Sharp bounds for learning a mixture of two Gaussians

Moritz Hardt Eric Price

IBM Almaden

2014-05-28

Problem

- Height distribution of American 20 year olds.

Problem

- Height distribution of American 20 year olds.
- Male/female heights are very close to Gaussian distribution.
- Can we learn the average male and female heights from unlabeled population data?
- How many samples to learn μ_{1}, μ_{2} to $\pm \epsilon \sigma$?

Gaussian Mixtures: Origins

> III. Contributions to the Mathematical Theory of Erolution.
> By Kart, Prarson, University College, London.
> Communicated by Professor. Henrier, Ir.R.S.

Received October 18,-Read November 16, 1893.

> [Plates 1-5.]

Contents.

Page.
I.-On the Dissection of Asymmetrical Frequency-Curves. Gcueral Thoory, \$s 1-8. 71-85
Example: Professor Wemosis mensmrements of the "Forchead" of Crabs.§§ $9-10$$85-90$
IL.-On the Dissoction of Symmetrical Trequency-Curves. General Theory, §§ 11-12 Application. Crabs "No. 4," §§ 13-1" $90-100$
11L.-Investigation of an Asymmetrical Frequency, Curve repmesenting Mr. H. Thomsor's measurcments of the Carapaco of Prawns. §§ 16-18 100-106
Table J. First Six Powers of First Thirty Natural Nambers 106
Table LLL. Ordinates of Normal Frequency-Curve 107
Note aclded February 10, 1894 107-11.0

Gaussian Mixtures: Origins

Contributions to the Mathematical Theory of Evolution, Karl Pearson, 1894

- Pearson's naturalist buddy measured lots of crab body parts.
- Most lengths seemed to follow the "normal" distribution (a recently coined name)
- But the "forehead" size wasn't symmetric.
- Maybe there were actually two species of crabs?

More previous work

- Pearson 1894: proposed method for 2 Gaussians
- "Method of moments"
- Other empirical papers over the years:
- Royce '58, Gridgeman '70, Gupta-Huang '80
- Provable results assuming the components are well-separated:
- Clustering: Dasgupta '99, DA '00
- Spectral methods: VW '04, AK '05, KSV '05, AM '05, VW '05
- Kalai-Moitra-Valiant 2010: first general polynomial bound.
- Extended to general k mixtures: Moitra-Valiant '10, Belkin-Sinha '10
- The KMV polynomial is very large.
- Our result: tight upper and lower bounds for the sample complexity.
- For $k=2$ mixtures, arbitrary d dimensions.

Learning the components vs. learning the sum

- It's important that we want to learn the individual components:

Learning the components vs. learning the sum

- It's important that we want to learn the individual components:
- Male/female average heights, std. deviations.
- Getting ϵ approximation in TV norm to overall distribution takes $\widetilde{\Theta}\left(1 / \epsilon^{2}\right)$ samples from black box techniques.

Learning the components vs. learning the sum

- It's important that we want to learn the individual components:
- Male/female average heights, std. deviations.
- Getting ϵ approximation in TV norm to overall distribution takes $\widetilde{\Theta}\left(1 / \epsilon^{2}\right)$ samples from black box techniques.
- Quite general: for any mixture of known unimodal distributions. [Chan, Diakonikolas, Servedio, Sun '13]

We show

- Pearson's 1894 method can be extended to be optimal!
- Suppose we want means and variances to ϵ accuracy:
- μ_{i} to $\pm \epsilon \sigma$
- σ_{i}^{2} to $\pm \epsilon^{2} \sigma^{2}$
- In one dimension: $\Theta\left(1 / \epsilon^{12}\right)$ samples necessary and sufficient.
- Previously: $O\left(1 / \epsilon^{300}\right)$.
- Moreover: algorithm is almost the same as Pearson (1894).
- In dimensions, $\Theta\left(1 / \epsilon^{12} \log d\right)$ samples necessary and sufficient.
- " σ^{2} " is max variance in any coordinate.
- Get each entry of covariance matrix to $\pm \epsilon^{2} \sigma^{2}$.
- Previously: $O\left((d / \epsilon)^{300,000}\right)$.
- Caveat: assume p_{1}, p_{2} are bounded away from zero.

Outline

(1) Algorithm in One Dimension

(2) Algorithm in d Dimensions
(3) Lower Bound

Outline

(1) Algorithm in One Dimension

(2) Algorithm in d Dimensions

Method of Moments

- We want to learn five parameters: $\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, p_{1}, p_{2}$ with $p_{1}+p_{2}=1$.
- Moments give polynomial equations in parameters:

$$
\begin{aligned}
M_{1} & :=\mathbb{E}\left[x^{1}\right] \\
M_{2} & :=p_{1} \mu_{1}+p_{2} \mu_{2} \\
\left.M_{3}, M_{4}, M_{5}\right] & =p_{1} \mu_{1}^{2}+p_{2} \mu_{2}^{2}+p_{1} \sigma_{1}^{2}+p_{2} \sigma_{2}^{2}
\end{aligned}
$$

- Use our samples to estimate the moments.
- Solve the system of equations to find the parameters.

Method of Moments

Solving the system

- Start with five parameters.
- First, can assume mean zero:

Parameters	$\lambda>0$ rate, or inverse scale
Support	$x \in[0, \infty)$
pdf	$\lambda e^{-\lambda x}$
CDF	$1-e^{-\lambda x}$
Mean	λ^{-1}
Median	$\lambda^{-1} \ln (2)$
Mode	0
Variance	λ^{-2}
Skewness	2
Ex. kurtosis	6
Entropy	$1-\ln (\lambda)$
MGF	$\left(1-\frac{t}{\lambda}\right)^{-1}$ for $t<\lambda$
CF	$\left(1-\frac{i t}{\lambda}\right)^{-1}$
Fichar infarmation	$1-2$

- Convert to "central moments"
- $M_{2}^{\prime}=M_{2}-M_{1}^{2}$ is independent of translation.
- Analogously, can assume $\min \left(\sigma_{1}, \sigma_{2}\right)=0$ by converting to "excess moments"
- $X_{4}=M_{4}-3 M_{2}^{2}$ is independent of adding $N\left(0, \sigma^{2}\right)$.
- "Excess kurtosis" coined by Pearson, appearing in every Wikipedia probability distribution infobox.
- Leaves three free parameters.

Method of Moments: system of equations

- Convenient to reparameterize by

$$
\alpha=-\mu_{1} \mu_{2}, \beta=\mu_{1}+\mu_{2}, \gamma=\frac{\sigma_{2}^{2}-\sigma_{1}^{2}}{\mu_{2}-\mu_{1}}
$$

- Gives that

$$
\begin{aligned}
& X_{3}=\alpha(\beta+3 \gamma) \\
& X_{4}=\alpha\left(-2 \alpha+\beta^{2}+6 \beta \gamma+3 \gamma^{2}\right) \\
& X_{5}=\alpha\left(\beta^{3}-8 \alpha \beta+10 \beta^{2} \gamma+15 \gamma^{2} \beta-20 \alpha \gamma\right) \\
& X_{6}=\alpha\left(16 \alpha^{2}-12 \alpha \beta^{2}-60 \alpha \beta \gamma+\beta^{4}+15 \beta^{3} \gamma+45 \beta^{2} \gamma^{2}+15 \beta \gamma^{3}\right)
\end{aligned}
$$

All my attempts to obtain a simpler set have failed... It is possible, however, that some other ... equations of a less complex kind may ultimately be found.

Pearson's Polynomial

- Chug chug chug...
- Get a 9th degree polynomial in the excess moments X_{3}, X_{4}, X_{5} :

$$
\begin{aligned}
p(\alpha)= & 8 \alpha^{9}+28 X_{4} \alpha^{7}-12 X_{3}^{2} \alpha^{6}+\left(24 X_{3} X_{5}+30 X_{4}^{2}\right) \alpha^{5} \\
& \quad+\left(6 X_{5}^{2}-148 X_{3}^{2} X_{4}\right) \alpha^{4}+\left(96 X_{3}^{4}-36 X_{3} X_{4} X_{5}+9 X_{4}^{3}\right) \alpha^{3} \\
& \quad+\left(24 X_{3}^{3} X_{5}+21 X_{3}^{2} X_{4}^{2}\right) \alpha^{2}-32 X_{3}^{4} X_{4} \alpha+8 X_{3}^{6} \\
= & 0
\end{aligned}
$$

- Easy to go from solutions α to mixtures $\mu_{i}, \sigma_{i}, p_{i}$.

Pearson's Polynomial

- Get a 9th degree polynomial in the excess moments X_{3}, X_{4}, X_{5}.
- Positive roots correspond to mixtures that match on five moments.
- Usually have two roots.
- Pearson's proposal: choose candidate with closer 6th moment.
- Works because six moments uniquely identify mixture [KMV]
- How robust to moment estimation error?
- Usually works well

Pearson's Polynomial

- Get a 9th degree polynomial in the excess moments X_{3}, X_{4}, X_{5}.
- Positive roots correspond to mixtures that match on five moments.
- Usually have two roots.
- Pearson's proposal: choose candidate with closer 6th moment.
- Works because six moments uniquely identify mixture [KMV]
- How robust to moment estimation error?
- Usually works well
- Not when there's a double root.

Making it robust in all cases

- Can create another ninth degree polynomial p_{6} from $X_{3}, X_{4}, X_{5}, X_{6}$.
- Then α is the unique positive root of

$$
r(\alpha):=p_{5}(\alpha)^{2}+p_{6}(\alpha)^{2}=0 .
$$

- Therefore $q(x):=r /(x-\alpha)^{2}$ has no positive roots.
- Would like that $q(x) \geq c>0$ for all x and all mixtures α, β, γ.
- Then for $\left|\tilde{p}_{5}-p_{6}\right|,\left|\tilde{p}_{6}-p_{6}\right| \leq \epsilon$,

$$
|\alpha-\arg \min \widetilde{r}(x)| \leq \epsilon / \sqrt{c}
$$

- Compactness: true for any closed and bounded region.
- Bounded:
- For unbounded variables, dominating terms show $q \rightarrow \infty$.
- Closed:
- Issue is that $x>0$ isn't closed.
- Can use X_{3}, X_{4} to get an $O(1)$ approximation $\bar{\alpha}$ to α.
- $x \in[\bar{\alpha} / 10, \alpha]$ is closed.

Result

- Suppose the two components have means $\Delta \sigma$ apart.
- Then if we know M_{i} to $\pm \epsilon(\Delta \sigma)^{i}$, the algorithm recovers the means to $\pm \epsilon \Delta \sigma$.
- Therefore $O\left(\Delta^{-12} \epsilon^{-2}\right)$ samples give an $\epsilon \Delta$ approximation.
- If components are $\Omega(1)$ standard deviations apart, $O\left(1 / \epsilon^{2}\right)$ samples suffice.
- In general, $O\left(1 / \epsilon^{12}\right)$ samples suffice to get $\epsilon \sigma$ accuracy.

Outline

(1) Algorithm in One Dimension

(2) Algorithm in d Dimensions
(3) Lower Bound

Algorithm in d dimensions

- Idea: project to lower dimensions.
- Look at individual coordinates: get $\left\{\mu_{1, i}, \mu_{2, i}\right\}$ to $\pm \epsilon \sigma$.
- How do we piece them together?
- Suppose we could solve $d=2$:
- Can match up $\left\{\mu_{1, i}, \mu_{2, i}\right\}$ with $\left\{\mu_{1, j}, \mu_{2, j}\right\}$.
- Solve $d=2$:
- Project $x \rightarrow\langle v, x\rangle$ for many random v.
- For $\mu^{\prime} \neq \mu$, will have $\left\langle\mu^{\prime}, v\right\rangle \neq\left\langle\mu^{\prime}, v\right\rangle$ with constant probability.
- So we solve d case with poly (d) calls to 1-dimensional case.
- Only loss is $\log (1 / \delta) \rightarrow \log (d / \delta)$:

$$
\Theta\left(1 / \epsilon^{12} \log (d / \delta)\right) \text { samples }
$$

Outline

(1) Algorithm in One Dimension

(2) Algorithm in d Dimensions

(3) Lower Bound

Lower bound in one dimension

- The algorithm takes $O\left(\epsilon^{12}\right)$ samples because it uses six moments
- Necessary to get sixth moment to $\pm(\epsilon \sigma)^{6}$.
- Let F, F^{\prime} be any two mixtures with five matching moments:

- Constant means and variances.
- Add $N\left(0, \sigma^{2}\right)$ to each mixture as σ grows.

Lower bound in one dimension

- The algorithm takes $O\left(\epsilon^{12}\right)$ samples because it uses six moments
- Necessary to get sixth moment to $\pm(\epsilon \sigma)^{6}$.
- Let F, F^{\prime} be any two mixtures with five matching moments:

- Constant means and variances.
- Add $N\left(0, \sigma^{2}\right)$ to each mixture as σ grows.

Lower bound in one dimension

- The algorithm takes $O\left(\epsilon^{12}\right)$ samples because it uses six moments
- Necessary to get sixth moment to $\pm(\epsilon \sigma)^{6}$.
- Let F, F^{\prime} be any two mixtures with five matching moments:

- Constant means and variances.
- Add $N\left(0, \sigma^{2}\right)$ to each mixture as σ grows.

Lower bound in one dimension

- The algorithm takes $O\left(\epsilon^{12}\right)$ samples because it uses six moments
- Necessary to get sixth moment to $\pm(\epsilon \sigma)^{6}$.
- Let F, F^{\prime} be any two mixtures with five matching moments:

- Constant means and variances.
- Add $N\left(0, \sigma^{2}\right)$ to each mixture as σ grows.

Lower bound in one dimension

- The algorithm takes $O\left(\epsilon^{12}\right)$ samples because it uses six moments
- Necessary to get sixth moment to $\pm(\epsilon \sigma)^{6}$.
- Let F, F^{\prime} be any two mixtures with five matching moments:

- Constant means and variances.
- Add $N\left(0, \sigma^{2}\right)$ to each mixture as σ grows.

Lower bound in one dimension

- The algorithm takes $O\left(\epsilon^{12}\right)$ samples because it uses six moments
- Necessary to get sixth moment to $\pm(\epsilon \sigma)^{6}$.
- Let F, F^{\prime} be any two mixtures with five matching moments:

- Constant means and variances.
- Add $N\left(0, \sigma^{2}\right)$ to each mixture as σ grows.

Lower bound in one dimension

- The algorithm takes $O\left(\epsilon^{12}\right)$ samples because it uses six moments
- Necessary to get sixth moment to $\pm(\epsilon \sigma)^{6}$.
- Let F, F^{\prime} be any two mixtures with five matching moments:

- Constant means and variances.
- Add $N\left(0, \sigma^{2}\right)$ to each mixture as σ grows.

Lower bound in one dimension

- The algorithm takes $O\left(\epsilon^{12}\right)$ samples because it uses six moments
- Necessary to get sixth moment to $\pm(\epsilon \sigma)^{6}$.
- Let F, F^{\prime} be any two mixtures with five matching moments:

- Constant means and variances.
- Add $N\left(0, \sigma^{2}\right)$ to each mixture as σ grows.
- Claim: $\Omega\left(\sigma^{12}\right)$ samples necessary to distinguish the distributions.

Lower bound in one dimension

- Two mixtures F, F^{\prime} with $F \approx F^{\prime}$.
- Have TV $\left(F, F^{\prime}\right) \approx 1 / \sigma^{6}$.
- Shows $\Omega\left(\sigma^{6}\right)$ samples, $O\left(\sigma^{12}\right)$ samples.

- Improve using squared Hellinger distance.
- $H^{2}(P, Q):=\frac{1}{2} \int(\sqrt{p(x)}-\sqrt{q(x)})^{2} d x$
- H^{2} is subadditive on product measures
- Sample complexity is $\Omega\left(1 / H^{2}\left(F, F^{\prime}\right)\right)$
- $H^{2} \lesssim T V \lesssim H$, but often $H \approx T V$.

Bounding the Hellinger distance: general idea

Definition

$$
H^{2}(P, Q)=\frac{1}{2} \int(\sqrt{p(x)}-\sqrt{q(x)})^{2} d x=1-\int \sqrt{p(x) q(x)} d x
$$

- If $q(x)=(1+\Delta(x)) p(x)$ for some small Δ, then [Pollard '00]

$$
\begin{aligned}
H^{2}(p, q) & =1-\int \sqrt{1+\Delta(x)} p(x) d x \\
& =1-\underset{x \sim p}{\mathbb{E}}[\sqrt{1+\Delta(x)}] \\
& =1-\underset{x \sim p}{\mathbb{E}}\left[1+\Delta(x) / 2-O\left(\Delta^{2}(x)\right)\right]
\end{aligned}
$$

Bounding the Hellinger distance: general idea

Definition

$$
H^{2}(P, Q)=\frac{1}{2} \int(\sqrt{p(x)}-\sqrt{q(x)})^{2} d x=1-\int \sqrt{p(x) q(x)} d x
$$

- If $q(x)=(1+\Delta(x)) p(x)$ for some small Δ, then [Pollard '00]

$$
\begin{aligned}
H^{2}(p, q) & =1-\int \sqrt{1+\Delta(x)} p(x) d x \\
& =1-\underset{x \sim p}{\mathbb{E}}[\sqrt{1+\Delta(x)}] \\
& =1-\underset{x \sim p}{\mathbb{E}}\left[1+\Delta(x) / 2-O\left(\Delta^{2}(x)\right)\right]
\end{aligned}
$$

Bounding the Hellinger distance: general idea

Definition

$$
H^{2}(P, Q)=\frac{1}{2} \int(\sqrt{p(x)}-\sqrt{q(x)})^{2} d x=1-\int \sqrt{p(x) q(x)} d x
$$

- If $q(x)=(1+\Delta(x)) p(x)$ for some small Δ, then [Pollard '00]

$$
\begin{aligned}
H^{2}(p, q) & =1-\int \sqrt{1+\Delta(x)} p(x) d x \\
& =1-\underset{x \sim p}{\mathbb{E}}[\sqrt{1+\Delta(x)}] \\
& =1-\underset{x \sim p}{\mathbb{E}}[1+\underbrace{\Delta(x)}_{\int q(x)-p(x)=0} / 2-O\left(\Delta^{2}(x)\right)]
\end{aligned}
$$

Bounding the Hellinger distance: general idea

Definition

$$
H^{2}(P, Q)=\frac{1}{2} \int(\sqrt{p(x)}-\sqrt{q(x)})^{2} d x=1-\int \sqrt{p(x) q(x)} d x
$$

- If $q(x)=(1+\Delta(x)) p(x)$ for some small Δ, then [Pollard '00]

$$
\begin{aligned}
H^{2}(p, q) & =1-\int \sqrt{1+\Delta(x)} p(x) d x \\
& =1-\underset{x \sim p}{\mathbb{E}}[\sqrt{1+\Delta(x)}] \\
& =1-\underset{x \sim p}{\mathbb{E}}[1+\underbrace{1+(x)} / 2-O\left(\Delta^{2}(x)\right)] \\
& \lesssim \underset{x \sim p}{\mathbb{E}}\left[\Delta^{2}(x)\right]
\end{aligned}
$$

Bounding the Hellinger distance: general idea

Definition

$$
H^{2}(P, Q)=\frac{1}{2} \int(\sqrt{p(x)}-\sqrt{q(x)})^{2} d x=1-\int \sqrt{p(x) q(x)} d x
$$

- If $q(x)=(1+\Delta(x)) p(x)$ for some small Δ, then [Pollard '00]

$$
\begin{aligned}
H^{2}(p, q) & =1-\int \sqrt{1+\Delta(x)} p(x) d x \\
& =1-\underset{x \sim p}{\mathbb{E}}[\sqrt{1+\Delta(x)}] \\
& =1-\underset{x \sim p}{\mathbb{E}}[1+\underbrace{\Delta(x)-p(x)=0} / 2-O\left(\Delta^{2}(x)\right)] \\
& \lesssim \underset{x \sim p}{\mathbb{E}}\left[\Delta^{2}(x)\right]
\end{aligned}
$$

- Compare to $\operatorname{TV}(p, q)=\frac{1}{2} \mathbb{E}_{\chi \sim p}[|\Delta(x)|]$

Bounding the Hellinger distance: our setting

Lemma

Let F, F^{\prime} be two subgaussian distributions with k matching moments and constant parameters. Then for $G, G^{\prime}=F+N\left(0, \sigma^{2}\right), F^{\prime}+N\left(0, \sigma^{2}\right)$,

$$
H^{2}\left(G, G^{\prime}\right) \lesssim 1 / \sigma^{2 k+2} .
$$

- Can show both G^{\prime}, G are within $O(1)$ of $N\left(0, \sigma^{2}\right)$ over $\left[-\sigma^{2}, \sigma^{2}\right]$.
- We have that

$$
\begin{aligned}
\Delta(x) \approx \frac{G^{\prime}(x)-G(x)}{\nu(x)} & =\int \frac{\nu(x-t)}{\nu(x)}\left(F^{\prime}(t)-F(t)\right) d t \\
& \lesssim \int \sum_{d=0}^{\infty}\left(\frac{1+x / \sigma}{\sigma \sqrt{d}}\right)^{d} t^{d}\left(F^{\prime}(t)-F(t)\right) d t \\
& \lesssim \sum_{d=k+1}^{\infty}\left(\frac{1+x / \sigma}{\sigma}\right)^{d} \lesssim\left(\frac{1+x / \sigma}{\sigma}\right)^{k+1}
\end{aligned}
$$

SO

$$
H^{2}\left(G, G^{\prime}\right)<\underset{X \sim G}{\mathbb{E}_{\sim}}\left[\Delta(X)^{2}\right]<1 / \sigma^{2 k+2}
$$

Lower bound in one dimension

- Add $N\left(0, \sigma^{2}\right)$ to two mixtures with five matching moments.

Lower bound in one dimension

- Add $N\left(0, \sigma^{2}\right)$ to two mixtures with five matching moments.

Lower bound in one dimension

- Add $N\left(0, \sigma^{2}\right)$ to two mixtures with five matching moments.

Lower bound in one dimension

- Add $N\left(0, \sigma^{2}\right)$ to two mixtures with five matching moments.

Lower bound in one dimension

- Add $N\left(0, \sigma^{2}\right)$ to two mixtures with five matching moments.

Lower bound in one dimension

- Add $N\left(0, \sigma^{2}\right)$ to two mixtures with five matching moments.

Lower bound in one dimension

- Add $N\left(0, \sigma^{2}\right)$ to two mixtures with five matching moments.

Lower bound in one dimension

- Add $N\left(0, \sigma^{2}\right)$ to two mixtures with five matching moments.

- For

$$
\begin{aligned}
G & =\frac{1}{2} N\left(-1,1+\sigma^{2}\right)+\frac{1}{2} N\left(1,2+\sigma^{2}\right) \\
G^{\prime} & \approx 0.297 N\left(-1.226,0.610+\sigma^{2}\right)+0.703 N\left(0.517,2.396+\sigma^{2}\right)
\end{aligned}
$$

have $H^{2}\left(G, G^{\prime}\right) \lesssim 1 / \sigma^{12}$.

Lower bound in one dimension

- Add $N\left(0, \sigma^{2}\right)$ to two mixtures with five matching moments.

- For

$$
\begin{aligned}
G & =\frac{1}{2} N\left(-1,1+\sigma^{2}\right)+\frac{1}{2} N\left(1,2+\sigma^{2}\right) \\
G^{\prime} & \approx 0.297 N\left(-1.226,0.610+\sigma^{2}\right)+0.703 N\left(0.517,2.396+\sigma^{2}\right)
\end{aligned}
$$

have $H^{2}\left(G, G^{\prime}\right) \lesssim 1 / \sigma^{12}$.

- Therefore distinguishing G from G^{\prime} takes $\Omega\left(\sigma^{12}\right)$ samples.

Lower bound in one dimension

- Add $N\left(0, \sigma^{2}\right)$ to two mixtures with five matching moments.

- For

$$
\begin{aligned}
G & =\frac{1}{2} N\left(-1,1+\sigma^{2}\right)+\frac{1}{2} N\left(1,2+\sigma^{2}\right) \\
G^{\prime} & \approx 0.297 N\left(-1.226,0.610+\sigma^{2}\right)+0.703 N\left(0.517,2.396+\sigma^{2}\right)
\end{aligned}
$$

have $H^{2}\left(G, G^{\prime}\right) \lesssim 1 / \sigma^{12}$.

- Therefore distinguishing G from G^{\prime} takes $\Omega\left(\sigma^{12}\right)$ samples.
- Cannot learn either means to $\pm \epsilon \sigma$ or variance to $\pm \epsilon^{2} \sigma^{2}$ with $o\left(1 / \epsilon^{12}\right)$ samples.

Recap and open questions

- Our result:
- $\Theta\left(\epsilon^{-12} \log d\right)$ samples necessary and sufficient to estimate μ_{i} to $\pm \epsilon \sigma, \sigma_{i}^{2}$ to $\pm \epsilon^{2} \sigma^{2}$.
- If the means have $\Delta \sigma$ separation, just $O\left(\epsilon^{-2} \Delta^{-12}\right)$ for $\epsilon \Delta \sigma$ accuracy.
- Extend to $k>2$?
- Lower bound extends, so $\Omega\left(\epsilon^{-6 k}\right)$.
- Do we really care about finding an $O\left(\epsilon^{-18}\right)$ algorithm?
- Solving the system of equations gets nasty.
- Automated way of figuring out whether solution to system of polynomial equations is robust?

