Adaptive Sparse Recovery

Eric Price

MIT

2012-04-26

Joint work with Piotr Indyk and David Woodruff, 2011-2012

Eric Price (MIT)

Adaptive Sparse Recover

2012-04-26 1/29

1.2

A (10) A (10) A (10)

Adaptive Sparse Recovery

2012-04-26 2/29

315

イロト イヨト イヨト イヨト

Pormal Introduction to Sparse Recovery/Compressive Sensing

Adaptive Sparse Recovery

< 6 b

2012-04-26 2/29

-

Pormal Introduction to Sparse Recovery/Compressive Sensing

Adaptive Sparse Recovery

< 6 b

2012-04-26 2/29

-

∃ > < ∃</p>

Pormal Introduction to Sparse Recovery/Compressive Sensing

Eric Price (MIT)

Adaptive Sparse Recovery

- 4

2012-04-26 2/29

-

Motivating Example

2 Formal Introduction to Sparse Recovery/Compressive Sensing

3 Algorithm

4 Conclusion

Eric Price (MIT)

Adaptive Sparse Recovery

2012-04-26 3/29

1.2

(人間) トイヨト イヨト ヨ

• Want to figure out who carries a genetic mutation.

Adaptive Sparse Recovery

2012-04-26 4 / 29

• Want to figure out who carries a genetic mutation.

Adaptive Sparse Recovery

▶ ◀ Ē ▶ Ē Ē ♡ ९ () 2012-04-26 4/29

• Want to figure out who carries a genetic mutation.

< 6 b

• Test everyone!

3 2012-04-26 4/29

12

A B A A B A

• Want to figure out who carries a genetic mutation.

- Test everyone!
- Test 1,000,000 people, find 1,000 carriers.

3 > 4 3

• Want to figure out who carries a genetic mutation.

- Test everyone!
- Test 1,000,000 people, find 1,000 carriers.
- Very inefficient.

3 > 4 3

• Want to figure out who carries a genetic mutation.

- Test everyone!
- Test 1,000,000 people, find 1,000 carriers.
- Very inefficient.
- Idea: mix together samples.

Group testing

• Goal: find *k* carriers among *n* people.

→ Ξ 2012-04-26 5/29

Group testing

- Goal: find *k* carriers among *n* people.
- Group testing: test groups to see if any member is positive.

Adaptive Sparse Recovery

< A >

2012-04-26 5/29

Group testing

- Goal: find *k* carriers among *n* people.
- Group testing: test groups to see if any member is positive.
- Doable with $\Theta(\log \binom{n}{k}) = \Theta(k \log(n/k))$ tests.

- Goal: find *k* carriers among *n* people.
- Group testing: test groups to see if any member is positive.
- Doable with $\Theta(\log \binom{n}{k}) = \Theta(k \log(n/k))$ tests.
- Compressive sensing: estimate the number of positives in group.

- Goal: find *k* carriers among *n* people.
- Group testing: test groups to see if any member is positive.
- Doable with $\Theta(\log \binom{n}{k}) = \Theta(k \log(n/k))$ tests.
- Compressive sensing: estimate the number of positives in group.
 - Trying to learn $x \in \mathbb{R}^n$. (Here, $x \in \{0, 1, 2\}^n$.)

- Goal: find *k* carriers among *n* people.
- Group testing: test groups to see if any member is positive.
- Doable with $\Theta(\log {n \choose k}) = \Theta(k \log(n/k))$ tests.
- Compressive sensing: estimate the number of positives in group.
 - Trying to learn $x \in \mathbb{R}^n$. (Here, $x \in \{0, 1, 2\}^n$.)
 - Choose coefficients $v \in \mathbb{R}^n$.

제 글 에 제 글 에 크 글 글

- Goal: find *k* carriers among *n* people.
- Group testing: test groups to see if any member is positive.
- Doable with $\Theta(\log \binom{n}{k}) = \Theta(k \log(n/k))$ tests.
- Compressive sensing: estimate the number of positives in group.
 - Trying to learn $x \in \mathbb{R}^n$. (Here, $x \in \{0, 1, 2\}^n$.)
 - Choose coefficients $v \in \mathbb{R}^n$.
 - Measure $\langle v, x \rangle$ with noise.

- Goal: find *k* carriers among *n* people.
- Group testing: test groups to see if any member is positive.
- Doable with $\Theta(\log \binom{n}{k}) = \Theta(k \log(n/k))$ tests.
- Compressive sensing: estimate the number of positives in group.
 - Trying to learn $x \in \mathbb{R}^n$. (Here, $x \in \{0, 1, 2\}^n$.)
 - Choose coefficients $v \in \mathbb{R}^n$.
 - Measure $\langle v, x \rangle$ with noise.
- Want to minimize number of tests.

시 프 시 시 프 시 프 네 프

	Non-adaptive	Adaptive
Group Testing	$\Omega(k^2)$	$\Theta(k \log(n/k))$
Compressive Sensing		

Adaptive Sparse Recovery

2012-04-26 6/29

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

	Non-adaptive	Adaptive
Group Testing	$\Omega(k^2)$	$\Theta(k \log(n/k))$
Compressive Sensing	$\Theta(k \log(n/k))$	

Adaptive Sparse Recovery

2012-04-26 6/29

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●目目 のへで

	Non-adaptive	Adaptive
Group Testing	$\Omega(k^2)$	$\Theta(k \log(n/k))$
Compressive Sensing	$\Theta(k \log(n/k))$???

Adaptive Sparse Recovery

2012-04-26 6/29

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

	Non-adaptive	Adaptive
Group Testing	$\Omega(k^2)$	$\Theta(k \log(n/k))$
Compressive Sensing	$\Theta(k \log(n/k))$???

• Expected fraction of DNA with mutation is k/n = 0.1%.

Adaptive Sparse Recovery

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ = ・ ○ < ○

	Non-adaptive	Adaptive
Group Testing	$\Omega(k^2)$	$\Theta(k \log(n/k))$
Compressive Sensing	$\Theta(k \log(n/k))$???

- Expected fraction of DNA with mutation is k/n = 0.1%.
- Group testing possible: machine distinguishes 0% and 0.1%.

	Non-adaptive	Adaptive
Group Testing	$\Omega(k^2)$	$\Theta(k \log(n/k))$
Compressive Sensing	$\Theta(k \log(n/k))$???

- Expected fraction of DNA with mutation is k/n = 0.1%.
- Group testing possible: machine distinguishes 0% and 0.1%.
- Also distinguishes 50.0% and 50.1%.

《曰》《圖》《曰》《曰》 되는

	Non-adaptive	Adaptive
Group Testing	$\Omega(k^2)$	$\Theta(k \log(n/k))$
Compressive Sensing	$\Theta(k \log(n/k))$???

- Expected fraction of DNA with mutation is k/n = 0.1%.
- Group testing possible: machine distinguishes 0% and 0.1%.
- Also distinguishes 50.0% and 50.1%.
- Hope for $\log(n/k)$ bits/test, or $\Theta(k)$ measurements.

소리 에 소문에 이 소문에 소문에 드릴다.

	Non-adaptive	Adaptive
Group Testing	$\Omega(k^2)$	$\Theta(k \log(n/k))$
Compressive Sensing	$\Theta(k \log(n/k))$???

- Expected fraction of DNA with mutation is k/n = 0.1%.
- Group testing possible: machine distinguishes 0% and 0.1%.
- Also distinguishes 50.0% and 50.1%.
- Hope for $\log(n/k)$ bits/test, or $\Theta(k)$ measurements.
- Problem: any mixture has expected 0.1% mutation, so O(1) bits.

	Non-adaptive	Adaptive
Group Testing	$\Omega(k^2)$	$\Theta(k \log(n/k))$
Compressive Sensing	$\Theta(k \log(n/k))$???

- Expected fraction of DNA with mutation is k/n = 0.1%.
- Group testing possible: machine distinguishes 0% and 0.1%.
- Also distinguishes 50.0% and 50.1%.
- Hope for $\log(n/k)$ bits/test, or $\Theta(k)$ measurements.
- Problem: any mixture has expected 0.1% mutation, so *O*(1) bits.
- Idea: use knowledge from early measurements to make later mixtures more concentrated with mutations.

	Non-adaptive	Adaptive
Group Testing	$\Omega(k^2)$	$\Theta(k\log(n/k))$
Compressive Sensing	$\Theta(k \log(n/k))$	$O(k \log \log(n/k))$

- Expected fraction of DNA with mutation is k/n = 0.1%.
- Group testing possible: machine distinguishes 0% and 0.1%.
- Also distinguishes 50.0% and 50.1%.
- Hope for log(n/k) bits/test, or $\Theta(k)$ measurements.
- Problem: any mixture has expected 0.1% mutation, so O(1) bits.
- Idea: use knowledge from early measurements to make later mixtures more concentrated with mutations.
- This talk: $O(k \log \log(n/k))$ adaptive linear measurements.

Formal Introduction to Sparse Recovery/Compressive Sensing 2

Eric Price (MIT)

2012-04-26 7/29

< 回 > < 三 > < 三 > .

- Want to observe n-dimensional vector x
 - Which of n people have a genetic mutation.
 - Image
 - Traffic pattern of packets on a network.

< 6 b

Want to observe n-dimensional vector x

- Which of *n* people have a genetic mutation.
- Image
- Traffic pattern of packets on a network.
- Normally takes *n* observations to find.

- Want to observe n-dimensional vector x
 - Which of *n* people have a genetic mutation.
 - Image
 - Traffic pattern of packets on a network.
- Normally takes *n* observations to find.
- But we know some structure on the input:
 - Genetics: most people don't have the mutation.
 - Images: mostly smooth with some edges.
 - Traffic: Zipf distribution.

- Want to observe n-dimensional vector x
 - Which of *n* people have a genetic mutation.
 - Image
 - Traffic pattern of packets on a network.
- Normally takes *n* observations to find.
- But we know some structure on the input:
 - Genetics: most people don't have the mutation.
 - Images: mostly smooth with some edges.
 - Traffic: Zipf distribution.
- We use this structure to compress *space* (e.g. JPEG).

김 권 동 김 권 동 - 권 문

- Want to observe n-dimensional vector x
 - ▶ Which of *n* people have a genetic mutation.
 - Image
 - Traffic pattern of packets on a network.
- Normally takes *n* observations to find.
- But we know some structure on the input:
 - Genetics: most people don't have the mutation.
 - Images: mostly smooth with some edges.
 - Traffic: Zipf distribution.
- We use this structure to compress *space* (e.g. JPEG).
- Can we use structure to save on observations?

김 권 동 김 권 동 - 권 문

• 5 megapixel camera takes 15 million byte-size observations.

3 2012-04-26 9/29

- 5 megapixel camera takes 15 million byte-size observations.
- Compresses it (JPEG) down to a million bytes.

< 6 b

▶ 프네님 2012-04-26 9/29

- 5 megapixel camera takes 15 million byte-size observations.
- Compresses it (JPEG) down to a million bytes.
- Why do we need to bother with so many observations? [Donoho,Candès-Tao]

시 프 시 시 프 시 프 네 프

Cameras

- 5 megapixel camera takes 15 million byte-size observations.
- Compresses it (JPEG) down to a million bytes.
- Why do we need to bother with so many observations? [Donoho,Candès-Tao]
- Cheap in visible light (silicon), very expensive in infrared.
 - \$30,000 for 256x256 IR sensor.

Cameras

- 5 megapixel camera takes 15 million byte-size observations.
- Compresses it (JPEG) down to a million bytes.
- Why do we need to bother with so many observations? [Donoho,Candès-Tao]
- Cheap in visible light (silicon), very expensive in infrared.
 - \$30,000 for 256x256 IR sensor.
- Use *structure* to take only a few million observations.

Cameras

- 5 megapixel camera takes 15 million byte-size observations.
- Compresses it (JPEG) down to a million bytes.
- Why do we need to bother with so many observations? [Donoho,Candès-Tao]
- Cheap in visible light (silicon), very expensive in infrared.
 - \$30,000 for 256x256 IR sensor.
- Use *structure* to take only a few million observations.
 - What structure? Sparsity.

시 프 시 시 프 시 프 네 프

Sparsity

- A vector is *k*-sparse if *k* components are non-zero.
- Images are almost sparse in the wavelet basis:

Adaptive Sparse Recovery

2012-04-26 10 / 29

A B F A B F

A b

Sparsity

- A vector is k-sparse if k components are non-zero.
- Images are almost sparse in the wavelet basis:

Adaptive Sparse Recovery

2012-04-26 10 / 29

イロト 不得 とくき とくき とう

Sparsity

- A vector is k-sparse if k components are non-zero.
- Images are almost sparse in the wavelet basis:

• Same kind of structure as in genetic testing!

Eric Price (MIT)

Adaptive Sparse Recover

- Suppose an *n*-dimensional vector *x* is *k*-sparse in known basis.
- Given Ax, a set of $m \ll n$ linear products.

Adaptive Sparse Recovery

2012-04-26 11 / 29

- Suppose an *n*-dimensional vector *x* is *k*-sparse in known basis.
- Given Ax, a set of *m* << *n* linear products.
- Why linear? Many applications:
 - Genetic testing: mixing blood samples.
 - Streaming updates: $A(x + \Delta) = Ax + A\Delta$.
 - Camera optics: filter in front of lens.

- Suppose an *n*-dimensional vector *x* is *k*-sparse in known basis.
- Given Ax, a set of *m* << *n* linear products.
- Why linear? Many applications:
 - Genetic testing: mixing blood samples.
 - Streaming updates: $A(x + \Delta) = Ax + A\Delta$.
 - Camera optics: filter in front of lens.
- Then it is possible to recover *x* from *Ax*.
 - Quickly
 - Robustly: get close to x if x is close to k-sparse.

- Suppose an *n*-dimensional vector *x* is *k*-sparse in known basis.
- Given Ax, a set of *m* << *n* linear products.
- Why linear? Many applications:
 - Genetic testing: mixing blood samples.
 - Streaming updates: $A(x + \Delta) = Ax + A\Delta$.
 - Camera optics: filter in front of lens.
- Then it is possible to recover *x* from *Ax*.
 - Quickly
 - Robustly: get close to x if x is close to k-sparse.
- Note: impossible without using sparsity (A is underdetermined).

Standard Sparse Recovery Framework

• Specify distribution on $m \times n$ matrices A (independent of x).

- Given linear sketch Ax, recover \hat{x} .
- Satisfying the recovery guarantee:

$$\|\hat{x} - x\|_2 \leq (1 + \epsilon) \min_{k ext{-sparse } x_k} \|x - x_k\|_2$$

with probability 2/3.

김 권 동 김 권 동 - 권 문

Standard Sparse Recovery Framework

• Specify distribution on $m \times n$ matrices A (independent of x).

- Given linear sketch Ax, recover \hat{x} .
- Satisfying the recovery guarantee:

$$\|\hat{x} - x\|_2 \leq (1 + \epsilon) \min_{k ext{-sparse } x_k} \|x - x_k\|_2$$

with probability 2/3.

Solvable with O(¹/_εk log ⁿ/_k) measurements
 [Candès-Romberg-Tao '06, Gilbert-Li-Porat-Strauss '10]

김 권 동 김 권 동 - 권 문

Standard Sparse Recovery Framework

• Specify distribution on $m \times n$ matrices A (independent of x).

- Given linear sketch Ax, recover \hat{x} .
- Satisfying the recovery guarantee:

$$\|\hat{x} - x\|_2 \leq (1 + \epsilon) \min_{k ext{-sparse } x_k} \|x - x_k\|_2$$

with probability 2/3.

- Solvable with $O(\frac{1}{\epsilon}k \log \frac{n}{k})$ measurements [Candès-Romberg-Tao '06, Gilbert-Li-Porat-Strauss '10]
- Matching lower bound. [Do Ba-Indyk-P-Woodruff '10, P-Woodruff '11]

Adaptive Sparse Recovery Framework

• For *i* = 1 . . . *r*:

- Choose matrix A_i based on previous observations (possibly randomized).
- Observe $A_i x$.
- Number of measurements m is total number of rows in all A_i.
- Number of *rounds* is *r*.
- Given linear sketch Ax, recover \hat{x} .
- Satisfying the recovery guarantee:

$$\|\hat{x} - x\|_2 \leq (1 + \epsilon) \min_{k ext{-sparse } x_k} \|x - x_k\|_2$$

with probability 2/3.

- Solvable with $O(\frac{1}{\epsilon}k \log \frac{n}{k})$ measurements [Candès-Romberg-Tao '06, Gilbert-Li-Porat-Strauss '10]
- Matching lower bound. [Do Ba-Indyk-P-Woodruff '10, P-Woodruff '11]

<<p>(日本)

• Nonadaptive: $\Theta(\frac{1}{\epsilon}k \log \frac{n}{k})$.

Adaptive Sparse Recovery

<금> < 글> < 글> < 글> =) < □</p>
2012-04-26 13/29

- Nonadaptive: $\Theta(\frac{1}{\epsilon}k \log \frac{n}{k})$.
- Adaptive: $O(k \log \frac{n}{k})$ with $\epsilon = o(1)$ ([Haupt-Baraniuk-Castro-Nowak '09], in a slightly different setting)

Adaptive Sparse Recovery

2012-04-26 13/29

- Nonadaptive: $\Theta(\frac{1}{\epsilon}k \log \frac{n}{k})$.
- Adaptive: $O(k \log \frac{n}{k})$ with $\epsilon = o(1)$ ([Haupt-Baraniuk-Castro-Nowak '09], in a slightly different setting)
- This talk: $O(\frac{1}{\epsilon}k \log \log \frac{n}{k})$. [Indyk-P-Woodruff '11]

- Nonadaptive: $\Theta(\frac{1}{\epsilon}k \log \frac{n}{k})$.
- Adaptive: $O(k \log \frac{n}{k})$ with $\epsilon = o(1)$ ([Haupt-Baraniuk-Castro-Nowak '09], in a slightly different setting)
- This talk: $O(\frac{1}{\epsilon}k \log \log \frac{n}{k})$. [Indyk-P-Woodruff '11]
 - Using $r = O(\log \log n \log^* k)$ rounds.

- Nonadaptive: $\Theta(\frac{1}{\epsilon}k \log \frac{n}{k})$.
- Adaptive: $O(k \log \frac{n}{k})$ with $\epsilon = o(1)$ ([Haupt-Baraniuk-Castro-Nowak '09], in a slightly different setting)
- This talk: $O(\frac{1}{\epsilon}k \log \log \frac{n}{k})$. [Indyk-P-Woodruff '11]
 - Using $r = O(\log \log n \log^* k)$ rounds.
- Even when r = 2, can get $O(k \log n + \frac{1}{\epsilon} k \log(k/\epsilon))$

- Nonadaptive: $\Theta(\frac{1}{\epsilon}k \log \frac{n}{k})$.
- Adaptive: $O(k \log \frac{n}{k})$ with $\epsilon = o(1)$ ([Haupt-Baraniuk-Castro-Nowak '09], in a slightly different setting)
- This talk: $O(\frac{1}{\epsilon}k \log \log \frac{n}{k})$. [Indyk-P-Woodruff '11]
 - Using $r = O(\log \log n \log^* k)$ rounds.
- Even when r = 2, can get $O(k \log n + \frac{1}{\epsilon} k \log(k/\epsilon))$
 - Separating dependence on n and ϵ .

• When does adaptivity make sense?

Adaptive Sparse Recovery

2012-04-26 14/29

- When does adaptivity make sense?
- Genetic testing:

Adaptive Sparse Recovery

2012-04-26 14/29

- When does adaptivity make sense?
- Genetic testing:
 - Yes, but multiple rounds can be costly.

< 6 b

- When does adaptivity make sense?
- Genetic testing:
 - Yes, but multiple rounds can be costly.
- Cameras:

- When does adaptivity make sense?
- Genetic testing:
 - > Yes, but multiple rounds can be costly.
- Cameras:
 - Programmable pixels (mirrors or LCD display): Yes.

- When does adaptivity make sense?
- Genetic testing:
 - > Yes, but multiple rounds can be costly.
- Cameras:
 - Programmable pixels (mirrors or LCD display): Yes.
 - Hardwired lens: No.

- When does adaptivity make sense?
- Genetic testing:
 - > Yes, but multiple rounds can be costly.
- Cameras:
 - Programmable pixels (mirrors or LCD display): Yes.
 - Hardwired lens: No.
- Streaming algorithms:

< 6 b

- When does adaptivity make sense?
- Genetic testing:
 - Yes, but multiple rounds can be costly.
- Cameras:
 - Programmable pixels (mirrors or LCD display): Yes.
 - Hardwired lens: No.
- Streaming algorithms:
 - Adaptivity corresponds to multiple passes.

- When does adaptivity make sense?
- Genetic testing:
 - Yes, but multiple rounds can be costly.
- Cameras:
 - Programmable pixels (mirrors or LCD display): Yes.
 - Hardwired lens: No.
- Streaming algorithms:
 - Adaptivity corresponds to multiple passes.
 - Router finding most common connections: No.

- When does adaptivity make sense?
- Genetic testing:
 - Yes, but multiple rounds can be costly.
- Cameras:
 - Programmable pixels (mirrors or LCD display): Yes.
 - Hardwired lens: No.
- Streaming algorithms:
 - Adaptivity corresponds to multiple passes.
 - Router finding most common connections: No.
 - Mapreduce finding most frequent URLs: Yes.

Outline

1 Motivating Example

2 Formal Introduction to Sparse Recovery/Compressive Sensing

4 Conclusion

Eric Price (MIT)

Adaptive Sparse Recovery

2012-04-26 15/29

Outline of Algorithm

Theorem

Adaptive $1 + \epsilon$ -approximate *k*-sparse recovery is possible with $O(\frac{1}{\epsilon}k \log \log(n/k))$ measurements.

Adaptive Sparse Recovery

2012-04-26 16/29

소리 에 소문에 이 것 같아. 소문 이 모님의

Outline of Algorithm

Theorem

Adaptive $1 + \epsilon$ -approximate *k*-sparse recovery is possible with $O(\frac{1}{\epsilon}k \log \log(n/k))$ measurements.

Lemma

Adaptive O(1)-approximate 1-sparse recovery is possible with $O(\log \log n)$ measurements.

Adaptive Sparse Recovery

2012-04-26 16/29

《曰》《圖》《曰》《曰》 되는
Outline of Algorithm

Theorem

Adaptive $1 + \epsilon$ -approximate *k*-sparse recovery is possible with $O(\frac{1}{\epsilon}k \log \log(n/k))$ measurements.

Lemma

Adaptive O(1)-approximate 1-sparse recovery is possible with $O(\log \log n)$ measurements.

• Lemma implies theorem using standard tricks ([GLPS10]).

Lemma

Adaptive C-approximate 1-sparse recovery is possible with $O(\log \log n)$ measurements for some C = O(1).

Adaptive Sparse Recovery

2012-04-26 17/29

Lemma

Adaptive C-approximate 1-sparse recovery is possible with $O(\log \log n)$ measurements for some C = O(1).

Non-adaptive lower bound: why is this hard?

Adaptive Sparse Recovery

2012-04-26 17/29

Lemma

Adaptive C-approximate 1-sparse recovery is possible with $O(\log \log n)$ measurements for some C = O(1).

- Non-adaptive lower bound: why is this hard?
- Hard case: *x* is random *e_i* plus Gaussian noise *w*.

an production of the second second

Adaptive Sparse Recovery

2012-04-26 17/29

Lemma

Adaptive C-approximate 1-sparse recovery is possible with $O(\log \log n)$ measurements for some C = O(1).

- Non-adaptive lower bound: why is this hard?
- Hard case: x is random e_i plus Gaussian noise w.

a se hul nggalag ag ten i ding lines. Isa git ta ng hija suna hulai sa uniti sa di uguniya a bit na pit ya agas

• Noise $||w||_2^2 = \Theta(1)$ so *C*-approximate recovery requires finding *i*.

Lemma

Adaptive C-approximate 1-sparse recovery is possible with $O(\log \log n)$ measurements for some C = O(1).

- Non-adaptive lower bound: why is this hard?
- Hard case: x is random e_i plus Gaussian noise w.

darbalaggalagagan ding lawan an Balang lay ay an halala an midanda ka pasa bara bara pasin prajan.

- Noise $||w||_2^2 = \Theta(1)$ so *C*-approximate recovery requires finding *i*.
- Observations $\langle v, x \rangle = v_i + \langle v, w \rangle = v_i + \frac{\|v\|_2}{\sqrt{n}} z$, for $z \sim N(0, \Theta(1))$.

• Observe
$$\langle v, x \rangle = v_i + \frac{\|v\|_2}{\sqrt{n}} z$$
, where $z \sim N(0, \Theta(1))$

Adaptive Sparse Recovery

2012-04-26 18/29

• Observe $\langle v, x \rangle = v_i + \frac{\|v\|_2}{\sqrt{n}} z$, where $z \sim N(0, \Theta(1))$

Adaptive Sparse Recovery

2012-04-26 18/29

• Observe $\langle v, x \rangle = v_i + \frac{\|v\|_2}{\sqrt{n}} z$, where $z \sim N(0, \Theta(1))$

Adaptive Sparse Recovery

2012-04-26 18/29

• Observe $\langle v, x \rangle = v_i + \frac{\|v\|_2}{\sqrt{n}} z$, where $z \sim N(0, \Theta(1))$

Eric Price (MIT)

Adaptive Sparse Recovery

2012-04-26 18/29

• Observe $\langle v, x \rangle = v_i + \frac{\|v\|_2}{\sqrt{n}} z$, where $z \sim N(0, \Theta(1))$

Eric Price (MIT)

Adaptive Sparse Recovery

2012-04-26 18/29

소리 에 소문에 이 것 같아. 소문 이 모님의

1-sparse recovery: non-adaptive lower bound • Observe $\langle v, x \rangle = v_i + \frac{\|v\|_2}{\sqrt{n}}z$, where $z \sim N(0, \Theta(1))$

Eric Price (MIT)

Adaptive Sparse Recovery

2012-04-26 18/29

1-sparse recovery: non-adaptive lower bound • Observe $\langle v, x \rangle = v_i + \frac{\|v\|_2}{\sqrt{n}} z$, where $z \sim N(0, \Theta(1))$

Information capacity

$$I(i, \langle v, x \rangle) \leqslant \frac{1}{2} \log(1 + \text{SNR})$$

where SNR denotes the "signal-to-noise ratio,"

$$SNR = rac{\mathbb{E}[ext{signal}^2]}{\mathbb{E}[ext{noise}^2]} \lesssim rac{\mathbb{E}[v_i^2]}{\|v\|_2^2/n} = 1$$

1-sparse recovery: non-adaptive lower bound • Observe $\langle v, x \rangle = v_i + \frac{\|v\|_2}{\sqrt{n}}z$, where $z \sim N(0, \Theta(1))$

Information capacity

$$I(i, \langle v, x \rangle) \leqslant \frac{1}{2} \log(1 + \text{SNR})$$

where SNR denotes the "signal-to-noise ratio,"

$$SNR = rac{\mathbb{E}[\text{signal}^2]}{\mathbb{E}[\text{noise}^2]} \lesssim rac{\mathbb{E}[v_i^2]}{\|v\|_2^2/n} = 1$$

Finding *i* needs Ω(log *n*) non-adaptive measurements.

Information capacity

$$I(i, \langle v, x \rangle) \leqslant \frac{1}{2} \log(1 + \text{SNR}).$$

where SNR denotes the "signal-to-noise ratio,"

$$SNR = \Theta\left(rac{\mathbb{E}[v_i^2]}{\|v\|_2^2/n}
ight)$$

Information capacity

$$I(i, \langle v, x \rangle) \leqslant \frac{1}{2} \log(1 + \text{SNR}).$$

where SNR denotes the "signal-to-noise ratio,"

$$SNR = \Theta\left(\frac{\mathbb{E}[v_i^2]}{\|v\|_2^2/n}\right).$$

• If *i* is independent of *v*, this is O(1).

Information capacity

$$I(i, \langle v, x \rangle) \leqslant \frac{1}{2} \log(1 + \text{SNR}).$$

where SNR denotes the "signal-to-noise ratio,"

$$SNR = \Theta\left(rac{\mathbb{E}[v_i^2]}{\|v\|_2^2/n}
ight)$$

- If *i* is independent of *v*, this is O(1).
- As we learn about *i*, we can increase $\mathbb{E}[v_i^2]$ for constant $||v||_2$.

Information capacity

$$I(i, \langle v, x \rangle) \leqslant \frac{1}{2} \log(1 + \text{SNR}).$$

where SNR denotes the "signal-to-noise ratio,"

$$SNR = \Theta\left(\frac{\mathbb{E}[v_i^2]}{\|v\|_2^2/n}\right)$$

- If *i* is independent of *v*, this is O(1).
- As we learn about *i*, we can increase $\mathbb{E}[v_i^2]$ for constant $||v||_2$.
 - Equivalently, for constant $\mathbb{E}[v_i^2]$ we can decrease $||v||_2$.

2012-04-26 20 / 29

Eric Price (MIT)

Adaptive Sparse Recovery

2012-04-26 20 / 29

• Shown intuition for specific distribution on x

Adaptive Sparse Recovery

2012-04-26 21 / 29

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Shown intuition for specific distribution on x
- Match previous convergence for arbitrary $x = \alpha e_i + w$?

- Shown intuition for specific distribution on x
- Match previous convergence for arbitrary $x = \alpha e_i + w$?
 - α may not be 1.

- Shown intuition for specific distribution on x
- Match previous convergence for arbitrary $x = \alpha e_i + w$?
 - α may not be 1.
 - Work for a specific x with 3/4 probability.

- Shown intuition for specific distribution on x
- Match previous convergence for arbitrary $x = \alpha e_i + w$?
 - α may not be 1.
 - ▶ Work for a *specific x* with 3/4 probability.
 - Distribution over *A*, for fixed *w*.

• Find *i* from $x = \alpha e_i + w$ using log log *n* adaptive measurements.

Adaptive Sparse Recovery

2012-04-26 22/29

- Find *i* from $x = \alpha e_i + w$ using log log *n* adaptive measurements.
- Define the signal-to-noise ratio

$$SNR(x) = \alpha^2 / \|w\|_2^2.$$

Adaptive Sparse Recovery

2012-04-26 22 / 29

- Find *i* from $x = \alpha e_i + w$ using log log *n* adaptive measurements.
- Define the signal-to-noise ratio

$$SNR(x) = \alpha^2 / \|w\|_2^2.$$

For Gaussian w, can fit roughly \sqrt{SNR} distinct Gaussians.

- Find *i* from $x = \alpha e_i + w$ using log log *n* adaptive measurements.
- Define the signal-to-noise ratio

$$SNR(x) = \alpha^2 / \|w\|_2^2.$$

For Gaussian *w*, can fit roughly \sqrt{SNR} distinct Gaussians.

• Given O(1) measurements, find $S \ni i$ with

 $SNR(x_S) \ge (SNR(x))^{3/2}$

- Find *i* from $x = \alpha e_i + w$ using log log *n* adaptive measurements.
- Define the signal-to-noise ratio

$$SNR(x) = \alpha^2 / \|w\|_2^2.$$

For Gaussian *w*, can fit roughly \sqrt{SNR} distinct Gaussians.

• Given O(1) measurements, find $S \ni i$ with

 $SNR(x_S) \ge \delta^2 (SNR(x))^{3/2}$

with probability $1 - O(\delta)$.

- Find *i* from $x = \alpha e_i + w$ using log log *n* adaptive measurements.
- Define the signal-to-noise ratio

$$SNR(x) = \alpha^2 / \|w\|_2^2.$$

For Gaussian *w*, can fit roughly \sqrt{SNR} distinct Gaussians.

• Given O(1) measurements, find $S \ni i$ with

 $SNR(x_S) \ge \delta^2 (SNR(x))^{3/2}$

with probability $1 - O(\delta)$.

Repeat on x_S.

- Find *i* from $x = \alpha e_i + w$ using log log *n* adaptive measurements.
- Define the signal-to-noise ratio

$$SNR(x) = \alpha^2 / \|w\|_2^2.$$

For Gaussian *w*, can fit roughly \sqrt{SNR} distinct Gaussians.

• Given O(1) measurements, find $S \ni i$ with

 $SNR(x_S) \ge \delta^2 (SNR(x))^{3/2}$

with probability $1 - O(\delta)$.

- Repeat on x_S.
- Once SNR(x) reaches $O(n^2)$, will have $S = \{i\}$.

Recovery when $SNR > n^2$

Getting log *n* bits when SNR is n^2

Eric Price (MIT)

Adaptive Sparse Recovery

2012-04-26 23 / 29

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □
Getting log *n* bits when SNR is n^2

• Find *i* in 2 measurements with probability $1 - O(\delta)$.

Adaptive Sparse Recovery

2012-04-26 23 / 29

Getting log *n* bits when SNR is n^2

• Find *i* in 2 measurements with probability $1 - O(\delta)$.

Observe

$$a = \sum j x_j$$
 $b = \sum x_j$

Adaptive Sparse Recovery

2012-04-26 23/29

Getting log *n* bits when SNR is n^2

• Find *i* in 2 measurements with probability $1 - O(\delta)$.

Observe

$$a = \sum j x_j$$
 $b = \sum x_j$

• Then $i \approx a/b$

Getting log *n* bits when SNR is n^2

- Find *i* in 2 measurements with probability $1 O(\delta)$.
- Observe

$$a = \sum j x_j$$
 $b = \sum x_j$

• Then $i \approx a/b$, with error proportional to $||w||_1$.

Getting log *n* bits when SNR is n^2

- Find *i* in 2 measurements with probability $1 O(\delta)$.
- Observe, for $s \in \{\pm 1\}^n$ pairwise independently:

$$a = \sum j x_j s_j$$
 $b = \sum x_j s_j$

• Then $i \approx a/b$, with error proportional to $||w||_2$.

시 프 시 시 프 시 프 네

Getting log *n* bits when SNR is n^2

- Find *i* in 2 measurements with probability $1 O(\delta)$.
- Observe, for $s \in \{\pm 1\}^n$ pairwise independently:

$$a = \sum j x_j s_j$$
 $b = \sum x_j s_j$

• Then $i \approx a/b$, with error proportional to $||w||_2$.

• $|i - a/b| < n/(\delta\sqrt{SNR})$ with probability $1 - O(\delta)$ (over *s*).

Getting log *n* bits when SNR is n^2

- Find *i* in 2 measurements with probability $1 O(\delta)$.
- Observe, for $s \in \{\pm 1\}^n$ pairwise independently:

$$a = \sum j x_j s_j$$
 $b = \sum x_j s_j$

- Then $i \approx a/b$, with error proportional to $||w||_2$.
- $|i a/b| < n/(\delta\sqrt{SNR})$ with probability $1 O(\delta)$ (over *s*).
- For $SNR > (n/\delta)^2$, done.

Eric Price (MIT)

Adaptive Sparse Recovery

2012-04-26 24 / 29

Eric Price (MIT)

Adaptive Sparse Recovery

2012-04-26 24 / 29

• Still $|i - a/b| < n/(2\delta\sqrt{SNR})$ with $1 - O(\delta)$ probability.

Eric Price (MIT)

Adaptive Sparse Recovery

2012-04-26 24 / 29

- Still $|i a/b| < n/(2\delta\sqrt{SNR})$ with $1 O(\delta)$ probability.
- So given *a* and *b*, know *i* in *S* of size $|S| = n/(\delta\sqrt{SNR})$

- Still $|i a/b| < n/(2\delta\sqrt{SNR})$ with $1 O(\delta)$ probability.
- So given *a* and *b*, know *i* in *S* of size $|S| = n/(\delta\sqrt{SNR})$
- Want $SNR(x_S) \approx (\delta \sqrt{SNR(x)}) SNR(x)$.

- Still $|i a/b| < n/(2\delta\sqrt{SNR})$ with $1 O(\delta)$ probability.
- So given *a* and *b*, know *i* in *S* of size $|S| = n/(\delta\sqrt{SNR})$
- Want $SNR(x_S) \approx (\delta \sqrt{SNR(x)})SNR(x)$.

A B A A B A B

- Still $|i a/b| < n/(2\delta\sqrt{SNR})$ with $1 O(\delta)$ probability.
- So given *a* and *b*, know *i* in *S* of size $|S| = n/(\delta\sqrt{SNR})$
- Want $SNR(x_S) \approx (\delta \sqrt{SNR(x)})SNR(x)$.

Eric Price (MIT)

《曰》《圖》《曰》《曰》 되는

- Still $|i a/b| < n/(2\delta\sqrt{SNR})$ with $1 O(\delta)$ probability.
- So given *a* and *b*, know *i* in *S* of size $|S| = n/(\delta\sqrt{SNR})$
- Want $SNR(x_S) \approx (\delta \sqrt{SNR(x)}) SNR(x)$.

・ 同 ト ・ 日 ト ・ 日 日

- Still $|i a/b| < n/(2\delta\sqrt{SNR})$ with $1 O(\delta)$ probability.
- So given *a* and *b*, know *i* in *S* of size $|S| = n/(\delta\sqrt{SNR})$
- Want $SNR(x_S) \approx (\delta \sqrt{SNR(x)}) SNR(x)$.

• Randomly permute *x* beforehand! Then *SNR* shrinks in expectation.

 $SNR(x_S) \ge (\delta SNR(x))^{3/2}$

- Still $|i a/b| < n/(2\delta\sqrt{SNR})$ with $1 O(\delta)$ probability.
- So given *a* and *b*, know *i* in *S* of size $|S| = n/(\delta\sqrt{SNR})$
- Want $SNR(x_S) \approx (\delta \sqrt{SNR(x)})SNR(x)$.

• Randomly permute *x* beforehand! Then *SNR* shrinks in expectation.

```
SNR(x_S) \ge (\delta SNR(x))^{3/2}
```

• Set $\delta = 0.1/2^r$ in round *r*; still doubly exponential growth.

Lemma

Adaptive C-approximate 1-sparse recovery is possible with $O(\log \log n)$ measurements for some C = O(1).

Adaptive Sparse Recovery

2012-04-26 25/29

Lemma

Adaptive C-approximate 1-sparse recovery is possible with $O(\log \log n)$ measurements for some C = O(1).

Theorem (Adaptive upper bound)

Adaptive $1 + \epsilon$ -approximate *k*-sparse recovery is possible with $O(\frac{1}{\epsilon}k \log \log(n/k))$ measurements.

Adaptive Sparse Recovery

2012-04-26 25 / 29

《曰》《圖》《曰》《曰》 되는

Lemma

Adaptive C-approximate 1-sparse recovery is possible with $O(\log \log n)$ measurements for some C = O(1).

Theorem (Adaptive upper bound)

Adaptive $1 + \epsilon$ -approximate *k*-sparse recovery is possible with $O(\frac{1}{\epsilon}k \log \log(n/k))$ measurements.

• Lemma implies theorem using standard tricks (a la [GLPS10]):

Lemma

Adaptive C-approximate 1-sparse recovery is possible with $O(\log \log n)$ measurements for some C = O(1).

Theorem (Adaptive upper bound)

Adaptive $1 + \epsilon$ -approximate *k*-sparse recovery is possible with $O(\frac{1}{\epsilon}k \log \log(n/k))$ measurements.

- Lemma implies theorem using standard tricks (a la [GLPS10]):
 - Subsample at rate ϵ/k and apply the lemma, $O(k/\epsilon)$ times.

Lemma

Adaptive C-approximate 1-sparse recovery is possible with $O(\log \log n)$ measurements for some C = O(1).

Theorem (Adaptive upper bound)

Adaptive $1 + \epsilon$ -approximate *k*-sparse recovery is possible with $O(\frac{1}{\epsilon}k \log \log(n/k))$ measurements.

Lemma implies theorem using standard tricks (a la [GLPS10]):

- Subsample at rate ϵ/k and apply the lemma, $O(k/\epsilon)$ times.
- Replace k by k/2, repeat.

Experiments!

Does $O(\log n) \rightarrow O(\log \log n)$ really matter? What about the constants?

Adaptive Sparse Recovery

2012-04-26 26 / 29

《曰》《圖》《曰》《曰》 되는

Experiments!

Does $O(\log n) \rightarrow O(\log \log n)$ really matter? What about the constants?

3 2012-04-26 26/29

-

Basic algorithm

- $O(\frac{1}{\epsilon}k \log \log(n/k))$ measurements.
- $O(\log^* k \log \log n)$ rounds.

・ 同 ト ・ 日 ト ・ 日 ト

Basic algorithm

- $O(\frac{1}{c}k \log \log(n/k))$ measurements.
- $O(\log^* k \log \log n)$ rounds.

• Given $O(r \log^* k)$ rounds, $O(\frac{1}{\epsilon} kr \log^{1/r} (n/k))$ measurements.

Basic algorithm

- $O(\frac{1}{\epsilon}k \log \log(n/k))$ measurements.
- $O(\log^* k \log \log n)$ rounds.
- Given $O(r \log^* k)$ rounds, $O(\frac{1}{\epsilon} kr \log^{1/r}(n/k))$ measurements.
- Lower bound: given *r* rounds, $\Omega(k/\epsilon + r \log^{1/r} n)$ measurements. [Arias-Castro-Càndes-Davenport '11, P-Woodruff '12]

Basic algorithm

- $O(\frac{1}{\epsilon}k \log \log(n/k))$ measurements.
- $O(\log^* k \log \log n)$ rounds.
- Given $O(r \log^* k)$ rounds, $O(\frac{1}{\epsilon} kr \log^{1/r}(n/k))$ measurements.
- Lower bound: given *r* rounds, $\Omega(k/\epsilon + r \log^{1/r} n)$ measurements. [Arias-Castro-Càndes-Davenport '11, P-Woodruff '12]
 - For k = 1, tight up to $O(\log^* k)$ factor in rounds.

Basic algorithm

- $O(\frac{1}{\epsilon}k \log \log(n/k))$ measurements.
- $O(\log^* k \log \log n)$ rounds.
- Given $O(r \log^* k)$ rounds, $O(\frac{1}{\epsilon} kr \log^{1/r}(n/k))$ measurements.
- Lower bound: given *r* rounds, $\Omega(k/\epsilon + r \log^{1/r} n)$ measurements. [Arias-Castro-Càndes-Davenport '11, P-Woodruff '12]

For k = 1, tight up to $O(\log^* k)$ factor in rounds.

• Given two rounds, $O(\frac{1}{\epsilon}k\log(k/\epsilon) + k\log(n/k))$ measurements.

Basic algorithm

- $O(\frac{1}{\epsilon}k \log \log(n/k))$ measurements.
- $O(\log^* k \log \log n)$ rounds.
- Given $O(r \log^* k)$ rounds, $O(\frac{1}{\epsilon} kr \log^{1/r}(n/k))$ measurements.
- Lower bound: given *r* rounds, $\Omega(k/\epsilon + r \log^{1/r} n)$ measurements. [Arias-Castro-Càndes-Davenport '11, P-Woodruff '12]
 - For k = 1, tight up to $O(\log^* k)$ factor in rounds.
- Given two rounds, $O(\frac{1}{\epsilon}k\log(k/\epsilon) + k\log(n/k))$ measurements.
 - Separates dependence on
 e and n.

Outline

1 Motivating Example

- 2 Formal Introduction to Sparse Recovery/Compressive Sensing
- 3 Algorithm

Adaptive Sparse Recovery

2012-04-26 28 / 29

• Nonadaptive sparse recovery requires $\Theta(k \log \frac{n}{k})$ measurements.

Adaptive Sparse Recovery

2012-04-26 29/29

★ ∃ ► 4

- Nonadaptive sparse recovery requires $\Theta(k \log \frac{n}{k})$ measurements.
- Adaptive algorithm uses $O(r \log^* k)$ rounds for $O(\frac{1}{\epsilon} kr \log^{1/r} \frac{n}{k})$ measurements.

Adaptive Sparse Recovery

2012-04-26 29/29

> = = ~ ~ ~

- Nonadaptive sparse recovery requires $\Theta(k \log \frac{n}{k})$ measurements.
- Adaptive algorithm uses $O(r \log^* k)$ rounds for $O(\frac{1}{\epsilon} kr \log^{1/r} \frac{n}{k})$ measurements.
 - ► Also: 2 rounds, $O(\frac{1}{\epsilon}k \log(k/\epsilon) + k \log(n/k))$ measurements.

- Nonadaptive sparse recovery requires $\Theta(k \log \frac{n}{k})$ measurements.
- Adaptive algorithm uses $O(r \log^* k)$ rounds for $O(\frac{1}{\epsilon} kr \log^{1/r} \frac{n}{k})$ measurements.
 - ► Also: 2 rounds, $O(\frac{1}{\epsilon}k \log(k/\epsilon) + k \log(n/k))$ measurements.
- Clearer characterization of measurement/round tradeoff?
 - Algorithm is $O(\log^* k)$ rounds off lower bound.
 - Given 4 iterations, how many total blood tests do we need?

- Nonadaptive sparse recovery requires $\Theta(k \log \frac{n}{k})$ measurements.
- Adaptive algorithm uses $O(r \log^* k)$ rounds for $O(\frac{1}{\epsilon} kr \log^{1/r} \frac{n}{k})$ measurements.
 - ► Also: 2 rounds, $O(\frac{1}{\epsilon}k \log(k/\epsilon) + k \log(n/k))$ measurements.
- Clearer characterization of measurement/round tradeoff?
 - ► Algorithm is *O*(log^{*} *k*) rounds off lower bound.
 - Given 4 iterations, how many total blood tests do we need?
- Incorporating adaptivity in constrained matrix designs?
Results and future work

- Nonadaptive sparse recovery requires $\Theta(k \log \frac{n}{k})$ measurements.
- Adaptive algorithm uses $O(r \log^* k)$ rounds for $O(\frac{1}{\epsilon} kr \log^{1/r} \frac{n}{k})$ measurements.
 - ► Also: 2 rounds, $O(\frac{1}{\epsilon}k \log(k/\epsilon) + k \log(n/k))$ measurements.
- Clearer characterization of measurement/round tradeoff?
 - Algorithm is O(log* k) rounds off lower bound.
 - Given 4 iterations, how many total blood tests do we need?
- Incorporating adaptivity in constrained matrix designs?
- Relate k/ϵ and *n* in tight bounds? Know $\Omega(\frac{1}{\epsilon}k + r \log^{1/r} n)$.

2012-04-26 30 / 29

Eric Price (MIT)

• Hash to $O(k^2/\epsilon^2)$ blocks, and probably all of:

Adaptive Sparse Recovery

2012-04-26 31/29

▶ Ξ[Ξ]

• Hash to $O(k^2/\epsilon^2)$ blocks, and probably all of:

A perfect hash, so heavy hitters land in different blocks.

Adaptive Sparse Recovery

< 6 b

2012-04-26 31 / 29

김 권 동 김 권 동 - 권 문

• Hash to $O(k^2/\epsilon^2)$ blocks, and probably all of:

- A perfect hash, so heavy hitters land in different blocks.
- Each heavy hitter dominates the noise in the same block.

Adaptive Sparse Recovery

2012-04-26 31 / 29

김 미 지 김 씨는 김 권 지 같이 있는 것이다.

• Hash to $O(k^2/\epsilon^2)$ blocks, and probably all of:

- A perfect hash, so heavy hitters land in different blocks.
- Each heavy hitter dominates the noise in the same block.
- Overall, the noise grows by at most $1 + \epsilon/2$ factor

《曰》《圖》《曰》《曰》 되는

• Hash to $O(k^2/\epsilon^2)$ blocks, and probably all of:

- A perfect hash, so heavy hitters land in different blocks.
- Each heavy hitter dominates the noise in the same block.
- Overall, the noise grows by at most $1 + \varepsilon/2$ factor
- Solve $(1 + \epsilon)$ -approximate sparse recovery in reduced space: $O(\frac{1}{\epsilon}k \log(k/\epsilon))$

《曰》《圖》《曰》《曰》 되는

• Hash to $O(k^2/\epsilon^2)$ blocks, and probably all of:

- A perfect hash, so heavy hitters land in different blocks.
- Each heavy hitter dominates the noise in the same block.
- Overall, the noise grows by at most $1 + \varepsilon/2$ factor
- Solve $(1 + \epsilon)$ -approximate sparse recovery in reduced space: $O(\frac{1}{\epsilon}k \log(k/\epsilon))$
- Identifies O(k) blocks to search containing enough heavy hitter mass.

• Hash to $O(k^2/\epsilon^2)$ blocks, and probably all of:

- A perfect hash, so heavy hitters land in different blocks.
- Each heavy hitter dominates the noise in the same block.
- Overall, the noise grows by at most $1 + \varepsilon/2$ factor
- Solve $(1 + \epsilon)$ -approximate sparse recovery in reduced space: $O(\frac{1}{\epsilon}k\log(k/\epsilon))$
- Identifies O(k) blocks to search containing enough heavy hitter mass.
- Heavy hitters are *O*(1)-heavy among their blocks, so *O*(log *n*) per block suffices.

• Hash to $O(k^2/\epsilon^2)$ blocks, and probably all of:

- A perfect hash, so heavy hitters land in different blocks.
- Each heavy hitter dominates the noise in the same block.
- Overall, the noise grows by at most $1 + \varepsilon/2$ factor
- Solve $(1 + \epsilon)$ -approximate sparse recovery in reduced space: $O(\frac{1}{\epsilon}k\log(k/\epsilon))$
- Identifies O(k) blocks to search containing enough heavy hitter mass.
- Heavy hitters are *O*(1)-heavy among their blocks, so *O*(log *n*) per block suffices.

• Result:
$$O(\frac{1}{\epsilon}k\log(k/\epsilon) + k\log n)$$
.