparse recovery algorithms also require large m to succeed with 3/4 probability.
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Our strategy is to give upper and lower bounds on I(S;S′), the mutual information between S
and S′.

First we show an analog of Lemma 6.2.3 in this setting. The previous proof actually applies in
this setting, but because we only consider ε = Θ(1) a simpler proof is possible.

Lemma 6.3.3 (Lemma 6.2.3, simplified for ε = Θ(1)). There exists a constant α′ > 0 such that if
α < α′, then I(S;S′) = Ω(k log(n/k)) .

Proof. Assuming the sparse recovery succeeds (as happens with 3/4 probability), we have ‖x′ −
(x+ w)‖2 ≤ 2‖w‖2, which implies ‖x′ − x‖2 ≤ 3‖w‖2. Therefore

‖x̂− x‖2 ≤ ‖x̂− x′‖2 + ‖x′ − x‖2
≤ 2‖x′ − x‖2
≤ 6‖w‖2.

We also know ‖x′ − x′′‖2 ≥
√
k for all distinct x′, x′′ ∈ X by construction. Because E[‖w‖22] = αk,

with probability at least 3/4 we have ‖w‖2 ≤
√

4αk <
√
k/6 for sufficiently small α. But then

‖x̂− x‖2 <
√
k, so x̂ = x and S = S′. Thus Pr[S 6= S′] ≤ 1/2.

Fano’s inequality states H(S | S′) ≤ 1 + Pr[S 6= S′] log |F|. Thus

I(S;S′) = H(S)−H(S | S′) ≥ −1 +
1

2
log |F| = Ω(k log(n/k))

as desired.

We next show an upper bound on I(S;S′), the analog of Lemma 6.2.1 for adaptive measurements
of bounded `∞ norm. The proof is similar, but is more careful about dependencies and needs the
`∞ bound on Fx.

Lemma 6.3.4.

I(S;S′) . m log(1 +
1

α
log n).

Proof. Let Aj = Fij for j ∈ [m], and let w′j = Ajw. The w′j are independent normal variables

with variance α kn . Because the Aj are orthonormal and w is drawn from a rotationally invariant
distribution, the w′ are also independent of x. We have yj = Ajx + w′j . By the data processing
inequality for Markov chains and Lemma 6.1.1,

I(S;S′) ≤ I(Ax; y) ≤
∑
j

I(Ajx; yj)

By the Shannon-Hartley theorem and Equation (6.3), for all j we have

I(Ajx;Ajx+ w′j) ≤
1

2
log(1 +

E[|Ajx|2]

E[(w′j)
2]

) ≤ 1

2
log(1 +

‖Fx‖2∞
αk/n

) ≤ 1

2
log(1 +

1

α
log n).

Combining these two equations gives the result.

Theorem 6.3.1 follows from Lemma 6.3.3 and Lemma 6.3.4, with α = Θ(1).
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6.4 Adaptive lower bound for k = 1

In this section we give an Ω(log log n) lower bound for `2 approximation with arbitrary adaptive
linear measurements, showing that Lemma 2.2.4 is tight. More generally, given R “rounds” of adap-
tivity, we show that Ω(R log1/R n) measurements are necessary; this is tight, since the techniques
used to show Lemma 2.2.4 can get a matching upper bound.

The main previous lower bound for adaptive sparse recovery gets m = Ω(k/ε) [ACD11] in an
essentially equivalent setting2. They consider going down a similar path to our Ω(log log n) lower
bound, but ultimately reject it as difficult to bound in the adaptive setting. Combining their result
with ours gives a Ω(1

εk+ log log n) lower bound, compared with the O(1
εk · log logn) upper bound.

Setting. One would like to estimate a vector x ∈ Rn from m linear measurements A1x, . . . , Amx.
One may choose each vector Ai based on A1x, . . . , Ai−1x, and must output x′ satisfying

‖x′ − x‖2 ≤ O(1) · min
k-sparse y

‖x− y‖2

Intuition. As in the rest of this chapter, we reduce to the information capacity of a Gaussian chan-
nel. We consider recovery of the vector x = ei∗ +w, for i∗ ∈ [n] uniformly and w ∼ N(0, In/Θ(n)).
Correct recovery must find i∗, so the mutual information I(i∗;Ax) is Ω(log n). On the other hand,
in the nonadaptive case (Section 6.2) we showed that each measurement Ajx is a power-limited
Gaussian channel with constant signal-to-noise ratio, and therefore has I(i∗;Ajx) = O(1). Lin-
earity gives that I(i∗;Ax) = O(m), so m = Ω(log n) in the nonadaptive case. In the adaptive
case, later measurements may “align” the row Aj with i∗, to increase the signal-to-noise ratio and
extract more information—this is exactly how the upper bound works in Chapter 2. To deal with
this, we bound how much information we can extract as a function of how much we know about
i∗. In particular, we show that given a small number b bits of information about i∗, the posterior
distribution of i∗ remains fairly well “spread out”. We then show that any measurement row Aj
can only extract O(b + 1) bits from such a spread out distribution on i∗. This shows that the
information about i∗ increases at most exponentially, so Ω(log log n) measurements are necessary.

Proof. We may assume that the measurements are orthonormal, since this can be performed
in post-processing of the output, by multiplying Ax on the left by a lower triangular matrix to
orthogonalize A. We will give a lower bound for the following instance:

Alice chooses random i∗ ∈ [n] and i.i.d. Gaussian noise w ∈ Rn with E[‖w‖22] = σ2 = Θ(1),
then sets x = ei∗ +w. Bob performs R rounds of adaptive measurements on x, getting yr = Arx =
(yr1, . . . , y

r
mr) in each round r. Let I∗ and Y r denote the random variables from which i∗ and yr

are drawn, respectively. We will bound I(I∗;Y 1, Y 2, . . . , Y r).

We may assume Bob is deterministic, since we are giving a lower bound for a distribution
over inputs—for any randomized Bob that succeeds with probability 1− δ, there exists a choice of
random seed such that the corresponding deterministic Bob also succeeds with probability 1− δ.

First, we give a bound on the information received from any single measurement, depending on
Bob’s posterior distribution on I∗ at that point:

2Both our result and their result apply in both settings. See Section 6.5 for a more detailed discussion of the
relationship between the two settings.
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Lemma 6.4.1. Let I∗ be a random variable over [n] with probability distribution pi = Pr[I∗ = i],
and define

b =
n∑
i=1

pi log(npi) = log n−H(p).

Define X = eI∗ +N(0, Inσ
2/n). Consider any fixed vector v ∈ Rn independent of X with ‖v‖2 = 1,

and define Y = v ·X. Then
I(vI∗ ;Y ) ≤ C(b+ 1)

for some constant C.

Proof. Let Si = {j | 2i ≤ npj < 2i+1} for i > 0 and S0 = {i | npi < 2}. Define ti =
∑

j∈Si pj =
Pr[I∗ ∈ Si]. Then

∞∑
i=0

iti =
∑
i>0

∑
j∈Si

pj · i

≤
∑
i>0

∑
j∈Si

pj log(npj)

= b−
∑
j∈S0

pj log(npj)

≤ b− t0 log(nt0/|S0|)
≤ b+ |S0|/(ne)

using convexity and minimizing x log ax at x = 1/(ae). Hence

∞∑
i=0

iti < b+ 1. (6.4)

Let W = N(0, σ2/n). For any measurement vector v, let Y = v ·X ∼ vI∗ + W . Let Yi = (Y |
I∗ ∈ Si). Because

∑
v2
j = 1,

E[Y 2
i ] = σ2/n+

∑
j∈Si

v2
j pj/ti ≤ σ2/n+ ‖pSi‖∞/ti ≤ σ2/n+ 2i+1/(nti). (6.5)

Let T be the (discrete) random variable denoting the i such that I∗ ∈ Si. Then Y is drawn from
YT , and T has probability distribution t. Hence

h(Y ) ≤ h((Y, T ))

= H(T ) + h(YT | T )

= H(t) +
∑
i≥0

tih(Yi)

≤ H(t) +
∑
i≥0

tih(N(0,E[Y 2
i ]))

because the Gaussian distribution maximizes entropy subject to a power constraint. Using the
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same technique as the Shannon-Hartley theorem,

I(vI∗ , Y ) = I(vI∗ ; vI∗ +W ) = h(vI∗ +W )− h(vI∗ +W | vI∗)
= h(Y )− h(W )

≤ H(t) +
∑
i≥0

ti(h(N(0,E[Y 2
i ]))− h(W ))

= H(t) +
1

2

∑
i≥0

ti ln(
E[Y 2

i ]

E[W 2]
)

and hence by Equation (6.5),

I(vI∗ ;Y ) ≤ H(t) +
ln 2

2

∑
i≥0

ti log(1 +
2i+1

tiσ2
). (6.6)

All that requires is to show that this is O(1 + b). Since σ = Θ(1), we have

∑
i

ti log(1 +
2i

σ2ti
) ≤ log(1 + 1/σ2) +

∑
i

ti log(1 +
2i

ti
)

≤ O(1) +
∑
i

ti log(1 + 2i) +
∑
i

ti log(1 + 1/ti). (6.7)

Now, log(1 + 2i) . i for i > 0 and is O(1) for i = 0, so by Equation (6.4),∑
i

ti log(1 + 2i) . 1 +
∑
i>0

iti < 2 + b.

Next, log(1 + 1/ti) . log(1/ti) for ti ≤ 1/2, so∑
i

ti log(1 + 1/ti) .
∑

i|ti≤1/2

ti log(1/ti) +
∑

i|ti>1/2

1 ≤ H(t) + 1.

Plugging into Equations (6.7) and (6.6),

I(vI∗ , Y ) . 1 + b+H(t). (6.8)

To bound H(t), we consider the partition T+ = {i | ti > 1/2i} and T− = {i | ti ≤ 1/2i}. Then

H(t) =
∑
i

ti log(1/ti)

≤
∑
i∈T+

iti +
∑
t∈T−

ti log(1/ti)

≤ 1 + b+
∑
t∈T−

ti log(1/ti)
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But x log(1/x) is increasing on [0, 1/e], so∑
t∈T−

ti log(1/ti) ≤ t0 log(1/t0) + t1 log(1/t1) +
∑
i≥2

1

2i
log(1/2i) ≤ 2/e+ 3/2 = O(1)

and hence H(t) ≤ b+O(1). Combining with Equation (6.8) gives that

I(vI∗ ;Y ) . b+ 1

as desired.

Theorem 6.4.2. Any scheme using R rounds with number of measurements m1,m2, . . . ,mR > 0
in each round has

I(I∗;Y 1, . . . , Y R) ≤ CR
∏
i

mi

for some constant C > 1.

Proof. Let the signal in the absence of noise be Zr = AreI∗ ∈ Rmr , and the signal in the presence
of noise be Y r = Ar(eI∗ + N(0, σ2In/n)) = Zr + W r where W r = N(0, σ2Imr/n) independently.
In round r, after observations y1, . . . , yr−1 of Y 1, . . . , Y r−1, let pr be the distribution on (I∗ |
y1, . . . , yr−1). That is, pr is Bob’s posterior distribution on I∗ at the beginning of round r.

We define

br = H(I∗)−H(I∗ | y1, . . . , yr−1)

= log n−H(pr)

=
∑

pri log(npri ).

Because the rows of Ar are deterministic given y1, . . . , yr−1, Lemma 6.4.1 shows that any single
measurement j ∈ [mr] satisfies

I(Zrj ;Y r
j | y1, . . . , yr−1) ≤ C(br + 1).

for some constant C. Thus by Lemma 6.1.1

I(Zr;Y r | y1, . . . , yr−1) ≤ Cmr(br + 1).

There is a Markov chain (I∗ | y1, . . . , yr−1)→ (Zr | y1, . . . , yr−1)→ (Y r | y1, . . . , yr−1), so

I(I∗;Y r | y1, . . . , yr−1) ≤ I(Zr;Y r | y1, . . . , yr−1) ≤ Cmr(br + 1).
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We define Br = I(I∗;Y 1, . . . , Y r−1) = Ey br. Therefore

Br+1 = I(I∗;Y 1, . . . , Y r)

= I(I∗;Y 1, . . . , Y r−1) + I(I∗;Y r | Y 1, . . . , Y r−1)

= Br + E
y1,...,yr−1

I(I∗;Y r | y1, . . . , yr−1)

≤ Br + Cmr E
y1,...,yr−1

(br + 1)

= (Br + 1)(Cmr + 1)− 1

≤ C ′mr(Br + 1)

for some constant C ′. Then for some constant D ≥ C ′,

I(I∗;Y 1, . . . , Y R) = BR+1 ≤ DR
∏
i

mi

as desired.

Corollary 6.4.3. Any scheme using R rounds with m measurements has

I(I∗;Y 1, . . . , Y R) ≤ (Cm/R)R

for some constant C. Thus for sparse recovery, m = Ω(R log1/R n). Minimizing over R, we find
that m = Ω(log log n) independent of R.

Proof. The equation follows from the AM-GM inequality. Furthermore, our setup is such that Bob
can recover I∗ from Y with large probability, so I(I∗;Y ) = Ω(log n); this is Lemma 6.3.3 in the
k = 1 case. The result follows.

6.5 Relationship between post-measurement and pre-measurement
noise

In the setting of [ACD11], the goal is to recover a k-sparse x from observations of the form Ax+w,
where A has unit norm rows and w is i.i.d. Gaussian with variance ‖x‖22/ε2. By ignoring the
(irrelevant) component of w orthogonal to A, this is equivalent to recovering x from observations
of the form A(x + w). By contrast, our goal is to recover x + w from observations of the form
A(x+ w), and for general w rather than only for Gaussian w.

As shown in Sections 6.2 and 6.3, for Gaussian w the difference between recovering x and
recovering x + w is minor. Hence any lower bound of m in the [ACD11] setting implies a lower
bound of min(m, εn) in our setting. The converse is also true for proofs that use Gaussian w, such
as ours.
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Chapter 7

Communication Complexity-Based
Lower Bounds
(Based on parts of [PW11, PW12])

This chapter considers variations on the recovery guarantee

‖x′ − x‖p ≤ (1 + ε) min
k-sparse y

‖x− y‖p. (7.1)

Previous chapters consider (7.1) for p = 2. In this chapter, we consider p = 1 and give improved
upper and lower bounds, showing that the complexity is k/

√
ε up to logarithmic factors in both

the nonadaptive and adaptive cases.

We also consider the requirement that the result x′ must itself be exactly k-sparse. In this case,
for p = 1 and p = 2, we show that k/εp is tight up to logarithmic factors in the nonadaptive setting.

7.1 Introduction

The difficulty of (1 + ε)-approximate recovery has seemed to depend on whether the output x′ is
required to be k-sparse or can have more than k elements in its support. Having k-sparse output
is important for some applications (e.g. the MapReduce top table [PDGQ05]) but not for others
(e.g. imaging). Algorithms that output a k-sparse x′ have used Θ( 1

εpk log n) measurements [CCF02,
CM04, CM06]. In contrast, [GLPS10] uses only Θ(1

εk log(n/k)) measurements for p = 2 and outputs
a non-k-sparse x′.

Lower bound Upper bound

Non-k-sparse output `1 Ω( 1√
ε log(k/ε)

k) [†] O( log3(1/ε)√
ε

k log n)

`2 Ω(1
εk log(n/k)) [Ch. 6] O(1

εk log(n/k))[GLPS10]

k-sparse output `1 Ω(1
ε (k log 1

ε + log 1
δ )) O(1

εk log n)[CM04]

`2 Ω( 1
ε2

(k + log 1
δ )) O( 1

ε2
k log n)[CCF02, CM06]

Figure 7-1: Our results in this chapter, along with existing upper bounds. The bound [†] applies
to the adaptive setting as well.
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Our results. We show that the apparent distinction between complexity of sparse and non-
sparse outputs is fundamental, for both p = 1 and p = 2. We show that for sparse output, Ω(k/εp)
measurements are necessary, matching the upper bounds up to a log n factor. For general output
and p = 2, Chapter 6 showed Ω(1

εk log(n/k)) measurements are necessary, matching the upper
bound up to a constant factor. In the remaining case of general output and p = 1, we show

Ω̃(k/
√
ε) measurements are necessary. We then give a novel algorithm that uses O( log3(1/ε)√

ε
k log n)

measurements, beating the 1/ε dependence given by all previous algorithms. As a result, all our
bounds are tight up to factors logarithmic in n. The full results are shown in Figure 7-1.

In addition, for p = 2 and general output, we show that thresholding the top 2k elements of a
Count-Sketch [CCF02] estimate gives (1+ε)-approximate recovery with Θ(1

εk log n) measurements.
This is interesting because it highlights the distinction between sparse output and non-sparse
output: [CM06] showed that thresholding the top k elements of a Count-Sketch estimate works
for m = O( 1

ε2
k log n). While [GLPS10] achieves m = Θ(1

εk log(n/k)) for the same regime, it only

succeeds with constant probability while ours succeeds with probability 1 − n−Ω(1); hence ours is
the most efficient known algorithm when δ = o(1), ε = o(1), and k < n0.9.

Related work. Much of the work on sparse recovery has relied on the Restricted Isometry
Property [CRT06b]. None of this work has been able to get better than 2-approximate recovery,
so there are relatively few papers achieving (1 + ε)-approximate recovery. The existing ones with
O(k log n) measurements are surveyed above (except for [IR08], which has worse dependence on ε
than [CM04] for the same regime).

Previous work [CM05] has studied lower bounds for the `∞/`p problem, where every coordinate
must be estimated with small error. This problem is harder than `p/`p sparse recovery with sparse
output, so lower bounds are easier. For p = 1, they showed that any sketch requires Ω(k/ε) bits
(rather than measurements).

Our techniques. For the upper bounds for non-sparse output, we observe that the hard case for
sparse output is when the noise is fairly concentrated, in which the estimation of the top k elements
can have

√
ε error. Our goal is to recover enough mass from outside the top k elements to cancel

this error. The upper bound for p = 2 is a fairly straightforward analysis of the top 2k elements of
a Count-Sketch data structure.

The upper bound for p = 1 proceeds by subsampling the vector at rate 2−i and performing a
Count-Sketch with size proportional to 1√

ε
, for i ∈ {0, 1, . . . , O(log(1/ε))}. The intuition is that if

the noise is well spread over many (more than k/ε3/2) coordinates, then the `2 bound from the first
Count-Sketch gives a very good `1 bound, so the approximation is (1 + ε)-approximate. However,
if the noise is concentrated over a small number k/εc of coordinates, then the error from the first
Count-Sketch is proportional to 1 + εc/2+1/4. But in this case, one of the subsamples will only have
O(k/εc/2−1/4) < k/

√
ε of the coordinates with large noise. We can then recover those coordinates

with the Count-Sketch for that subsample. Those coordinates contain an εc/2+1/4 fraction of the
total noise, so recovering them decreases the approximation error by exactly the error induced from
the first Count-Sketch.

The lower bounds use substantially different techniques for sparse output and for non-sparse
output. For sparse output, we use reductions from communication complexity to show a lower
bound in terms of bits. Then, as in [DIPW10], we embed Θ(log n) copies of this communication
problem into a single vector. This multiplies the bit complexity by log n; we also show we can
round Ax to log n bits per measurement without affecting recovery, giving a lower bound in terms
of measurements.
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We illustrate the lower bound on bit complexity for sparse output using k = 1. Consider a
vector x containing 1/εp ones and zeros elsewhere, such that x2i +x2i+1 = 1 for all i. For any i, set
z2i = z2i+1 = 1 and zj = 0 elsewhere. Then successful (1 + ε/3)-approximate sparse recovery from
A(x+ z) returns z′ with supp(z′) = supp(x)∩{2i, 2i+ 1}. Hence we can recover each bit of x with
probability 1 − δ, requiring Ω(1/εp) bits1. We can generalize this to k-sparse output for Ω(k/εp)
bits, and to δ failure probability with Ω( 1

εp log 1
δ ). However, the two generalizations do not seem to

combine.

For non-sparse output, the hard instances for k = 1 must have one large value (or else 0 is a
valid output) but small other values (or else the 2-sparse approximation is significantly better than
the 1-sparse approximation). Suppose x has one value of size ε and d values of size 1/d spread
through a vector of size d2. Then a (1 + ε/2)-approximate recovery scheme must either locate
the large element or guess the locations of the d values with Ω(εd) more correct than incorrect.
The former requires 1/(dε2) bits by the difficulty of a novel version of the Gap-`∞ problem that
we call Multi`∞. The latter requires εd bits because it allows recovering an error correcting code.
Setting d = ε−3/2 balances the terms at ε−1/2 bits. We then convert to a bound on measurement
complexity, losing a log n factor in a universe of size n = poly(k/ε).

Intuition for Multi`∞. In the Gap`∞ problem, the two players are given x and y respectively, and
they want to approximate ‖x−y‖∞ given the promise that all entries of x−y are small in magnitude
or there is a single large entry. The Multi`∞ problem consists of solving multiple independent
instances of Gap`∞ in parallel. Intuitively, the sparse recovery algorithm needs to determine if
there are entries of x− y that are large, which corresponds to solving multiple instances of Gap`∞.
We prove a multiround direct sum theorem for a distributional version of Gap`∞, thereby giving a
distributional lower bound for Multi`∞. We use the information complexity framework [BJKS04] to
lower bound the conditional mutual information between the inputs to Gap`∞ and the transcript of
any correct protocol for Gap`∞ under a certain input distribution, and prove a direct sum theorem
for solving k instances of this problem. We need to condition on “help variables” in the mutual
information which enable the players to embed single instances of Gap`∞ into Multi`∞ in a way
in which the players can use a correct protocol on our input distribution for Multi`∞ as a correct
protocol on our input distribution for Gap`∞; these help variables are in addition to help variables
used for proving lower bounds for Gap`∞, which is itself proved using information complexity. We
also look at the conditional mutual information with respect to an input distribution which doesn’t
immediately fit into the information complexity framework. We relate the conditional information of
the transcript with respect to this distribution to that with respect to a more standard distribution.

7.2 Relevant upper bounds

The algorithms in this section are indifferent to permutation of the coordinates. Therefore, for
simplicity of notation in the analysis, we assume the coefficients of x are sorted such that |x1| ≥
|x2| ≥ . . . ≥ |xn| ≥ 0.

Count-Sketch. Both our upper bounds use the Count-Sketch [CCF02] data structure. The
structure consists of c log n hash tables of size O(q), for O(cq log n) total space; it can be represented

1For p = 1, we can actually set | supp(z)| = 1/ε and search among a set of 1/ε candidates. This gives Ω( 1
ε

log(1/ε))
bits.
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as Ax for a matrix A with O(cq log n) rows. Given Ax, one can construct x∗ with

‖x∗ − x‖2∞ ≤
1

q
‖x

[q]
‖22 (7.2)

with failure probability n1−c.

7.2.1 `2

It was shown in [CM06] that, if x∗ is the result of a Count-Sketch with hash table size O(k/ε2),
then outputting the top k elements of x∗ gives a (1 + ε)-approximate `2/`2 recovery scheme. Here
we show that a seemingly minor change—selecting 2k elements rather than k elements—turns this
into a (1 + ε2)-approximate `2/`2 recovery scheme.

Lemma 7.2.1. For any x, x∗ ∈ Rn let S contain the largest 2k elements of x∗. Then

‖x∗S − x‖22 ≤ Err2
k(x) + 3k‖x∗ − x‖2∞.

Proof. Since Err2
k(x) = ‖x

[k]
‖22 by our WLOG assumption on the ordering,

‖x∗S − x‖22 − Err2
k(x) ≤ ‖(x∗ − x)S‖22 + ‖x[n]\S‖22 − ‖x[k]

‖22
≤ 2k‖x∗ − x‖2∞ + ‖x[k]\S‖22 − ‖xS\[k]‖22 (7.3)

Let a = maxi∈[k]\S xi and b = mini∈S\[k] xi, and let d = |[k] \ S|. The algorithm passes over an
element of value a to choose one of value b, so

a ≤ b+ 2‖x∗ − x‖∞

Then

‖x[k]\S‖22 − ‖xS\[k]‖22 ≤ da2 − (k + d)b2

≤ d(b+ 2‖x∗ − x‖∞)2 − (k + d)b2

= −kb2 + 4db‖x∗ − x‖∞ + 4d‖x∗ − x‖2∞

= −k(b− 2(d/k)‖x∗ − x‖∞)2 + 4d‖x∗ − x‖2∞
k − d
k

≤ 4d(k − d)

k
‖x∗ − x‖2∞ ≤ k‖x∗ − x‖2∞

and combining this with (7.3) gives

‖x∗S − x‖22 − Err2
k(x) ≤ 3k‖x∗ − x‖3∞

as desired.

Theorem 7.2.2. Let x′ be the top 2k estimates from a Count-Sketch structure with hash table size
O(k/ε). Then with failure probability n−Ω(1),

‖x′ − x‖2 ≤ (1 + ε) Err2
k(x).

Therefore, there is a 1 + ε-approximate `2/`2 recovery scheme with O(1
εk log n) rows.
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Proof. Let the hash table size be O(k/ε), and let x∗ be the vector of estimates for each coordinate.
By (7.2), the standard analysis of Count-Sketch,

‖x∗ − x‖2∞ ≤
ε

k
Err2

ck/ε(x) ≤ ε

k
Err2

k(x).

with the appropriate failure probability. Then by Lemma 7.2.1,

‖x′ − x‖22 ≤ Err2
k(x) + 3k

ε

k
Err2

k(x) ≤ (1 + 3ε) Err2
k(x).

Rescaling ε gives the result.

7.2.2 `1

Theorem 7.2.3. There exists a (1 + ε)-approximate `1/`1 recovery scheme with O( log3 1/ε√
ε
k log n)

measurements and failure probability e−Ω(k/
√
ε) + n−Ω(1).

Set f =
√
ε, so our goal is to get (1 + f2)-approximate `1/`1 recovery with O( log3 1/f

f k log n)
measurements.

For intuition, consider 1-sparse recovery of the following vector x: let c ∈ [0, 2] and set x1 = 1/f9

and x2, . . . , x1+1/f1+c ∈ {±1}. Then we have

‖x
[1]
‖1 = 1/f1+c

and by (7.2), a Count-Sketch with O(1/f)-sized hash tables returns x∗ with

‖x∗ − x‖∞ ≤
√
f‖x

[1/f ]
‖2 ≈ 1/f c/2 = f1+c/2‖x

[1]
‖1.

The reconstruction algorithm therefore cannot reliably find any of the xi for i > 1, and its error on
x1 is at least f1+c/2‖x

[1]
‖1. Hence the algorithm will not do better than a f1+c/2-approximation.

However, consider what happens if we subsample an f c fraction of the vector. The result
probably has about 1/f nonzero values, so a O(1/f)-width Count-Sketch can reconstruct it exactly.
Putting this in our output improves the overall `1 error by about 1/f = f c‖x

[1]
‖1. Since c < 2,

this more than cancels the f1+c/2‖x
[1]
‖1 error the initial Count-Sketch makes on x1, giving an

approximation factor better than 1.
This tells us that subsampling can help. We don’t need to subsample at a scale below k/f (where

we can reconstruct well already) or above k/f3 (where the `2 bound is small enough already), but
in the intermediate range we need to subsample. Our algorithm subsamples at all log 1/f2 rates in
between these two endpoints, and combines the heavy hitters from each.

First we analyze how subsampled Count-Sketch works.

Lemma 7.2.4. Suppose we subsample with probability p and then apply Count-Sketch with Θ(log n)
rows and Θ(q)-sized hash tables. Let y be the subsample of x. Then with failure probability e−Ω(q) +
n−Ω(1) we recover a y∗ with

‖y∗ − y‖∞ ≤
√
p/q‖x

[q/p]
‖2.

Proof. Recall the following form of the Chernoff bound: if X1, . . . , Xm are independent with 0 ≤
Xi ≤M , and µ ≥ E[

∑
Xi], then

Pr[
∑

Xi ≥
4

3
µ] ≤ e−Ω(µ/M).
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Let T be the set of coordinates in the sample. Then E[|T ∩ [ 3q
2p ]|] = 3q/2, so

Pr

[
|T ∩ [

3q

2p
]| ≥ 2q

]
≤ e−Ω(q).

Suppose this event does not happen, so |T ∩ [ 3q
2p ]| < 2q. We also have

‖x
[q/p]
‖2 ≥

√
q

2p
|x 3q

2p
|.

Let Yi = 0 if i /∈ T and Yi = x2
i if i ∈ T . Then

E[
∑
i> 3q

2p

Yi] = p‖x
[ 3q
2p

]
‖22 ≤ p‖x[q/p]

‖22

For i > 3q
2p we have

Yi ≤ |x 3q
2p
|2 ≤ 2p

q
‖x

[q/p]
‖22

giving by Chernoff that

Pr[
∑

Yi ≥
4

3
p‖x

[q/p]
‖22] ≤ e−Ω(q/2)

But if this event does not happen, then

‖y
[2q]
‖22 ≤

∑
i∈T,i> 3q

2p

x2
i =

∑
i> 3q

2p

Yi ≤
4

3
p‖x

[q/p]
‖22

By (7.2), using O(2q)-size hash tables gives a y∗ with

‖y∗ − y‖∞ ≤
1√
2q
‖y

[2q]
‖2 ≤

√
p/q‖x

[q/p]
‖2

with failure probability n−Ω(1), as desired.

Let r = 2 log 1/f . Our algorithm is as follows: for j ∈ {0, . . . , r}, we find and estimate the 2j/2k
largest elements not found in previous j in a subsampled Count-Sketch with probability p = 2−j

and hash size q = ck/f for some parameter c = Θ(r2). We output x′, the union of all these
estimates. Our goal is to show

‖x′ − x‖1 − ‖x[k]
‖1 ≤ O(f2)‖x

[k]
‖1.

For each level j, let Sj be the 2j/2k largest coordinates in our estimate not found in S1∪· · ·∪Sj−1.
Let S = ∪Sj . By Lemma 7.2.4, for each j we have (with failure probability e−Ω(k/f) +n−Ω(1)) that

‖(x′ − x)Sj‖1 ≤ |Sj |
√

2−jf

ck
‖x

[2jck/f ]
‖2

≤ 2−j/2
√
fk

c
‖x

[2k/f ]
‖2
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and so

‖(x′ − x)S‖1 =
r∑
j=0

‖(x′ − x)Sj‖1 ≤
1

(1− 1/
√

2)
√
c

√
fk‖x

[2k/f ]
‖2 (7.4)

By standard arguments, the `∞ bound for S0 gives

‖x[k]‖1 ≤ ‖xS0‖1 + k‖x′S0
− xS0‖∞ ≤

√
fk/c‖x

[2k/f ]
‖2 (7.5)

Combining Equations (7.4) and (7.5) gives

‖x′ − x‖1 − ‖x[k]
‖1 = ‖(x′ − x)S‖1 + ‖xS‖1 − ‖x[k]

‖1
= ‖(x′ − x)S‖1 + ‖x[k]‖1 − ‖xS‖1

= ‖(x′ − x)S‖1 + (‖x[k]‖1 − ‖xS0‖1)−
r∑
j=1

‖xSj‖1

≤
(

1

(1− 1/
√

2)
√
c

+
1√
c

)√
fk‖x

[2k/f ]
‖2 −

r∑
j=1

‖xSj‖1

= O(
1√
c
)
√
fk‖x

[2k/f ]
‖2 −

r∑
j=1

‖xSj‖1 (7.6)

We would like to convert the first term to depend on the `1 norm. For any u and s we have, by
splitting into chunks of size s, that

‖u
[2s]
‖2 ≤

√
1

s
‖u

[s]
‖1

‖u
[s]∩[2s]

‖2 ≤
√
s|us|.

Along with the triangle inequality, this gives us that

√
kf‖x

[2k/f ]
‖2 ≤

√
kf‖x

[2k/f3]
‖2 +

√
kf

r∑
j=1

‖x
[2jk/f ]∩[2j+1k/f ]

‖2

≤ f2‖x
[k/f3]

‖1 +

r∑
j=1

k2j/2|x2jk/f |

so

‖x′ − x‖1 − ‖x[k]
‖1 ≤ O(

1√
c
)f2‖x

[k/f3]
‖1 +

r∑
j=1

O(
1√
c
)k2j/2|x2jk/f | −

r∑
j=1

‖xSj‖1 (7.7)

Define aj = k2j/2|x2jk/f |. The first term grows as f2 so it is fine, but aj can grow as f2j/2 > f2. We
need to show that they are canceled by the corresponding ‖xSj‖1. In particular, we will show that

‖xSj‖1 ≥ Ω(aj)−O(2−j/2f2‖x
[k/f3]

‖1) with high probability—at least wherever aj ≥ ‖a‖1/(2r).

Let U ∈ [r] be the set of j with aj ≥ ‖a‖1/(2r), so that ‖aU‖1 ≥ ‖a‖1/2. We have
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‖x
[2jk/f ]

‖22 = ‖x
[2k/f3]

‖22 +
r∑
i=j

‖x
[2jk/f ]∩[2j+1k/f ]

‖22

≤ ‖x
[2k/f3]

‖22 +
1

kf

r∑
i=j

a2
j (7.8)

For j ∈ U , we have

r∑
i=j

a2
i ≤ aj‖a‖1 ≤ 2ra2

j

so, along with (y2 + z2)1/2 ≤ y + z, we turn Equation (7.8) into

‖x
[2jk/f ]

‖2 ≤ ‖x[2k/f3]
‖2 +

√√√√ 1

kf

r∑
i=j

a2
j

≤
√
f3

k
‖x

[k/f3]
‖1 +

√
2r

kf
aj

When choosing Sj , let T ∈ [n] be the set of indices chosen in the sample. Applying Lemma 7.2.4
the estimate x∗ of xT has

‖x∗ − xT ‖∞ ≤
√

f

2jck
‖x

[2jk/f ]
‖2

≤
√

1

2jc

f2

k
‖x

[k/f3]
‖1 +

√
2r

2jc

aj
k

=

√
1

2jc

f2

k
‖x

[k/f3]
‖1 +

√
2r

c
|x2jk/f |

for j ∈ U .

Let Q = [2jk/f ] \ (S0 ∪ · · · ∪ Sj−1). We have |Q| ≥ 2j−1k/f so E[|Q ∩ T |] ≥ k/2f and
|Q ∩ T | ≥ k/4f with failure probability e−Ω(k/f). Conditioned on |Q ∩ T | ≥ k/4f , since xT has
at least |Q ∩ T | ≥ k/(4f) = 2r/2k/4 ≥ 2j/2k/4 possible choices of value at least |x2jk/f |, xSj must

have at least k2j/2/4 elements at least |x2jk/f | − ‖x∗ − xT ‖∞. Therefore, for j ∈ U ,

‖xSj‖1 ≥ −
1

4
√
c
f2‖x

[k/f3]
‖1 +

k2j/2

4
(1−

√
2r

c
)|x2jk/f |
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and therefore

r∑
j=1

‖xSj‖1 ≥
∑
j∈U
‖xSj‖1 ≥

∑
j∈U
− 1

4
√
c
f2‖x

[k/f3]
‖1 +

k2j/2

4
(1−

√
2r

c
)|x2jk/f |

≥ − r

4
√
c
f2‖x

[k/f3]
‖1 +

1

4
(1−

√
2r

c
)‖aU‖1

≥ − r

4
√
c
f2‖x

[k/f3]
‖1 +

1

8
(1−

√
2r

c
)

r∑
j=1

k2j/2|x2jk/f | (7.9)

Using (7.7) and (7.9) we get

‖x′ − x‖1 − ‖x[k]
‖1 ≤

(
r

4
√
c

+O(
1√
c
)

)
f2‖x

[k/f3]
‖1 +

r∑
j=1

(
O(

1√
c
) +

1

8

√
2r

c
− 1

8

)
k2j/2|x2jk/f |

≤ f2‖x
[k/f3]

‖1 ≤ f2‖x
[k]
‖1

for some c . r2. Hence we use a total of rc
f k log n = log3 1/f

f k log n measurements for 1 + f2-
approximate `1/`1 recovery.

For each j ∈ {0, . . . , r} we had failure probability e−Ω(k/f) + n−Ω(1) (from Lemma 7.2.4 and
|Q ∩ T | ≥ k/2f). By the union bound, our overall failure probability is at most

(log
1

f
)(e−Ω(k/f) + n−Ω(1)) ≤ e−Ω(k/f) + n−Ω(1),

proving Theorem 7.2.3.

7.3 Adaptive `1 lower bound

This section proves the following theorem:

Theorem 7.3.1. Any, possibly adaptive, (1+ε)-approximate `1/`1 recovery scheme with sufficiently
small constant failure probability δ must make Ω( 1√

ε
k/ log(k/ε)) measurements.

Setting. One would like to estimate a vector x ∈ Rn from m linear measurements A1x, . . . , Amx.
One may choose each vector Ai based on A1x, . . . , Ai−1x, and must output x′ satisfying

‖x′ − x‖1 ≤ O(1) · min
k-sparse y

‖x− y‖1

We will show that Ω̃(k/
√
ε) adaptive measurements are necessary, which shows that our Õ( 1√

ε
k log n)

nonadaptive upper bound (Lemma 7.2.3) is tight up to logarithmic factors—even in the adaptive
setting.

A recent lower bound showed that Ω(k/ε) measurements are necessary in the `2 setting [ACD11].
Our result can be seen as the `1 analog of this result. Their techniques rely on special properties of
the 2-norm; namely, that it is a rotationally invariant inner product space and that the Gaussian is
both 2-stable and a maximum entropy distribution. Such techniques do not seem useful for proving
lower bounds for `1.
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Overview of section. In Section 7.3.1 we show how to relate a lower bound on bit complexity
to a lower bound on measurement complexity, with only a log n loss. In Section 7.3.2, we show
that recovering the locations of an ε fraction of d ones in a vector of size n > d/ε requires Ω̃(εd)
bits. In Section 7.3.3 we establish a new lower bound on the communication complexity of a two-
party communication problem that we call Multi`∞. In Section 7.3.4 we show that successful sparse
recovery must solve one of the previous problems, giving a lower bound in bit complexity and hence
measurement complexity.

Section 7.3.5 is essentially an appendix to Section 7.3.3, showing that the Gap`∞ problem is
hard on a particular distribution.

7.3.1 Bit complexity to measurement complexity

This section describes how a lower bound on bit complexity implies a lower bound on the number
of measurements.

Let X ⊂ Rn be a distribution with xi ∈ {−nd, . . . , nd} for all i ∈ [n] and x ∈ X. Here d = Θ(1)
is a parameter. Given an adaptive compressed sensing scheme A, we define a (1 + ε)-approximate
`1/`1 sparse recovery multiround bit scheme on X as follows.

Let Ai be the i-th (possibly adaptively chosen) measurement matrix of the compressed sensing
scheme. We may assume that the union of rows in matrices A1, . . . , Ar generated by A is an
orthonormal system, since the rows can be orthogonalized in a post-processing step. We can
assume that r ≤ n.

Choose a random u ∈ Rn from the distribution N (0, 1
nc · In×n), where c = Θ(1) is a parameter.

We require that the compressed sensing scheme outputs a valid result of (1+ε)-approximate recovery
on x+u with probability at least 1−δ, over the choice of u and its random coins. By Yao’s minimax
principle, we can fix the randomness of the compressed sensing scheme and assume that the scheme
is deterministic.

Let B1 be the matrix A1 with entries rounded to t log n bits for a parameter t = Θ(1). We
compute B1x. Then, we compute B1x + A1u. From this, we compute A2, using the algorithm
specified by A as if B1x + A1u were equal to A1x′ for some x′. For this, we use the following
lemma, which is Lemma 5.1 of [DIPW10].

Lemma 7.3.2. Consider any m × n matrix A with orthonormal rows. Let B be the result of
rounding A to b bits per entry. Then for any v ∈ Rn there exists an s ∈ Rn with Bv = A(v − s)
and ‖s‖1 < n22−b‖v‖1.

In general for i ≥ 2, given B1x + A1u,B2x + A2u, . . . , Bi−1x + Ai−1u we compute Ai, and
round to t log n bits per entry to get Bi. The output of the multiround bit scheme is the same as
that of the compressed sensing scheme. If the compressed sensing scheme uses r rounds, then the
multiround bit scheme uses r rounds. Let b denote the total number of bits in the concatenation
of discrete vectors B1x,B2x, . . . , Brx.

Lemma 7.3.3. For t = O(1 + c+ d), a lower bound of Ω(b) bits for a multiround bit scheme with
error probability at most δ + 1/n implies a lower bound of Ω(b/((1 + c + d) log n)) measurements
for (1 + ε)-approximate sparse recovery schemes with failure probability at most δ.

Proof. Let A be a (1+ ε)-approximate adaptive compressed sensing scheme with failure probability
δ. We will show that the associated multiround bit scheme has failure probability δ + 1/n.

By Lemma 7.3.2, for any vector x ∈ {−nd, . . . , nd} we have B1x = A1(x+ s) for a vector s with
‖s‖1 ≤ n22−t logn‖x‖1, so ‖s‖2 ≤ n2.5−t‖x‖2 ≤ n3.5+d−t. Notice that u + s ∼ N (s, 1

nc · In×n). We
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use the following quick suboptimal upper bound on the statistical distance between two univariate
normal distributions, which suffices for our purposes.

Fact 7.3.4. (see section 3 of [Pol05]) The variation distance between N (θ1, 1) and N (θ2, 1) is
4τ√
2π

+O(τ2), where τ = |θ1 − θ2|/2.

It follows by Fact 7.3.4 and independence across coordinates, that the variation distance between
N (0, 1

nc · In×n) and N (s, 1
nc · In×n) is the same as that between N (0, In×n) and N (s · nc/2, In×n),

which can be upper-bounded as

n∑
i=1

·2n
c/2|si|√

2π
+O(ncs2

i ) = O(nc/2‖s‖1 + nc‖s‖22)

= O(nc/2 ·
√
n‖s‖2 + nc‖s‖22)

= O(nc/2+4+d−t + nc+7+2d−2t).

It follows that for t = O(1 + c+ d), the variation distance is at most 1/n2.

Therefore, if T 1 is the algorithm which takes A1(x+u) and produces A2, then T 1(A1(x+u)) =
T 1(B1x+ A1u) with probability at least 1− 1/n2. This follows since B1x+ A1u = A1(x+ u+ s)
and u+ s and u have variation distance at most 1/n2.

In the second round, B2x+A2u is obtained, and importantly we have for the algorithm T 2 in
the second round, T 2(A2(x+u)) = T 2(B2x+A2u) with probability at least 1− 1/n2. This follows
since A2 is a deterministic function of A1u, and A1u and A2u are independent since A1 and A2 are
orthonormal while u is a vector of i.i.d. Gaussians (here we use the rotational invariance / symmetry
of Gaussian space). It follows by induction that with probability at least 1− r/n2 ≥ 1− 1/n, the
output of the multiround bit scheme agrees with that of A on input x+ u.

Hence, if mi is the number of measurements in round i, and m =
∑r

i=1mi, then we have a
multiround bit scheme using a total of b = mt log n = O(m(1 + c + d) log n) bits and with failure
probability δ + 1/n.

7.3.2 Information lower bound for recovering noise bits

Definition 7.3.5. We say a set C ⊂ [q]d is a (d, q, ε) code if any two distinct c, c′ ∈ C agree in at
most εd positions. We say a set X ⊂ {0, 1}dq represents C if X is C concatenated with the trivial
code [q]→ {0, 1}q given by i→ ei.

Claim 7.3.6. For ε ≥ 2/q, there exist (d, q, ε) codes C of size qΩ(εd) by the Gilbert-Varshamov
bound (details in [DIPW10]).

Lemma 7.3.7. Let X ⊂ {0, 1}dq represent a (d, q, ε) code. Suppose y ∈ Rdq satisfies ‖y − x‖1 ≤
(1− ε)‖x‖1 for some x ∈ X. Then we can recover x uniquely from y.

Proof. We assume yi ∈ [0, 1] for all i; thresholding otherwise decreases ‖y−x‖1. We will show that
there exists no other x′ ∈ X with ‖y − x‖1 ≤ (1− ε)‖x‖1; thus choosing the nearest element of X
is a unique decoder. Suppose otherwise, and let S = supp(x), T = supp(x′). Then

(1− ε)‖x‖1 ≥ ‖x− y‖1
= ‖x‖1 − ‖yS‖1 + ‖yS‖1

‖yS‖1 ≥ ‖yS‖1 + εd
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Since the same is true relative to x′ and T , we have

‖yS‖1 + ‖yT ‖1 ≥ ‖yS‖1 + ‖yT ‖1 + 2εd

2‖yS∩T ‖1 ≥ 2‖yS∪T ‖1 + 2εd

‖yS∩T ‖1 ≥ εd
|S ∩ T | ≥ εd

This violates the distance of the code represented by X.

Lemma 7.3.8. Let R = [s, cs] for some constant c and parameter s. Let X be a permutation
independent distribution over {0, 1}n with ‖x‖1 ∈ R with probability p. If y satisfies ‖x − y‖1 ≤
(1− ε)‖x‖1 with probability p′ with p′ − (1− p) = Ω(1), then I(x; y) = Ω(εs log(n/s)).

Proof. For each integer i ∈ R, let Xi ⊂ {0, 1}n represent an (i, n/i, ε) code. Let pi = Prx∈X [‖x‖1 =
i]. Let Sn be the set of permutations of [n]. Then the distribution X ′ given by (a) choosing
i ∈ R proportional to pi, (b) choosing σ ∈ Sn uniformly, (c) choosing xi ∈ Xi uniformly, and (d)
outputting x′ = σ(xi) is equal to the distribution (x ∈ X | ‖x‖1 ∈ R).

Now, because p′ ≥ Pr[‖x‖1 /∈ R] + Ω(1), x′ chosen from X ′ satisfies ‖x′ − y‖1 ≤ (1 − ε)‖x′‖1
with δ ≥ p′ − (1 − p) probability. Therefore, with at least δ/2 probability, i and σ are such
that ‖σ(xi) − y‖1 ≤ (1 − ε)‖σ(xi)‖1 with δ/2 probability over uniform xi ∈ Xi. But given y
with ‖y − σ(xi)‖1 small, we can compute y′ = σ−1(y) with ‖y′ − xi‖1 equally small. Then by
Lemma 7.3.7 we can recover xi from y with probability δ/2 over xi ∈ Xi. Thus for this i and σ,
I(x; y | i, σ) ≥ Ω(log |Xi|) = Ω(δεs log(n/s)) by Fano’s inequality. But then I(x; y) = Ei,σ[I(x; y |
i, σ)] = Ω(δ2εs log(n/s)) = Ω(εs log(n/s)).

7.3.3 Direct sum for distributional `∞

This section shows that the multiround communication complexity of r instances of the Gap`∞
problem is r times that of one instance.

We assume basic familiarity with communication complexity; see the textbook of Kushilevitz
and Nisan [KN97] for further background. Our reason for using communication complexity is
to prove lower bounds, and we will do so by using information-theoretic arguments. We refer the
reader to the thesis of Bar-Yossef [Bar02] for a comprehensive introduction to information-theoretic
arguments used in communication complexity.

We consider two-party randomized communication complexity. There are two parties, Alice and
Bob, with input vectors x and y respectively, and their goal is to solve a promise problem f(x, y).
The parties have private randomness. The communication cost of a protocol is its maximum
transcript length, over all possible inputs and random coin tosses. The randomized communication
complexity Rδ(f) is the minimum communication cost of a randomized protocol Π which for every
input (x, y) outputs f(x, y) with probability at least 1 − δ (over the random coin tosses of the
parties). We also study the distributional complexity of f , in which the parties are deterministic
and the inputs (x, y) are drawn from distribution µ, and a protocol is correct if it succeeds with
probability at least 1− δ in outputting f(x, y), where the probability is now taken over (x, y) ∼ µ.
We define Dµ,δ(f) to be the minimum communication cost of a correct protocol Π.

We consider the following promise problem Gap`B∞, where B is a parameter, which was studied in
[SS02, BJKS04]. The inputs are pairs (x, y) of m-dimensional vectors, with xi, yi ∈ {0, 1, 2, . . . , B}
for all i ∈ [m], with the promise that (x, y) is one of the following types of instance:

• NO instance: for all i, |xi − yi| ∈ {0, 1}, or
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• YES instance: there is a unique i for which |xi − yi| = B, and for all j 6= i, |xj − yj | ∈ {0, 1}.

The goal of a protocol is to decide which of the two cases (NO or YES) the input is in.

Consider the distribution σ: for each j ∈ [m], choose a random pair (Zj , Pj) ∈ {0, 1, 2, . . . , B}×
{0, 1}\{(0, 1), (B, 0)}. If (Zj , Pj) = (z, 0), then Xj = z and Yj is uniformly distributed in {z, z+1};
if (Zj , Pj) = (z, 1), then Yj = z and Xj is uniformly distributed on {z−1, z}. Let Z = (Z1, . . . , Zm)
and P = (P1, . . . , Pm). Next choose a random coordinate S ∈ [m]. For coordinate S, replace
(XS , YS) with a uniform element of {(0, 0), (0, B)}. Let X = (X1, . . . , Xm) and Y = (Y1, . . . , Ym).

Using similar arguments to those in [BJKS04], we can show that there are positive, sufficiently
small constants δ0 and C so that for any randomized protocol Π which succeeds with probability
at least 1− δ0 on distribution σ,

I(X,Y ; Π|Z,P ) ≥ Cm

B2
, (7.10)

where, with some abuse of notation, Π is also used to denote the transcript of the corresponding
randomized protocol, and here the input (X,Y ) is drawn from σ conditioned on (X,Y ) being a
NO instance. Here, Π is randomized, and succeeds with probability at least 1 − δ0, where the
probability is over the joint space of the random coins of Π and the input distribution.

Our starting point for proving (7.10) is Jayram’s lower bound for the conditional mutual infor-
mation when the inputs are drawn from a related distribution (reference [70] on p.182 of [Bar02]),
but we require several nontrivial modifications to his argument in order to apply it to bound the
conditional mutual information for our input distribution, which is σ conditioned on (X,Y ) being
a NO instance. Essentially, we are able to show that the variation distance between our distribu-
tion and his distribution is small, and use this to bound the difference in the conditional mutual
information between the two distributions. The proof is rather technical, and we postpone it to
Section 7.3.5.

We make a few simple refinements to (7.10). Define the random variable W which is 1 if (X,Y )
is a YES instance, and 0 if (X,Y ) is a NO instance. Then by definition of the mutual information,
if (X,Y ) is drawn from σ without conditioning on (X,Y ) being a NO instance, then we have

I(X,Y ; Π|W,Z, P ) ≥ 1

2
I(X,Y ; Π|Z,P,W = 0)

= Ω(m/B2).

Observe that

I(X,Y ; Π|S,W,Z, P ) ≥ I(X,Y ; Π|W,Z, P )−H(S) = Ω(m/B2), (7.11)

where we assume that Ω(m/B2) − logm = Ω(m/B2). Define the constant δ1 = δ0/4. We now
define a problem which involves solving r copies of Gap`B∞.

Definition 7.3.9 (Multi`r,B∞ Problem). There are r pairs of inputs (x1, y1), (x2, y2), . . . , (xr, yr)
such that each pair (xi, yi) is a legal instance of the Gap`B∞ problem. Alice is given x1, . . . , xr. Bob
is given y1, . . . , yr. The goal is to output a vector v ∈ {NO,Y ES}r, so that for at least a 1 − δ1

fraction of the entries i, vi = Gap`B∞(xi, yi).

Remark. Notice that Definition 7.3.9 is defining a promise problem. We will study the distribu-
tional complexity of this problem under the distribution σr, which is a product distribution on the
r instances (x1, y1), (x2, y2), . . . , (xr, yr).
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Theorem 7.3.10. Dσr,δ1(Multi`r,B∞ ) = Ω(rm/B2).

Proof. Let Π be any deterministic protocol for Multi`r,B∞ which succeeds with probability at least
1− δ1 in solving Multi`r,B∞ when the inputs are drawn from σr, where the probability is taken over
the input distribution. We show that Π has communication cost Ω(rm/B2).

Let X1, Y 1, S1,W 1, Z1, P 1 . . . , Xr, Y r, Sr,W r, Zr, and P r be the random variables associated
with σr, i.e., Xj , Y j , Sj ,W j , P j and Zj correspond to the random variables X,Y, S,W,Z, P as-
sociated with the j-th independent instance drawn according to σ, defined above. We let X =
(X1, . . . , Xr), X<j = (X1, . . . , Xj−1), and X−j equal X without Xj . Similarly we define these
vectors for Y, S,W,Z and P .

By the chain rule for mutual information, I(X1, . . . , Xr, Y 1, . . . , Y r; Π|S,W,Z, P ) is equal to∑r
j=1 I(Xj , Y j ; Π|X<j , Y <j , S,W,Z, P ). Let V be the output of Π, and Vj be its j-th coordinate.

For a value j ∈ [r], we say that j is good if PrX,Y [Vj = Gap`B∞(Xj , Y j)] ≥ 1− 2δ0
3 . Since Π succeeds

with probability at least 1− δ1 = 1− δ0/4 in outputting a vector with at least a 1− δ0/4 fraction
of correct entries, the expected probability of success over a random j ∈ [r] is at least 1− δ0/2, and
so by a Markov argument, there are Ω(r) good indices j.

Fix a value of j ∈ [r] that is good, and consider I(Xj , Y j ; Π|X<j , Y <j , S,W,Z, P ). By expand-
ing the conditioning, I(Xj , Y j ; Π|X<j , Y <j , S,W,Z, P ) is equal to

Ex,y,s,w,z,p[I(Xj , Y j ; Π | (X<j , Y <j , S−j ,W−j , Z−j , P−j) = (x, y, s, w, z, p), Sj ,W j , Zj , P j)].(7.12)

For each x, y, s, w, z, p, define a randomized protocol Πx,y,s,w,z,p for Gap`B∞ under distribution σ.
Suppose that Alice is given a and Bob is given b, where (a, b) ∼ σ. Alice sets Xj = a, while Bob
sets Y j = b. Alice and Bob use x, y, s, w, z and p to set their remaining inputs as follows. Alice sets
X<j = x and Bob sets Y <j = y. Alice and Bob can randomly set their remaining inputs without
any communication, since for j′ > j, conditioned on Sj

′
,W j′ , Zj

′
, and P j

′
, Alice and Bob’s inputs

are independent. Alice and Bob run Π on inputs X,Y , and define Πx,y,s,w,z,p(a, b) = Vj . We say a
tuple (x, y, s, w, z, p) is good if

Pr
X,Y

[Vj = Gap`B∞(Xj , Y j) | X<j = x, Y <j = y, S−j = s,W−j = w,Z−j = z, P−j = p] ≥ 1− δ0.

By a Markov argument, and using that j is good, we have Prx,y,s,w,z,p[(x, y, s, w, z, p) is good ] =
Ω(1). Plugging into (7.12), I(Xj , Y j ; Π|X<j , Y <j , S,W,Z, P ) is at least a constant times

Ex,y,s,w,z,p[I(XjY j ; Π|(X<j , Y <j , S−j ,W−j , Z−j , P−j) = (x, y, s, w, z, p),

Sj ,W j , Zj , P j , (x, y, s, w, z, p) is good)].

For any (x, y, s, w, z, p) that is good, Πx,y,s,w,z,p(a, b) = Vj with probability at least 1− δ0, over the
joint distribution of the randomness of Πx,y,s,w,z,p and (a, b) ∼ σ. By (7.11),

Ex,y,s,w,z,p[I(Xj , Y j ; Π|(X<j , Y <j , S−j ,W−j , Z−j , P−j) = (x, y, s, w, z, p),

Sj ,W j , Zj , P j , (x, y, s, w, z, p) is good] = Ω
( m
B2

)
.

Since there are Ω(r) good indices j, we have I(X1, . . . , Xr; Π|S,W,Z, P ) = Ω(mr/B2). Since the
distributional complexity Dσr,δ1(Multi`r,B∞ ) is at least the minimum of I(X1, . . . , Xr; Π|S,W,Z, P )
over deterministic protocols Π which succeed with probability at least 1− δ1 on input distribution
σr, it follows that Dσr,δ1(Multi`r,B∞ ) = Ω(mr/B2).
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7.3.4 The overall lower bound

This section gives a lower bound for multiround bit schemes.
Fix parameters B = Θ(1/ε1/2), r = k, m = 1/ε3/2, and n = k/ε3. Given an instance

(x1, y1), . . . , (xr, yr) of Multi`r,B∞ we define the input signal z to a sparse recovery problem. We
allocate a set Si of m disjoint coordinates in a universe of size n for each pair (xi, yi), and on these
coordinates place the vector yi− xi. The locations turn out to be essential for the proof of Lemma
7.3.12 below, and are placed uniformly at random among the n total coordinates (subject to the
constraint that the Si are disjoint). Let ρ be the induced distribution on z.

Fix a (1 + ε)-approximate k-sparse recovery multiround bit scheme Alg that uses b bits and
succeeds with probability at least 1− δ1/4 over z ∼ ρ. Let S be the set of top k coordinates in z.
Alg has the guarantee that if it succeeds for z ∼ ρ, then there exists a small u with ‖u‖1 < n−2 so
that w = Alg(z) satisfies

‖w − z − u‖1 ≤ (1 + ε)‖(z + u)[n]\S‖1
‖w − z‖1 ≤ (1 + ε)‖z[n]\S‖1 + (2 + ε)/n2

≤ (1 + 2ε)‖z[n]\S‖1

and thus

‖(w − z)S‖1 + ‖(w − z)[n]\S‖1 ≤ (1 + 2ε)‖z[n]\S‖1. (7.13)

We will show that satisfying (7.13) with 1− δ1/4 probability requires b = Ω(k/ε1/2).

Lemma 7.3.11. For B = Θ(1/ε1/2) sufficiently large, suppose that

Pr
z∼ρ

[‖(w − z)S‖1 ≤ 10ε · ‖z[n]\S‖1] ≥ 1− δ1

2
.

Then Alg requires b = Ω(k/ε1/2).

Proof. We show how to use Alg to solve instances of Multi`r,B∞ with probability at least 1 − δ1,
where the probability is over input instances to Multi`r,B∞ distributed according to σr, inducing the
distribution ρ on z. The lower bound will follow by Theorem 7.3.10. Let w be the output of Alg.

Given x1, . . . , xr, Alice places −xi on the appropriate coordinates in the set Si used in defining
z, obtaining a vector zAlice. Given y1, . . . , yr, Bob places the yi on the appropriate coordinates in
Si. He thus creates a vector zBob for which zAlice + zBob = z. In round i, Alice transmits BizAlice
to Bob, who computes Bi(zAlice + zBob) and transmits it back to Alice. Alice can then compute
Bi(z)+Ai(u) for a random u ∼ N (0, 1

nc ·In×n). We can assume all coordinates of the output vector
w are in the real interval [0, B], since rounding the coordinates to this interval can only decrease
the error.

For each i we say that Si is bad if either

• there is no coordinate j in Si for which |wj | ≥ B
2 yet (xi, yi) is a YES instance of Gap`B∞, or

• there is a coordinate j in Si for which |wj | ≥ B
2 yet either (xi, yi) is a NO instance of Gap`B∞

or j is not the unique j∗ for which yij∗ − xij∗ = B.

The `1-error incurred by a bad block is at least B/2 − 1. Hence, if there are t bad blocks, the
total error is at least t(B/2− 1), which must be smaller than 10ε · ‖z[n]\S‖1 with probability 1− δ.
Suppose this happens.
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We bound t. All coordinates in z[n]\S have value in the set {0, 1}. Hence, ‖z[n]\S‖1 < rm. So
t ≤ 20εrm/(B − 2). For B ≥ 6, t ≤ 30εrm/B. Plugging in r, m and B, t ≤ Ck, where C > 0 is a
constant that can be made arbitrarily small by increasing B = Θ(1/ε1/2).

Here we choose C = δ1. We also condition on ‖u‖2 ≤ n−c for a sufficiently large constant c > 0,
which occurs with probability at least 1− 1/n. Hence, with probability at least 1− δ1/2− 1/n >
1 − δ1, we have a 1 − δ1 fraction of indices i for which the following algorithm correctly outputs
Gap`∞(xi, yi): if there is a j ∈ Si for which |wj | ≥ B/2, output YES, otherwise output NO. It follows
by Theorem 7.3.10 that Alg requires b = Ω(k/ε1/2), independent of the number of rounds.

Lemma 7.3.12. Suppose Prz∼ρ[‖(w − z)[n]\S‖1 ≤ (1 − 8ε) · ‖z[n]\S‖1] ≥ δ1/4. Then Alg requires

b = Ω(k log(1/ε)/ε1/2).

Proof. By Lemma 7.3.8, we have I(w; z) = Ω(εmr log(n/(mr))), which implies that b = Ω(εmr log(n/(mr))),
independent of the number r of rounds used by Alg, since the only information about the signal is
in the concatenation of B1z, . . . , Brz.

Finally, we combine our Lemma 7.3.11 and Lemma 7.3.12.

Theorem 7.3.1. Any, possibly adaptive, (1+ε)-approximate `1/`1 recovery scheme with sufficiently
small constant failure probability δ must make Ω( 1√

ε
k/ log(k/ε)) measurements.

Proof. We will lower bound the number of bits used by any `1/`1 multiround bit scheme Alg. In
order to satisfy (7.13), we must either have ‖(w − z)S‖1 ≤ 10ε · ‖z[n]\S‖1 or ‖(w − z)[n]\S‖1 ≤
(1 − 8ε)‖z[n]\S‖1. Since Alg succeeds with probability at least 1 − δ1/4, it must either satisfy
the hypothesis of Lemma 7.3.11 or Lemma 7.3.12. But by these two lemmas, it follows that
b = Ω(k/ε1/2). Therefore by Lemma 7.3.3, any (1 + ε)-approximate `1/`1 sparse recovery algorithm
succeeding with probability at least 1 − δ1/4 + 1/n = 1 − Ω(1) requires Ω(k/(ε1/2 · log(k/ε)))
measurements.

7.3.5 Switching distributions from Jayram’s distributional bound

We first sketch a proof of Jayram’s lower bound on the distributional complexity of Gap`B∞ [Jay02],
then change it to a different distribution that we need for our sparse recovery lower bounds. Let
X,Y ∈ {0, 1, . . . , B}m. Define distribution µm,B as follows: for each j ∈ [m], choose a random
pair (Zj , Pj) ∈ {0, 1, 2, . . . , B} × {0, 1} \ {(0, 1), (B, 0)}. If (Zj , Pj) = (z, 0), then Xj = z and Yj is
uniformly distributed in {z, z+ 1}; if (Zj , Pj) = (z, 1), then Yj = z and Xj is uniformly distributed
on {z − 1, z}. Let X = (X1, . . . , Xm), Y = (Y1, . . . , Ym), Z = (Z1, . . . , Zm) and P = (P1, . . . , Pm).

The other distribution we define is σm,B, which is the same as distribution σ in Section 7.3.3
(we include m and B in the notation here for clarity). This is defined by first drawing X and Y
according to distribution µm,B. Then, we pick a random coordinate S ∈ [m] and replace (XS , YS)
with a uniformly random element in the set {(0, 0), (0, B)}.

Let Π be a deterministic protocol that errs with probability at most δ on input distribution
σm,B.

By the chain rule for mutual information, when X and Y are distributed according to µm,B,

I(X,Y ; Π|Z,P ) =
m∑
j=1

I(Xj , Yj ; Π|X<j , Y <j , Z, P ),
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which is equal to

m∑
j=1

Ex,y,z,p[I(Xj , Yj ; Π |Zj , Pj , X<j = x, Y <j = y, Z−j = z, P−j = p)].

Say that an index j ∈ [m] is good if conditioned on S = j, Π succeeds on σm,B with probability at
least 1− 2δ. By a Markov argument, at least m/2 of the indices j are good. Fix a good index j.

We say that the tuple (x, y, z, p) is good if conditioned on S = j, X<j = x, Y <j = y, Z−j = z,
and P−j = p, Π succeeds on σm,B with probability at least 1 − 4δ. By a Markov bound, with
probability at least 1/2, (x, y, z, p) is good. Fix a good (x, y, z, p).

We can define a single-coordinate protocol Πx,y,z,p,j as follows. The parties use x and y to fill in
their input vectors X and Y for coordinates j′ < j. They also use Z−j = z, P−j = p, and private
randomness to fill in their inputs without any communication on the remaining coordinates j′ > j.
They place their single-coordinate input (U, V ) on their j-th coordinate. The parties then output
whatever Π outputs.

It follows that Πx,y,z,p,j is a single-coordinate protocol Π′ which distinguishes (0, 0) from (0, B)
under the uniform distribution with probability at least 1−4δ. For the single-coordinate problem, we
need to bound I(Xj , Yj ; Π′|Zj , Pj) when (Xj , Yj) is uniformly random from the set {(Zj , Zj), (Zj , Zj+
1)} if Pj = 0, and (Xj , Yj) is uniformly random from the set {(Zj , Zj), (Zj − 1, Zj)} if Pj = 1. By
the same argument as in the proof of Lemma 8.2 of [BJKS04], if Π′u,v denotes the distribution on
transcripts induced by inputs u and v and private coins, then we have

I(Xj , Yj ; Π′|Zj , Pj) ≥ Ω(1/B2) · (h2(Π′0,0,Π
′
0,B) + h2(Π′B,0,Π

′
B,B)), (7.14)

where

h(α, β) =

√
1

2

∑
ω∈Ω

(
√
α(ω)−

√
β(ω))2

is the Hellinger distance between distributions α and β on support Ω. For any two distributions α
and β, if we define

DTV (α, β) =
1

2

∑
ω∈Ω

|α(ω)− β(ω)|

to be the variation distance between them, then
√

2 · h(α, β) ≥ DTV (α, β) (see Proposition 2.38 of
[Bar02]).

Finally, since Π′ succeeds with probability at least 1− 4δ on the uniform distribution on input
pair in {(0, 0), (0, B)}, we have

√
2 · h(Π′0,0,Π

′
0,B) ≥ DTV (Π′0,0,Π

′
0,B) = Ω(1).

Hence,

I(Xj , Yj ; Π|Zj , Pj , X<j = x, Y <j = y, Z−j = z, P−j = p)

= Ω(1/B2)

for each of the Ω(m) good j. Thus I(X,Y ; Π|Z,P ) = Ω(m/B2) when inputs X and Y are dis-
tributed according to µm,B, and Π succeeds with probability at least 1− δ on X and Y distributed
according to σm,B.
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Changing the distribution. Consider the distribution

ζm,B = (σm,B | (XS , YS) = (0, 0)).

We show I(X,Y ; Π|Z) = Ω(m/B2) when X and Y are distributed according to ζm,B rather than
according to µm,B.

For X and Y distributed according to ζm,B, by the chain rule we again have that I(X,Y ; Π|Z,P )
is equal to

m∑
j=1

Ex,y,z,p[I(Xj , Yj ; Π|Zj , Pj , X<j = x, Y <j = y, Z−j = z, P−j = p)].

Again, say that an index j ∈ [m] is good if conditioned on S = j, Π succeeds on σm,B with
probability at least 1 − 2δ. By a Markov argument, at least m/2 of the indices j are good. Fix a
good index j.

Again, we say that the tuple (x, y, z, p) is good if conditioned on S = j, X<j = x, Y <j = y,
Z−j = z and P−j = p, Π succeeds on σm,B with probability at least 1− 4δ. By a Markov bound,
with probability at least 1/2, (x, y, z, p) is good. Fix a good (x, y, z, p).

As before, we can define a single-coordinate protocol Πx,y,z,p,j . The parties use x and y to fill
in their input vectors X and Y for coordinates j′ < j. They can also use Z−j = z, P−j = p, and
private randomness to fill in their inputs without any communication on the remaining coordinates
j′ > j. They place their single-coordinate input (U, V ), uniformly drawn from {(0, 0), (0, B)},
on their j-th coordinate. The parties output whatever Π outputs. Let Π′ denote Πx,y,z,p,j for
notational convenience.

The first issue is that unlike before Π′ is not guaranteed to have success probability at least
1− 4δ since Π is not being run on input distribution σm,B in this reduction. The second issue is in
bounding I(Xj , Yj ; Π′|Zj , Pj) since (Xj , Yj) is now drawn from the marginal distribution of ζm,B

on coordinate j.

Notice that S 6= j with probability 1− 1/m, which we condition on. This immediately resolves
the second issue since now the marginal distribution on (Xj , Yj) is the same under ζm,B as it was
under σm,B; namely it is the following distribution: (Xj , Yj) is uniformly random from the set
{(Zj , Zj), (Zj , Zj + 1)} if Pj = 0, and (Xj , Yj) is uniformly random from the set {(Zj , Zj), (Zj −
1, Zj)} if Pj = 1.

We now address the first issue. After conditioning on S 6= j, we have that (X−j , Y −j) is drawn
from ζm−1,B. If instead (X−j , Y −j) were drawn from µm−1,B, then after placing (U, V ) the input
to Π would be drawn from σm,B conditioned on a good tuple. Hence in that case, Π′ would succeed
with probability 1 − 4δ. Thus for our actual distribution on (X−j , Y −j), after conditioning on
S 6= j, the success probability of Π′ is at least

1− 4δ −DTV (µm−1,B, ζm−1,B).

Let Cµ,m−1,B be the random variable which counts the number of coordinates i for which
(Xi, Yi) = (0, 0) when X and Y are drawn from µm−1,B. Let Cζ,m−1,B be a random variable
which counts the number of coordinates i for which (Xi, Yi) = (0, 0) when X and Y are drawn
from ζm−1,B. Observe that (Xi, Yi) = (0, 0) in µ only if Pi = 0 and Zi = 0, which happens with
probability 1/(2B). Hence, Cµ,m−1,B is distributed as Binomial(m− 1, 1/(2B)), while Cζ,m−1,B is
distributed as Binomial(m−2, 1/(2B))+1. We use µ′ to denote the distribution of Cµ,m−1,B and ζ ′

to denote the distribution of Cζ,m−1,B. Also, let ι denote the Binomial(m−2, 1/(2B)) distribution.
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Conditioned on Cµ,m−1,B = Cζ,m−1,B, we have that µm−1,B and ζm−1,B are equal as distributions,
and so

DTV (µm−1,B, ζm−1,B) ≤ DTV (µ′, ζ ′).

We use the following fact:

Fact 7.3.13. (see, e.g., Fact 2.4 of [GMRZ11]). Any binomial distribution X with variance equal
to σ2 satisfies DTV (X,X + 1) ≤ 2/σ.

By definition,
µ′ = (1− 1/(2B)) · ι+ 1/(2B) · ζ ′.

Since the variance of the Binomial(m− 2, 1/(2B)) distribution is

(m− 2)/(2B) · (1− 1/(2B)) = m/(2B)(1− o(1)),

applying Fact 7.3.13 we have

DTV (µ′, ζ ′) = DTV ((1− 1/(2B)) · ι+ (1/(2B)) · ζ ′, ζ ′)

=
1

2
· ‖(1− 1/(2B)) · ι+ (1/(2B)) · ζ ′ − ζ ′‖1

= (1− 1/(2B)) ·DTV (ι, ζ ′)

≤ 2
√

2B√
m
· (1 + o(1))

= O

(√
B

m

)
.

It follows that the success probability of Π′ is at least

1− 4δ −O

(√
B

m

)
≥ 1− 5δ.

Let E be an indicator random variable for the event that S 6= j. Then H(E) = O((logm)/m).
Hence,

I(Xj , Yj ; Π′|Zj , Pj) ≥ I(Xj , Yj ; Π′|Zj , Pj , E)−O((logm)/m)

≥ (1− 1/m) · I(Xj , Yj ; Π′|Zj , Pj , S 6= j)−O((logm)/m)

= Ω(1/B2),

where we assume that Ω(1/B2)−O((logm)/m) = Ω(1/B2).
Hence, I(X,Y ; Π|Z,P ) = Ω(m/B2) when inputs X and Y are distributed according to ζm,B,

and Π succeeds with probability at least 1− δ on X and Y distributed according to σm,B.

7.4 Lower bounds for k-sparse output

Theorem 7.4.1. Any 1 + ε-approximate `1/`1 nonadaptive recovery scheme with k-sparse output
and failure probability δ requires m = Ω(1

ε (k log 1
ε + log 1

δ )), for 32 ≤ 1
δ ≤ nε

2/k.

Theorem 7.4.2. Any 1 + ε-approximate `2/`2 nonadaptive recovery scheme with k-sparse output

and failure probability δ requires m = Ω( 1
ε2

(k + log ε2

δ )), for 32 ≤ 1
δ ≤ nε

2/k.
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These two theorems correspond to four statements: one for large k and one for small δ for both
`1 and `2.

All the lower bounds proceed by reductions from communication complexity. The following
lemma (implicit in [DIPW10]) shows that lower bounding the number of bits for approximate
recovery is sufficient to lower bound the number of measurements.

Lemma 7.4.3. Let p ∈ {1, 2} and α = Ω(1) < 1. Suppose X ⊂ Rn has ‖x‖p ≤ D and ‖x‖∞ ≤ D′
for all x ∈ X, and all coefficients of elements of X are expressible in O(log n) bits. Further suppose
that we have a recovery algorithm that, for any ν with ‖ν‖p < αD and ‖ν‖∞ < αD′, recovers x ∈ X
from A(x+ ν) with constant probability. Then A must have Ω(log |X|) measurements.

Proof. First, we may assume that A ∈ Rm×n has orthonormal rows (otherwise, if A = UΣV T is
its singular value decomposition, Σ+UTA has this property and can be inverted before applying
the algorithm). Let A′ be A rounded to c log n bits per entry. By Lemma 7.3.2, for any v we have
A′v = A(v − s) for some s with ‖s‖1 ≤ n22−c logn‖v‖1, so ‖s‖p ≤ n2.5−c‖v‖p.

Suppose Alice has a bit string of length r log |X| for r = Θ(log n). By splitting into r blocks,
this corresponds to x1, . . . , xr ∈ X. Let β be a power of 2 between α/2 and α/4, and define

zj =
r∑
i=j

βixi.

Alice sends A′z1 to Bob; this is O(m log n) bits. Bob will solve the augmented indexing problem—
given A′z1, arbitrary j ∈ [r], and x1, . . . , xj−1, he must find xj with constant probability. This
requires A′z1 to have Ω(r log |X|) bits, giving the result.

Bob receives A′z1 = A(z1 + s) for ‖s‖1 ≤ n2.5−c‖z1‖p ≤ n2.5−cD. Bob then chooses u ∈
Bn
p (n4.5−cD) uniformly at random. With probability at least 1− 1/n, u ∈ Bn

p ((1− 1/n2)n4.5−cD)
by a volume argument. In this case u+ s ∈ Bn

p (n4.5−cD); hence the random variables u and u+ s
overlap in at least a 1 − 1/n fraction of their volumes, so zj + s + u and zj + u have statistical
distance at most 1/n. The distribution of zj + u is independent of A (unlike zj + s) so running the
recovery algorithm on A(zj + s+ u) succeeds with constant probability as well.

We also have ‖zj‖p ≤ βj−βr+1

1−β D < 2(βj−βr+1)D. Since r = O(log n) and β is a constant, there
exists a c = O(1) with

‖zj + s+ u‖p < (2βj + n4.5−c + n2.5−c − 2βr)D ≤ βj−1αD

for all j.

Therefore, given x1, . . . , xj−1, Bob can compute

1

βj
(A′z1 +Au−A′

∑
i<j

βixi) = A(xj +
1

βj
(zj+1 + s+ u)) = A(xj + y)

for some y with ‖y‖p ≤ αD. Hence Bob can use the recovery algorithm to recover xj with con-
stant probability. Therefore Bob can solve augmented indexing, so the message A′z1 must have
Ω(log n log |X|) bits, so m = Ω(log |X|).

We will now prove another lemma that is useful for all four theorem statements.

Let x ∈ {0, 1}n be k-sparse with supp(x) ⊆ S for some known S. Let ν ∈ Rn be a noise
vector that roughly corresponds to having O(k/εp) ones for p ∈ {1, 2}, all located outside of S.
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We consider under what circumstances we can use a (1 + ε)-approximate `p/`p recovery scheme to
recover supp(x) from A(x+ ν) with (say) 90% accuracy.

Lemma 7.4.4 shows that this is possible for p = 1 when |S| . k/ε and for p = 2 when |S| ≤
2k. The algorithm in both instances is to choose a parameter µ and perform sparse recovery on
A(x+ ν + z), where zi = µ for i ∈ S and zi = 0 otherwise. The support of the result will be very
close to supp(x).

Lemma 7.4.4. Let S ⊂ [n] have |S| ≤ s, and suppose x ∈ {0, 1}n satisfies supp(x) ⊆ S and
‖xS‖1 = k. Let p ∈ {1, 2}, and ν ∈ Rn satisfy ‖νS‖∞ ≤ α, ‖ν‖pp ≤ r, and ‖ν‖∞ ≤ D for some
constants α ≤ 1/4 and D = O(1). Suppose A ∈ Rm×n is part of a (1 + ε)-approximate k-sparse
`p/`p recovery scheme with failure probability δ.

Then, given A(xS + ν), Bob can with failure probability δ recover x̂S that differs from xS in at
most k/c locations, as long as either

p = 1, s = Θ(
k

cε
), r = Θ(

k

cε
) (7.15)

or

p = 2, s = 2k, r = Θ(
k

c2ε2
) (7.16)

Proof. For some parameter µ ≥ D, let zi = µ for i ∈ S and zi = 0 elsewhere. Consider y = xS+ν+z.
Let U = supp(xS) have size k. Let V ⊂ [n] be the support of the result of running the recovery
scheme on Ay = A(xS + ν) +Az. Then we have that xS + z is µ+ 1 over U , µ over S \U , and zero
elsewhere. Since ‖u+ v‖pp ≤ p(‖u‖pp + ‖v‖pp) for any u and v, we have

‖yU‖
p
p ≤ p(‖(xS + z)U‖

p
p + ‖ν‖pp)

≤ p((s− k)µp + r)

< p(r + sµp).

Since ‖νS‖∞ ≤ α and ‖νS‖∞ < µ, we have

‖yU‖∞ ≥ µ+ 1− α
‖yU‖∞ ≤ µ+ α

We then get

‖yV ‖
p
p = ‖yU‖

p
p + ‖yU\V ‖pp − ‖yV \U‖pp

≥ ‖yU‖
p
p + |V \ U |((µ+ 1− α)p − (µ+ α)p)

= ‖yU‖
p
p + |V \ U |(1 + (2p− 2)µ)(1− 2α)

where the last step can be checked for p ∈ {1, 2}. So

‖yV ‖
p
p ≥ ‖yU‖

p
p(1 + |V \ U |(1 + (2p− 2)µ)(1− 2α)

p(r + sµp)
)
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However, V is the result of 1 + ε-approximate recovery, so

‖yV ‖p ≤ ‖y − ŷ‖p ≤ (1 + ε)‖yU‖p
‖yV ‖

p
p ≤ (1 + (2p− 1)ε)‖yU‖

p
p

for p ∈ {1, 2}. Hence

|V \ U |(1 + (2p− 2)µ)(1− 2α)

p(r + sµp)
≤ (2p− 1)ε

for α ≤ 1/4, this means

|V \ U | ≤ 2ε(2p− 1)p(r + sµp)

1 + (2p− 2)µ
.

Plugging in the parameters p = 1, s = r = k
dε , µ = D gives

|V \ U | ≤ 2ε((1 +D2)r)

1
= O(

k

d
).

Plugging in the parameters p = 2, q = 2, r = k
d2ε2

, µ = 1
dε gives

|V \ U | ≤ 12ε(3r)

2µ
=

18k

d
.

Hence, for d = O(c), we get the parameters desired in the lemma statement, and

|V \ U | ≤ k

2c
.

Bob can recover V with probability 1 − δ. Therefore he can output x′ given by x′i = 1 if i ∈ V
and x′i = 0 otherwise. This will differ from xS only within (V \ U ∪ U \ V ), which is at most k/c
locations.

7.4.1 k > 1

Suppose p, s, 3r satisfy Lemma 7.4.4 for some parameter c, and let q = s/k. The Gilbert-Varshamov
bound implies that there exists a code V ⊂ [q]r with log |V | = Ω(r log q) and minimum Hamming
distance r/4. Let X ⊂ {0, 1}qr be in one-to-one correspondence with V : x ∈ X corresponds to
v ∈ V when x(a−1)q+b = 1 if and only if va = b.

Let x and v correspond. Let S ⊂ [r] with |S| = k, so S corresponds to a set T ⊂ [n] with
|T | = kq = s. Consider arbitrary ν that satisfies ‖ν‖p < α‖x‖p and ‖ν‖∞ ≤ α for some small
constant α ≤ 1/4. We would like to apply Lemma 7.4.3, so we just need to show we can recover x
from A(x+ ν) with constant probability. Let ν ′ = xT + ν, so

‖ν ′‖pp ≤ p(‖xT ‖
p
p + ‖ν‖pp) ≤ p(r − k + αpr) ≤ 3r

‖ν ′
T
‖∞ ≤ 1 + α

‖ν ′T ‖∞ ≤ α

Therefore Lemma 7.4.4 implies that with probability 1− δ, if Bob is given A(xT + ν ′) = A(x+ ν)
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he can recover x′ that agrees with xT in all but k/c locations. Hence in all but k/c of the i ∈ S,
x{(i−1)q+1,...,iq} = x′{(i−1)q+1,...,iq}, so he can identify vi. Hence Bob can recover an estimate of vS
that is accurate in (1−1/c)k characters with probability 1−δ, so it agrees with vS in (1−1/c)(1−δ)k
characters in expectation. If we apply this in parallel to the sets Si = {k(i − 1) + 1, . . . , ki} for
i ∈ [r/k], we recover (1 − 1/c)(1 − δ)r characters in expectation. Hence with probability at least
1/2, we recover more than (1 − 2(1/c + δ))r characters of v. If we set δ and 1/c to less than
1/32, this gives that we recover all but r/8 characters of v. Since V has minimum distance r/4,
this allows us to recover v (and hence x) exactly. By Lemma 7.4.3 this gives a lower bound of
m = Ω(log |V |) = Ω(r log q). Hence m = Ω(1

εk log 1
ε ) for `1/`1 recovery and m = Ω( 1

ε2
k) for `2/`2

recovery.

7.4.2 k = 1, δ = o(1)

To achieve the other half of our lower bounds for sparse outputs, we restrict to the k = 1 case. A
k-sparse algorithm implies a 1-sparse algorithm by inserting k− 1 dummy coordinates of value ∞,
so this is valid.

Let p, s, 51r satisfy Lemma 7.4.4 for some α and D to be determined, and let our recovery
algorithm have failure probability δ. Let C = 1/(2rδ) and n = Cr. Let V = [(s − 1)C]r and let
X ′ ∈ {0, 1}(s−1)Cr be the corresponding binary vector. Let X = {0} × X ′ be defined by adding
x0 = 0 to each vector.

Now, consider arbitrary x ∈ X and noise ν ∈ R1+(s−1)Cr with ‖ν‖p < α‖x‖p and ‖ν‖∞ ≤ α for
some small constant α ≤ 1/20. Let e0/5 be the vector that is 1/5 at 0 and 0 elsewhere. Consider
the sets Si = {0, (s−1)(i−1)+1, (s−1)(i−1)+2, . . . , (s−1)i}. We would like to apply Lemma 7.4.4
to recover (x+ ν + e0/5)Si for each i.

To see what it implies, there are two cases: ‖xsSi‖1 = 1 and ‖xSi‖1 = 0 (since Si lies entirely
in one character, ‖xSi‖1 ∈ {0, 1}). In the former case, we have ν ′ = xSi + ν + e0/5 with

‖ν ′‖pp ≤ (2p− 1)(‖xSi‖
p
p + ‖ν‖pp + ‖e0/5‖pp) ≤ 3(r + αpr + 1/5p) < 4r

‖ν ′
Si
‖∞ ≤ 1 + α

‖ν ′Si‖∞ ≤ 1/5 + α ≤ 1/4

Hence Lemma 7.4.4 will, with failure probability δ, recover x′Si that differs from xSi in at most
1/c < 1 positions, so xSi is correctly recovered.

Now, suppose ‖xSi‖1 = 0. Then we observe that Lemma 7.4.4 would apply to recovery from
5A(x+ ν + e0/5), with ν ′ = 5x+ 5ν and x′ = e0, so

‖ν ′‖pp ≤ 5pp(‖x‖pp + ‖ν‖pp) ≤ 5pp(r + αpr) < 51r

‖ν ′
Si
‖∞ ≤ 5 + 5α

‖ν ′Si‖∞ ≤ 5α.

Hence Lemma 7.4.4 would recover, with failure probability δ, an x′Si with support equal to {0}.
Now, we observe that the algorithm in Lemma 7.4.4 is robust to scaling the input A(x′+ ν ′) by

5; the only difference is that the effective µ changes by the same factor, which increases the number
of errors k/c by a factor of at most 5. Hence if c > 5, we can apply the algorithm once and have it
work regardless of whether ‖xSi‖1 is 0 or 1: if ‖xSi‖1 = 1 the result has support supp(xi), and if
‖xSi‖1 = 0 the result has support {0}. Thus we can recover xSi exactly with failure probability δ.

If we try this to the Cr = 1/(2δ) sets Si, we recover all of x correctly with failure probability
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at most 1/2. Hence Lemma 7.4.3 implies that m = Ω(log |X|) = Ω(r log s
rδ ). For `1/`1, this means

m = Ω(1
ε log 1

δ ); for `2/`2, this means m = Ω( 1
ε2

log ε2

δ ).
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