Sparse Recovery and Fourier Sampling

Eric Price

MIT

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The Fourier Transform

Conversion between time and frequency domains

Time Domain

Frequency Domain

Fourier Transform

Displacement of Air

イロト 不得 トイヨト イヨト 正言 ろくの

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

The Fourier Transform is Ubiquitous

Audio

Medical Imaging

Radar

GPS

Oil Exploration

• How to compute $\hat{x} = Fx$?

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

- How to compute $\hat{x} = Fx$?
- Naive multiplication: $O(n^2)$.

- How to compute $\hat{x} = Fx$?
- Naive multiplication: $O(n^2)$.
- Fast Fourier Transform: $O(n \log n)$ time. [Cooley-Tukey, 1965]

《曰》《圖》《曰》《曰》 되는

- How to compute $\hat{x} = Fx$?
- Naive multiplication: $O(n^2)$.
- Fast Fourier Transform: O(n log n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical calculations.

- Carl Friedrich Gauss, 1805

・ 同 ト ・ 日 ト ・ 日 日

- How to compute $\hat{x} = Fx$?
- Naive multiplication: $O(n^2)$.
- Fast Fourier Transform: O(n log n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical calculations.

- Carl Friedrich Gauss, 1805

By hand: 22n log n seconds. [Danielson-Lanczos, 1942]

- How to compute $\hat{x} = Fx$?
- Naive multiplication: $O(n^2)$.
- Fast Fourier Transform: O(n log n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical calculations.

- Carl Friedrich Gauss, 1805

- By hand: 22n log n seconds. [Danielson-Lanczos, 1942]
- Can we do better?

- How to compute $\hat{x} = Fx$?
- Naive multiplication: $O(n^2)$.
- Fast Fourier Transform: O(n log n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical calculations.

- Carl Friedrich Gauss, 1805

- By hand: 22n log n seconds. [Danielson-Lanczos, 1942]
- Can we do much better?

- How to compute $\hat{x} = Fx$?
- Naive multiplication: $O(n^2)$.
- Fast Fourier Transform: O(n log n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical calculations.

- Carl Friedrich Gauss, 1805

소리 에 소문에 이 것 같아. 소문 이 모님의

- By hand: 22n log n seconds. [Danielson-Lanczos, 1942]
- Can we do much better?

When can we compute the Fourier Transform in *sublinear* time?

Idea: Leverage Sparsity

Often the Fourier transform is dominated by a small number of peaks:

Idea: Leverage Sparsity

Often the Fourier transform is dominated by a small number of peaks:

Sparsity is common:

Audio

Video

Medical Imaging

Radar

GPS

Oil Exploration

Idea: Leverage Sparsity

Often the Fourier transform is dominated by a small number of peaks:

Sparsity is common:

Goal of this work: a *sparse* Fourier transform *Faster* Fourier Transform on sparse data.

Sparse Fourier Transform

- Overview
- Technical Details

Sparse Fourier Transform

- Overview
- Technical Details

2

Beyond: Sparse Recovery / Compressive Sensing

- Overview
- Adaptivity
- Conclusion

▶ 프네님

一日

Sparse Fourier Transform

- Overview
- Technical Details

Beyond: Sparse Recovery / Compressive Sensing

- Overview
- Adaptivity
- Conclusion

Goal: Compute the Fourier transform $\hat{x} = Fx$ when \hat{x} is *k*-sparse.

- Theory:
 - The fastest algorithm for Fourier transforms of sparse data.
 - The only algorithms faster than FFT for all k = o(n).

My Contributions

Goal: Compute the Fourier transform $\hat{x} = Fx$ when \hat{x} is *k*-sparse.

- Theory:
 - The fastest algorithm for Fourier transforms of sparse data.
 - The only algorithms faster than FFT for all k = o(n).
- Practice:
 - Implementation is faster than FFTW for a wide range of inputs.
 - Orders of magnitude faster than previous sparse Fourier transforms.
 - Useful in multiple applications.

同 トイヨト イヨト ヨヨ ののの

http://groups.csail.mit.edu/netmit/sFFT/workshop.html

GPS [HAKI]: 2× faster

http://groups.csail.mit.edu/netmit/sFFT/workshop.html

- GPS [HAKI]: 2× faster
- Spectrum sensing [HSAHK]: 6× lower sampling rate

A (10) A (10) A (10)

http://groups.csail.mit.edu/netmit/sFFT/workshop.html

- GPS [HAKI]: 2× faster
- Spectrum sensing [HSAHK]: 6× lower sampling rate
- Dense FFT over clusters [TPKP]: 2× faster

http://groups.csail.mit.edu/netmit/sFFT/workshop.html

소리 에 소문에 이 제 문어 소문에 드릴 것

- GPS [HAKI]: 2× faster
- Spectrum sensing [HSAHK]: 6× lower sampling rate
- Dense FFT over clusters [TPKP]: 2× faster

Ο.

- Overview
- Technical Details

Beyond: Sparse Recovery / Compressive Sensing

- Overview
- Adaptivity
- Conclusion

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ●

For a signal of size *n* with *k* large frequencies

• First on Boolean cube [GL89, KM92, L93]

For a signal of size *n* with *k* large frequencies

- First on Boolean cube [GL89, KM92, L93]
- Adapted to complexes [Mansour '92, GGIMS02, AGS03, GMS05, Iwen '10, Akavia '10]

For a signal of size *n* with *k* large frequencies

- First on Boolean cube [GL89, KM92, L93]
- Adapted to complexes [Mansour '92, GGIMS02, AGS03, GMS05, Iwen '10, Akavia '10]
 - All take at least $k \log^4 n$ time.
 - Only better than FFT if $k \ll n/\log^3 n$.

For a signal of size *n* with *k* large frequencies

- First on Boolean cube [GL89, KM92, L93]
- Adapted to complexes [Mansour '92, GGIMS02, AGS03, GMS05, Iwen '10, Akavia '10]
 - All take at least $k \log^4 n$ time.
 - Only better than FFT if $k \ll n/\log^3 n$.
- Our results [HIKP12a, HIKP12b]

For a signal of size *n* with *k* large frequencies

- First on Boolean cube [GL89, KM92, L93]
- Adapted to complexes [Mansour '92, GGIMS02, AGS03, GMS05, Iwen '10, Akavia '10]
 - All take at least $k \log^4 n$ time.
 - Only better than FFT if $k \ll n/\log^3 n$.
- Our results [HIKP12a, HIKP12b]
 - Exactly k-sparse: O(k log n)
 - ★ Optimal if FFT is optimal.

For a signal of size *n* with *k* large frequencies

- First on Boolean cube [GL89, KM92, L93]
- Adapted to complexes [Mansour '92, GGIMS02, AGS03, GMS05, Iwen '10, Akavia '10]
 - All take at least $k \log^4 n$ time.
 - Only better than FFT if $k \ll n/\log^3 n$.
- Our results [HIKP12a, HIKP12b]
 - Exactly k-sparse: O(k log n)
 - ★ Optimal if FFT is optimal.
 - Approximately *k*-sparse: $O(k \log(n/k) \log n)$

$$\|\operatorname{result} - \widehat{x}\|_2 \leqslant (1+\epsilon) \min_{k ext{-sparse}} \|\widehat{x}_{(k)} - \widehat{x}\|_2$$

For a signal of size *n* with *k* large frequencies

- First on Boolean cube [GL89, KM92, L93]
- Adapted to complexes [Mansour '92, GGIMS02, AGS03, GMS05, Iwen '10, Akavia '10]
 - All take at least $k \log^4 n$ time.
 - Only better than FFT if $k \ll n/\log^3 n$.
- Our results [HIKP12a, HIKP12b]
 - Exactly k-sparse: O(k log n)
 - ★ Optimal if FFT is optimal.
 - Approximately *k*-sparse: $O(k \log(n/k) \log n)$

$$\|\operatorname{result} - \widehat{x}\|_2 \leqslant (1+\epsilon) \min_{k ext{-sparse} \ \widehat{x}_{(k)}} \|\widehat{x}_{(k)} - \widehat{x}\|_2$$

• Better than FFT for any k = o(n)

• Given $x \in \mathbb{C}^n$, compute Fourier transform \hat{x} :

$$\widehat{x}_i = rac{1}{n} \sum_j \omega^{-ij} x_j$$
 for $\omega = e^{\tau \mathbf{i}/n}$

• Given $x \in \mathbb{C}^n$, compute Fourier transform \hat{x} :

$$\widehat{x}_i = rac{1}{n} \sum_j \omega^{-ij} x_j$$
 for $\omega = e^{\tau \mathbf{i}/n}$

(where τ is the circle constant 6.283...)

Eric Price (MIT)

• Given $x \in \mathbb{C}^n$, compute Fourier transform \hat{x} :

$$\widehat{x}_{i} = \frac{1}{n} \sum_{j} \omega^{-ij} x_{j} \text{ for } \omega = e^{\tau i/n}$$
$$\widehat{x} = F x \text{ for } F_{ij} = \omega^{-ij}/n$$

(where τ is the circle constant 6.283...)

Eric Price (MIT)

• Given $x \in \mathbb{C}^n$, compute Fourier transform \hat{x} :

$$\widehat{x}_{i} = \frac{1}{n} \sum_{j} \omega^{-ij} x_{j} \text{ for } \omega = e^{\tau \mathbf{i}/n}$$
$$\widehat{x} = F x \text{ for } F_{ij} = \omega^{-ij}/n$$

Inverse transform almost identical:

(where τ is the circle constant 6.283...)

• Given $x \in \mathbb{C}^n$, compute Fourier transform \hat{x} :

$$\widehat{x}_{i} = \frac{1}{n} \sum_{j} \omega^{-ij} x_{j} \text{ for } \omega = e^{\tau \mathbf{i}/r}$$
$$\widehat{x} = F x \text{ for } F_{ij} = \omega^{-ij}/n$$

Inverse transform almost identical:

$$x_i = \sum_j \omega^{ij} \widehat{x}_j$$

•
$$\omega \to \omega^{-1}$$
, scale

(where τ is the circle constant 6.283...)

Eric Price (MIT)

시골 제 시 글 제 글 날
Discrete Fourier Transform (DFT) Definition

• Given $x \in \mathbb{C}^n$, compute Fourier transform \hat{x} :

$$\widehat{x}_{i} = \frac{1}{n} \sum_{j} \omega^{-ij} x_{j} \text{ for } \omega = e^{\tau \mathbf{i}/n}$$
$$\widehat{x} = F x \text{ for } F_{ij} = \omega^{-ij}/n$$

Inverse transform almost identical:

$$x_i = \sum_j \omega^{ij} \widehat{x}_j$$

•
$$\omega \to \omega^{-1}$$
, scale

Lots of nice properties

(where τ is the circle constant 6.283...)

向 ト イヨ ト イヨ ト ヨ ヨ ち ののの

Discrete Fourier Transform (DFT) Definition

• Given $x \in \mathbb{C}^n$, compute Fourier transform \hat{x} :

$$\widehat{x}_{i} = \frac{1}{n} \sum_{j} \omega^{-ij} x_{j} \text{ for } \omega = e^{\tau \mathbf{i}/n}$$
$$\widehat{x} = F x \text{ for } F_{ij} = \omega^{-ij}/n$$

Inverse transform almost identical:

$$x_i = \sum_j \omega^{ij} \widehat{x}_j$$

• $\omega \to \omega^{-1}$, scale

Lots of nice properties

 $\blacktriangleright \ Convolution \longleftrightarrow Multiplication$

(where τ is the circle constant 6.283...)

同ト 4 三ト 4 三ト 三三 9 4 円

Simpler case: \hat{x} is *exactly k*-sparse.

< □ > < 四 > < 回 > < 回 > < 回 > < 回 | 1</p>

Simpler case: \hat{x} is *exactly k*-sparse.

Theorem

We can compute \hat{x} in $O(k \log n)$ expected time.

Simpler case: \hat{x} is *exactly k*-sparse.

Theorem

We can compute \hat{x} in $O(k \log n)$ expected time.

Still kind of hard.

Simpler case: \hat{x} is *exactly k*-sparse.

Theorem

We can compute \hat{x} in $O(k \log n)$ expected time.

Still kind of hard.

Simplest case: \hat{x} is exactly 1-sparse.

A b

Simpler case: \hat{x} is *exactly k*-sparse.

Theorem

We can compute \hat{x} in $O(k \log n)$ expected time.

Still kind of hard.

Simplest case: \hat{x} is exactly 1-sparse.

Lemma

We can compute a 1-sparse \hat{x} in O(1) time.

▶ 프네님

Lemma

We can compute a 1-sparse \hat{x} in O(1) time.

$$\widehat{x}_i = \begin{cases} a & \text{if } i = t \\ 0 & \text{otherwise} \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Lemma

We can compute a 1-sparse \hat{x} in O(1) time.

$$\widehat{x}_i = \begin{cases} a & \text{if } i = t \\ 0 & \text{otherwise} \end{cases}$$

а

 \widehat{x} :

Lemma

We can compute a 1-sparse \hat{x} in O(1) time.

$$\widehat{x}_i = \begin{cases} a & \text{if } i = t \\ 0 & \text{otherwise} \end{cases}$$

$$x_0 = a$$

а

 \widehat{x} :

Lemma

We can compute a 1-sparse \hat{x} in O(1) time.

$$\widehat{x}_i = \begin{cases} a & \text{if } i = t \\ 0 & \text{otherwise} \end{cases}$$

$$x_0 = a$$
 $x_1 = a\omega^t$

а

 \widehat{x} :

Lemma

We can compute a 1-sparse \hat{x} in O(1) time.

$$\widehat{x}_i = \begin{cases} a & \text{if } i = t \\ 0 & \text{otherwise} \end{cases}$$

$$x_0 = a$$
 $x_1 = a\omega^t$

• $x_1/x_0 = \omega^t \implies t$.

 \widehat{x} :

Lemma

We can compute a 1-sparse \hat{x} in O(1) time.

$$\widehat{x}_i = \begin{cases} a & \text{if } i = t \\ 0 & \text{otherwise} \end{cases}$$

$$x_0 = a$$
 $x_1 = a\omega^t$

• $x_1/x_0 = \omega^t \implies t$.

 \widehat{x} :

Lemma

We can compute a 1-sparse \hat{x} in O(1) time.

$$\widehat{x}_i = \begin{cases} a & \text{if } i = t \\ 0 & \text{otherwise} \end{cases}$$

• Then
$$x = (a, a\omega^t, a\omega^{2t}, a\omega^{3t}, \dots, a\omega^{(n-1)t}).$$

$$x_0 = a$$
 $x_1 = a\omega^t$

• $x_1/x_0 = \omega^t \implies t.$

• (Related to OFDM, Prony's method, matrix pencil.)

а

 $\widehat{\mathbf{x}}$:

• Reduce general k to k = 1.

- Reduce general k to k = 1.
- "Filters": partition frequencies into *O*(*k*) buckets.

- Reduce general k to k = 1.
- "Filters": partition frequencies into *O*(*k*) buckets.

- Reduce general k to k = 1.
- "Filters": partition frequencies into *O*(*k*) buckets.

- Reduce general k to k = 1.
- "Filters": partition frequencies into *O*(*k*) buckets.
 - Sample from time domain of each bucket with O(log n) overhead.

- Reduce general k to k = 1.
- "Filters": partition frequencies into *O*(*k*) buckets.
 - Sample from time domain of each bucket with O(log n) overhead.
 - Recovered by k = 1 algorithm

- Reduce general k to k = 1.
- "Filters": partition frequencies into *O*(*k*) buckets.
 - Sample from time domain of each bucket with O(log n) overhead.
 - Recovered by k = 1 algorithm
- Most frequencies alone in bucket.

- Reduce general k to k = 1.
- "Filters": partition frequencies into *O*(*k*) buckets.
 - Sample from time domain of each bucket with O(log n) overhead.
 - Recovered by k = 1 algorithm
- Most frequencies alone in bucket.

- Reduce general k to k = 1.
- "Filters": partition frequencies into *O*(*k*) buckets.
 - Sample from time domain of each bucket with O(log n) overhead.
 - Recovered by k = 1 algorithm
- Most frequencies alone in bucket.

- Reduce general k to k = 1.
- "Filters": partition frequencies into *O*(*k*) buckets.
 - Sample from time domain of each bucket with O(log n) overhead.
 - Recovered by k = 1 algorithm
- Most frequencies alone in bucket.

- Reduce general k to k = 1.
- "Filters": partition frequencies into *O*(*k*) buckets.
 - Sample from time domain of each bucket with O(log n) overhead.
 - Recovered by k = 1 algorithm
- Most frequencies alone in bucket.
- Random permutation

- Reduce general k to k = 1.
- "Filters": partition frequencies into *O*(*k*) buckets.
 - Sample from time domain of each bucket with O(log n) overhead.
 - Recovered by k = 1 algorithm
- Most frequencies alone in bucket.
- Random permutation

- Reduce general k to k = 1.
- "Filters": partition frequencies into *O*(*k*) buckets.
 - Sample from time domain of each bucket with O(log n) overhead.
 - Recovered by k = 1 algorithm
- Most frequencies alone in bucket.
- Random permutation

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- Reduce general k to k = 1.
- "Filters": partition frequencies into *O*(*k*) buckets.
 - Sample from time domain of each bucket with O(log n) overhead.
 - Recovered by k = 1 algorithm
- Most frequencies alone in bucket.
- Random permutation

・ コット 全部 マイボット 小型 マート

Recovers *most* of \hat{x} :

Lemma (Partial sparse recovery)

In $O(k \log n)$ expected time, we can compute an estimate \hat{x}' such that $\hat{x} - \hat{x}'$ is k/2-sparse.

Lemma (Partial sparse recovery)

In $O(k \log n)$ expected time, we can compute an estimate \hat{x}' such that $\hat{x} - \hat{x}'$ is k/2-sparse.

-

Ŷ

Lemma (Partial sparse recovery)

In $O(k \log n)$ expected time, we can compute an estimate \hat{x}' such that $\hat{x} - \hat{x}'$ is k/2-sparse.

Lemma (Partial sparse recovery)

In $O(k \log n)$ expected time, we can compute an estimate \hat{x}' such that $\hat{x} - \hat{x}'$ is k/2-sparse.

Repeat, $k \rightarrow k/2 \rightarrow k/4 \rightarrow \cdots$

 $\widehat{\mathbf{X}} - \widehat{\mathbf{X}}'$

Lemma (Partial sparse recovery)

In $O(k \log n)$ expected time, we can compute an estimate \hat{x}' such that $\hat{x} - \hat{x}'$ is k/2-sparse.

Repeat, $k \rightarrow k/2 \rightarrow k/4 \rightarrow \cdots$

 $\widehat{\mathbf{X}} - \widehat{\mathbf{X}}'$

Lemma (Partial sparse recovery)

In $O(k \log n)$ expected time, we can compute an estimate \hat{x}' such that $\hat{x} - \hat{x}'$ is k/2-sparse.

Repeat, $k \rightarrow k/2 \rightarrow k/4 \rightarrow \cdots$

 $\widehat{\mathbf{X}} - \widehat{\mathbf{X}}'$

Lemma (Partial sparse recovery)

In $O(k \log n)$ expected time, we can compute an estimate \hat{x}' such that $\hat{x} - \hat{x}'$ is k/2-sparse.

Repeat, $k \rightarrow k/2 \rightarrow k/4 \rightarrow \cdots$

Lemma (Partial sparse recovery)

In $O(k \log n)$ expected time, we can compute an estimate \hat{x}' such that $\hat{x} - \hat{x}'$ is k/2-sparse.

Repeat,
$$k \rightarrow k/2 \rightarrow k/4 \rightarrow \cdots$$

Theorem

We can compute \hat{x} in $O(k \log n)$ expected time.

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

16/37

Lemma (Partial sparse recovery)

In $O(k \log n)$ expected time, we can compute an estimate \hat{x}' such that $\hat{x} - \hat{x}'$ is k/2-sparse.

Repeat,
$$k \rightarrow k/2 \rightarrow k/4 \rightarrow \cdots$$

Theorem

We can compute \hat{x} in $O(k \log n)$ expected time.

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

16/37

n-dimensional DFT: $O(n \log n)$ $x \to \hat{x}$

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

17/37

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

The issue

We want to isolate frequencies.

Frequency

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

The issue

We want to isolate frequencies.

Frequency

The sinc filter "leaks". Contamination from other buckets.

・ 戸 ・ ・ モ ・ ・ 日 ト

The issue

We want to isolate frequencies.

The sinc filter "leaks". Contamination from other buckets.

We introduce a better filter:

(Gaussian / prolate spheroidal sequence) convolved with rectangle.

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

315

日とくほとくほど

(本間) (本語) (本語) (語) [2] [2]

(日本) (日本) (日本) (日本)

(日本) (日本) (日本) (日本)

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

19/37

19/37

Lemma

If t is isolated in its bucket and in the "super-pass" region, the value b we compute for its bucket satisfies

$$b = \widehat{x}_t$$
.

Computing the b for all O(k) buckets takes $O(k \log n)$ time.

소리 에 소문에 이 것 같아. 소문 이 모님의

Lemma

For most t, the value b we compute for its bucket satisfies

 $b = \hat{x}_t$.

Computing the b for all O(k) buckets takes $O(k \log n)$ time.

Lemma

For most t, the value b we compute for its bucket satisfies

 $b=\widehat{x}_t.$

Computing the b for all O(k) buckets takes $O(k \log n)$ time.

- Time-shift *x* by one and repeat: $b' = \hat{x}_t \omega^t$.
- Divide to get $\dot{b}'/b = \omega^t$

Lemma

For most t, the value b we compute for its bucket satisfies

 $b=\widehat{x}_t.$

Computing the b for all O(k) buckets takes $O(k \log n)$ time.

- Time-shift *x* by one and repeat: $b' = \hat{x}_t \omega^t$.
- Divide to get $b'/b = \omega^t \implies$ can compute *t*.

Lemma

For most t, the value b we compute for its bucket satisfies

 $b = \hat{x}_t$.

Computing the b for all O(k) buckets takes $O(k \log n)$ time.

- Time-shift *x* by one and repeat: $b' = \hat{x}_t \omega^t$.
- Divide to get $b'/b = \omega^t \implies$ can compute *t*.
 - ► Just like our 1-sparse recovery algorithm, $x_1/x_0 = \omega^t$.

《曰》《圖》《曰》《曰》 되는

Lemma

For most t, the value b we compute for its bucket satisfies

 $b = \hat{x}_t$.

Computing the b for all O(k) buckets takes $O(k \log n)$ time.

- Time-shift *x* by one and repeat: $b' = \hat{x}_t \omega^t$.
- Divide to get $b'/b = \omega^t \implies$ can compute *t*.
 - ► Just like our 1-sparse recovery algorithm, $x_1/x_0 = \omega^t$.

• Gives partial sparse recovery: \hat{x}' such that $\hat{x} - \hat{x}'$ is k/2-sparse.

Lemma

For most t, the value b we compute for its bucket satisfies

 $b = \hat{x}_t$.

Computing the b for all O(k) buckets takes $O(k \log n)$ time.

- Time-shift *x* by one and repeat: $b' = \hat{x}_t \omega^t$.
- Divide to get $b'/b = \omega^t \implies$ can compute *t*.
 - ► Just like our 1-sparse recovery algorithm, $x_1/x_0 = \omega^t$.

• Gives partial sparse recovery: \hat{x}' such that $\hat{x} - \hat{x}'$ is k/2-sparse.

• Repeat $k \to k/2 \to k/4 \to \cdots$

イロト 不得 トイヨト イヨト 正言 ろくの

Lemma

For most t, the value b we compute for its bucket satisfies

 $b = \hat{x}_t$.

Computing the b for all O(k) buckets takes $O(k \log n)$ time.

- Time-shift *x* by one and repeat: $b' = \hat{x}_t \omega^t$.
- Divide to get $b'/b = \omega^t \implies$ can compute *t*.
 - ► Just like our 1-sparse recovery algorithm, $x_1/x_0 = \omega^t$.

• Gives partial sparse recovery: \hat{x}' such that $\hat{x} - \hat{x}'$ is k/2-sparse.

- Repeat $k \to k/2 \to k/4 \to \cdots$
- $O(k \log n)$ time sparse Fourier transform.

(人) (日) (日) (日) (日)

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

21/37

• What changes with noise?

Eric Price (MIT)

Sparse Recovery and Fourier Sampling,

- What changes with noise?
- Identical architecture:

A (10) A (10) A (10)

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

- What changes with noise?
- Identical architecture:

• Just requires robust 1-sparse recovery.

A b

(4) (5) (4) (5)

Lemma

Suppose \hat{x} is approximately 1-sparse:

 $|\widehat{x}_t|/\|\widehat{x}\|_2 \ge 90\%.$

Then we can recover it with $O(\log n)$ samples and $O(\log^2 n)$ time.

소리 에 소문에 이 것 같아. 소문 이 모님의

Lemma

Suppose \hat{x} is approximately 1-sparse:

 $|\widehat{x}_t|/\|\widehat{x}\|_2 \ge 90\%$.

Then we can recover it with $O(\log n)$ samples and $O(\log^2 n)$ time.

• With exact sparsity: log *n* bits in a single measurement.

소리 에 소문에 이 것 같아. 소문 이 모님의

Lemma

Suppose \hat{x} is approximately 1-sparse:

 $|\widehat{x}_t|/\|\widehat{x}\|_2 \ge 90\%$.

Then we can recover it with $O(\log n)$ samples and $O(\log^2 n)$ time.

- With exact sparsity: log *n* bits in a single measurement.
- With noise: only constant number of useful bits.

A (10) A (10)

Lemma

Suppose \hat{x} is approximately 1-sparse:

 $|\widehat{x}_t|/\|\widehat{x}\|_2 \ge 90\%$.

Then we can recover it with $O(\log n)$ samples and $O(\log^2 n)$ time.

- With exact sparsity: log *n* bits in a single measurement.
- With noise: only constant number of useful bits.
- Choose $\Theta(\log n)$ time shifts *c* to recover *i*.

Lemma

Suppose \hat{x} is approximately 1-sparse:

 $|\widehat{x}_t|/\|\widehat{x}\|_2 \ge 90\%$.

Then we can recover it with $O(\log n)$ samples and $O(\log^2 n)$ time.

- With exact sparsity: log *n* bits in a single measurement.
- With noise: only constant number of useful bits.
- Choose $\Theta(\log n)$ time shifts *c* to recover *i*.

・ ロ ト ・ 同 ト ・ 回 ト ・ 回 ト

Lemma

Suppose \hat{x} is approximately 1-sparse:

 $|\widehat{x}_t|/\|\widehat{x}\|_2 \ge 90\%.$

Then we can recover it with $O(\log n)$ samples and $O(\log^2 n)$ time.

- With exact sparsity: log *n* bits in a single measurement.
- With noise: only constant number of useful bits.
- Choose $\Theta(\log n)$ time shifts *c* to recover *i*.

ヘロト 不良 トイヨト イヨト

Lemma

Suppose \hat{x} is approximately 1-sparse:

 $|\widehat{x}_t|/\|\widehat{x}\|_2 \ge 90\%.$

Then we can recover it with $O(\log n)$ samples and $O(\log^2 n)$ time.

- With exact sparsity: log *n* bits in a single measurement.
- With noise: only constant number of useful bits.
- Choose $\Theta(\log n)$ time shifts *c* to recover *i*.
- Error correcting code with efficient recovery \implies Lemma.

Eric Price (MIT)

Algorithm for *approximately sparse* signals: general k

Lemma

If \hat{x} is approximately 1-sparse, we can recover it with $O(\log n)$ samples and $O(\log^2 n)$ time.

・ 同 ト く ヨ ト く ヨ ト (ヨ
Algorithm for approximately sparse signals: general k

Lemma

If \hat{x} is approximately 1-sparse, we can recover it with $O(\log n)$ samples and $O(\log^2 n)$ time.

Reduce *k*-sparse to 1-sparse on buckets of size n/k, with log *n* overhead per sample.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Algorithm for approximately sparse signals: general k

Lemma

If \hat{x} is approximately 1-sparse, we can recover it with $O(\log n)$ samples and $O(\log^2 n)$ time.

Reduce *k*-sparse to 1-sparse on buckets of size n/k, with log *n* overhead per sample.

Theorem

If \hat{x} is approximately *k*-sparse, we can recover it in $O(k \log(n/k) \log n)$ time.

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

- Compare to
 - FFTW, the "Fastest Fourier Transform in the West"
 - ► AAFFT, the [GMS05] sparse Fourier transform.

- Compare to
 - FFTW, the "Fastest Fourier Transform in the West"
 - ► AAFFT, the [GMS05] sparse Fourier transform.

< 🗇 🕨

A B F A B F

-

- Compare to
 - FFTW, the "Fastest Fourier Transform in the West"
 - AAFFT, the [GMS05] sparse Fourier transform.

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

- Compare to
 - FFTW, the "Fastest Fourier Transform in the West"
 - AAFFT, the [GMS05] sparse Fourier transform.

• Faster than FFTW for wide range of values.

3 > 4 3

고나님

Recap of Sparse Fourier Transform

• Theory:

- The fastest algorithm for Fourier transforms of sparse data.
- The only algorithms faster than FFT for all k = o(n).

Recap of Sparse Fourier Transform

Theory:

- The fastest algorithm for Fourier transforms of sparse data.
- The only algorithms faster than FFT for all k = o(n).
- Practice:
 - Implementation is faster than FFTW for a wide range of inputs.
 - Orders of magnitude faster than previous sparse Fourier transforms.
 - Useful in multiple applications.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ● ●

Talk Outline

Sparse Fourier Transform

- Overview
- Technical Details

Beyond: Sparse Recovery / Compressive Sensing

- Overview
- Adaptivity
- Conclusion

Robustly recover sparse *x* from linear measurements y = Ax.

12

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Robustly recover sparse *x* from linear measurements y = Ax.

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

12

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Robustly recover sparse *x* from linear measurements y = Ax.

Sparse Fourier

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

Robustly recover sparse *x* from linear measurements y = Ax.

Sparse Fourier

Robustly recover sparse *x* from linear measurements y = Ax.

Sparse Fourier


```
MRI
```


Single-Pixel Camera

Robustly recover sparse *x* from linear measurements y = Ax.

Sparse Fourier


```
MRI
```


Single-Pixel Camera

A B F A B F

Streaming Algorithms $A(x + \Delta) = Ax + A\Delta$

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

27/37

Robustly recover sparse x from linear measurements y = Ax.

Sparse Fourier

MRI

Single-Pixel Camera

Streaming Algorithms $A(x + \Delta) = Ax + A\Delta$

Genetic Testing

Sparse Fourier: minimize time complexity [HIKP12b, HIKP12a]

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

- Sparse Fourier: minimize time complexity [HIKP12b, HIKP12a]
- MRI: minimize Fourier *sample* complexity [GHIKPS13, IKP14]

12

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- Sparse Fourier: minimize time complexity [HIKP12b, HIKP12a]
- MRI: minimize Fourier sample complexity [GHIKPS13, IKP14]
- Camera: use Earth-Mover Distance metric [IP11, GIP10, GIPR11]

소리 에 소문에 이 것 같아. 소문 이 모님의

- Sparse Fourier: minimize time complexity [HIKP12b, HIKP12a]
- MRI: minimize Fourier sample complexity [GHIKPS13, IKP14]
- Camera: use Earth-Mover Distance metric [IP11, GIP10, GIPR11]
- Streaming: improved analysis of Count-Sketch [MP14, PW11, P11]

제 글 제 제 글 제 글 날

- Sparse Fourier: minimize time complexity [HIKP12b, HIKP12a]
- MRI: minimize Fourier sample complexity [GHIKPS13, IKP14]
- Camera: use Earth-Mover Distance metric [IP11, GIP10, GIPR11]
- Streaming: improved analysis of Count-Sketch [MP14, PW11, P11]
- Genetic testing: first asymptotic gain using adaptivity [IPW11, PW13]

・ 同 ト ・ 日 ト ・ 日 ト

- Sparse Fourier: minimize time complexity [HIKP12b, HIKP12a]
- MRI: minimize Fourier sample complexity [GHIKPS13, IKP14]
- Camera: use Earth-Mover Distance metric [IP11, GIP10, GIPR11]
- Streaming: improved analysis of Count-Sketch [MP14, PW11, P11]
- Genetic testing: first asymptotic gain using adaptivity [IPW11, PW13]

・ 同 ト ・ 日 ト ・ 日 ト

• Unknown approximately *k*-sparse vector $x \in \mathbb{R}^n$.

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

29/37

- Unknown approximately *k*-sparse vector $x \in \mathbb{R}^n$.
- Choose $v \in \mathbb{R}^n$, observe $y = \langle v, x \rangle$.

- Unknown approximately *k*-sparse vector $x \in \mathbb{R}^n$.
- Choose $v \in \mathbb{R}^n$, observe $y = \langle v, x \rangle$.
- Choose another *v* and repeat as needed.

- Unknown approximately *k*-sparse vector $x \in \mathbb{R}^n$.
- Choose $v \in \mathbb{R}^n$, observe $y = \langle v, x \rangle$.
- Choose another v and repeat as needed.
- Output x' satisfying

$$\|x' - x\|_2 < (1 + \epsilon) \min_{k ext{-sparse } x_{(k)}} \|x - x_{(k)}\|_2$$

- Unknown approximately *k*-sparse vector $x \in \mathbb{R}^n$.
- Choose $v \in \mathbb{R}^n$, observe $y = \langle v, x \rangle$.
- Choose another *v* and repeat as needed.
- Output x' satisfying

$$\|x' - x\|_2 < (1 + \epsilon) \min_{k - \text{sparse } x_{(k)}} \|x - x_{(k)}\|_2$$

 Nonadaptively: Θ(k log(n/k)) measurements necessary and sufficient. [Candès-Romberg-Tao '06, DIPW '10]

- Unknown approximately *k*-sparse vector $x \in \mathbb{R}^n$.
- Choose $v \in \mathbb{R}^n$, observe $y = \langle v, x \rangle$.
- Choose another *v* and repeat as needed.
- Output x' satisfying

$$\|x' - x\|_2 < (1 + \epsilon) \min_{k - \text{sparse } x_{(k)}} \|x - x_{(k)}\|_2$$

- Nonadaptively: Θ(k log(n/k)) measurements necessary and sufficient. [Candès-Romberg-Tao '06, DIPW '10]
- Natural question: does adaptivity help?

イロト 不得 トイヨト イヨト 正言 ろくの

- Unknown approximately *k*-sparse vector $x \in \mathbb{R}^n$.
- Choose $v \in \mathbb{R}^n$, observe $y = \langle v, x \rangle$.
- Choose another *v* and repeat as needed.
- Output x' satisfying

$$\|x' - x\|_2 < (1 + \epsilon) \min_{k - \text{sparse } x_{(k)}} \|x - x_{(k)}\|_2$$

- Nonadaptively: Θ(k log(n/k)) measurements necessary and sufficient. [Candès-Romberg-Tao '06, DIPW '10]
- Natural question: does adaptivity help?
 - Studied in [MSW08, JXC08, CHNR08, AWZ08, HCN09, ACD11, ...]

イロト 不得 トイヨト イヨト 正言 ろくの

- Unknown approximately *k*-sparse vector $x \in \mathbb{R}^n$.
- Choose $v \in \mathbb{R}^n$, observe $y = \langle v, x \rangle$.
- Choose another *v* and repeat as needed.
- Output x' satisfying

$$\|x' - x\|_2 < (1 + \epsilon) \min_{k - \text{sparse } x_{(k)}} \|x - x_{(k)}\|_2$$

- Nonadaptively: Θ(k log(n/k)) measurements necessary and sufficient. [Candès-Romberg-Tao '06, DIPW '10]
- Natural question: does adaptivity help?
 - Studied in [MSW08, JXC08, CHNR08, AWZ08, HCN09, ACD11, ...]
- First asymptotic improvement: O(k log log(n/k)) measurements.
 [IPW '11]

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

30/37

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

30/37

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

30/37

Eric Price (MIT)

Sparse Recovery and Fourier Sampling
Applications of Adaptivity

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

Theorem

Adaptive *k*-sparse recovery is possible with $O(k \log \log(n/k))$ measurements.

Theorem

Adaptive k-sparse recovery is possible with $O(k \log \log(n/k))$ measurements.

Theorem

Adaptive *k*-sparse recovery is possible with $O(k \log \log(n/k))$ measurements.

Suffices to solve for k = 1:

Theorem

Adaptive k-sparse recovery is possible with $O(k \log \log(n/k))$ measurements.

Suffices to solve for k = 1:

Lemma

Adaptive 1-sparse recovery is possible with $O(\log \log n)$ measurements.

Lemma

Adaptive 1-sparse recovery is possible with $O(\log \log n)$ measurements.

• Non-adaptive lower bound: why is this hard?

소리 에 소문에 이 것 같아. 소문 이 모님의

Lemma

Adaptive 1-sparse recovery is possible with $O(\log \log n)$ measurements.

- Non-adaptive lower bound: why is this hard?
- Hard case: x is random e_i plus Gaussian noise w with $||w||_2 \approx 1$.

and the product of the state of

Lemma

Adaptive 1-sparse recovery is possible with $O(\log \log n)$ measurements.

- Non-adaptive lower bound: why is this hard?
- Hard case: x is random e_i plus Gaussian noise w with $||w||_2 \approx 1$.

dishaloggalapapan dagi muru sugari senakarah sidi susuki suju junjan di sugari sugar

• Robust recovery must locate *i*.

Lemma

Adaptive 1-sparse recovery is possible with $O(\log \log n)$ measurements.

- Non-adaptive lower bound: why is this hard?
- Hard case: x is random e_i plus Gaussian noise w with $||w||_2 \approx 1$.

an product a substantial second states and the second states and the second second second second second second

- Robust recovery must locate *i*.
- Observations $\langle v, x \rangle = v_i + \langle v, w \rangle = v_i + \frac{\|v\|_2}{\sqrt{n}}z$, for $z \sim N(0, 1)$.

《曰》《曰》《曰》《曰》 《曰》

• Observe
$$\langle v, x \rangle = v_i + \frac{\|v\|_2}{\sqrt{n}}z$$
, where $z \sim N(0, 1)$

• Observe
$$\langle v, x \rangle = v_i + \frac{\|v\|_2}{\sqrt{n}} z$$
, where $z \sim N(0, 1)$

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

33/37

• Observe
$$\langle v, x \rangle = v_i + \frac{\|v\|_2}{\sqrt{n}} z$$
, where $z \sim N(0, 1)$

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

33/37

• Observe
$$\langle v, x \rangle = v_i + \frac{\|v\|_2}{\sqrt{n}} Z$$
, where $z \sim N(0, 1)$

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

33/37

• Observe $\langle v, x \rangle = v_i + \frac{\|v\|_2}{\sqrt{n}} z$, where $z \sim N(0, 1)$

• Observe $\langle v, x \rangle = v_i + \frac{\|v\|_2}{\sqrt{n}} z$, where $z \sim N(0, 1)$

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

• Observe
$$\langle v, x \rangle = v_i + \frac{\|v\|_2}{\sqrt{n}}z$$
, where $z \sim N(0, 1)$

• Shannon 1948: information capacity

$$I(i, \langle v, x \rangle) \leqslant \frac{1}{2} \log(1 + \text{SNR})$$

where SNR denotes the "signal-to-noise ratio,"

$$SNR = rac{\mathbb{E}[\text{signal}^2]}{\mathbb{E}[\text{noise}^2]} = rac{\mathbb{E}[v_i^2]}{\|v\|_2^2/n} = 1$$

・ 同 ト ・ 日 ト ・ 日 ト

• Observe $\langle v, x \rangle = v_i + \frac{\|v\|_2}{\sqrt{n}}z$, where $z \sim N(0, 1)$

• Shannon 1948: information capacity

$$I(i, \langle v, x \rangle) \leqslant \frac{1}{2} \log(1 + \text{SNR})$$

where SNR denotes the "signal-to-noise ratio,"

$$SNR = rac{\mathbb{E}[\text{signal}^2]}{\mathbb{E}[\text{noise}^2]} = rac{\mathbb{E}[v_i^2]}{\|v\|_2^2/n} = 1$$

• Finding *i* needs $\Omega(\log n)$ non-adaptive measurements.

1-sparse recovery: changes in adaptive setting

Information capacity

$$I(i, \langle v, x \rangle) \leqslant \frac{1}{2} \log(1 + \text{SNR}).$$

where SNR denotes the "signal-to-noise ratio,"

$$SNR = \frac{\mathbb{E}[v_i^2]}{\|v\|_2^2/n}.$$

A b

1-sparse recovery: changes in adaptive setting

• Information capacity

$$I(i, \langle v, x \rangle) \leqslant \frac{1}{2} \log(1 + \text{SNR}).$$

where SNR denotes the "signal-to-noise ratio,"

$$SNR = \frac{\mathbb{E}[v_i^2]}{\|v\|_2^2/n}.$$

• If *i* is independent of *v*, this is O(1).

김 글 제 김 글 제 글 날

1-sparse recovery: changes in adaptive setting

• Information capacity

$$I(i, \langle v, x \rangle) \leqslant \frac{1}{2} \log(1 + \text{SNR}).$$

where SNR denotes the "signal-to-noise ratio,"

$$SNR = \frac{\mathbb{E}[v_i^2]}{\|v\|_2^2/n}.$$

- If *i* is independent of *v*, this is O(1).
- As we learn about *i*, we can increase the SNR.

시골 제 시 글 제 글 날

 $SNR = 2^{2}$ $I(i, \langle v, x \rangle) \leq \log SNR = 2$ $\langle v, x \rangle = v_{i} + \langle v, w \rangle$

Eric Price (MIT)

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

Lemma (IPW11)

Adaptive 1-sparse recovery takes $O(\log \log n)$ measurements.

Lemma (IPW11, PW13)

Adaptive 1-sparse recovery takes $\Theta(\log \log n)$ measurements.

Lemma (IPW11, PW13)

Adaptive 1-sparse recovery takes $\Theta(\log \log n)$ measurements.

Lemma (IPW11, PW13)

Adaptive 1-sparse recovery takes $\Theta(\log \log n)$ measurements.

Lemma (IPW11, PW13)

Adaptive 1-sparse recovery takes $\Theta(\log \log n)$ measurements.

Gives $\Theta(k \log \log(n/k))$ k-sparse recovery via general framework.

Eric Price (MIT)

- Sparse Fourier transform
 - Fastest algorithm for Fourier transforms on sparse data
 - Already has applications with substantial improvements

イロト 不得 トイヨト イヨト 正言 ろくの

- Sparse Fourier transform
 - Fastest algorithm for Fourier transforms on sparse data
 - Already has applications with substantial improvements
- Broader sparse recovery theory
 - Sparse Fourier: minimize time complexity [HIKP12]
 - MRI: minimize Fourier sample complexity [GHIKPS13, IKP14]
 - Camera: use Earth-Mover Distance metric [IP11, GIP10, GIPR11]
 - Streaming: improved analysis of Count-Sketch [MP14, PW11, P11]
 - Genetic testing: first asymptotic gain using adaptivity [IPW11, PW13]

イロト 不得 トイヨト イヨト 正言 ろくの

- Sparse Fourier transform
 - Fastest algorithm for Fourier transforms on sparse data
 - Already has applications with substantial improvements
- Broader sparse recovery theory
 - Sparse Fourier: minimize time complexity [HIKP12]
 - MRI: minimize Fourier sample complexity [GHIKPS13, IKP14]
 - Camera: use Earth-Mover Distance metric [IP11, GIP10, GIPR11]
 - Streaming: improved analysis of Count-Sketch [MP14, PW11, P11]
 - Genetic testing: first asymptotic gain using adaptivity [IPW11, PW13]
- Lower bounds
 - Based on Gaussian channel capacity: tight bounds, extensible to adaptive settings.
 - Based on communication complexity: extends to l_1 setting.

< □ > < □ > < 亘 > < 亘 > < 亘 > < 亘 ≤ の < ○

- Sparse Fourier transform
 - Fastest algorithm for Fourier transforms on sparse data
 - Already has applications with substantial improvements
- Broader sparse recovery theory
 - Sparse Fourier: minimize time complexity [HIKP12]
 - MRI: minimize Fourier sample complexity [GHIKPS13, IKP14]
 - Camera: use Earth-Mover Distance metric [IP11, GIP10, GIPR11]
 - Streaming: improved analysis of Count-Sketch [MP14, PW11, P11]
 - Genetic testing: first asymptotic gain using adaptivity [IPW11, PW13]
- Lower bounds
 - Based on Gaussian channel capacity: tight bounds, extensible to adaptive settings.
 - Based on communication complexity: extends to ℓ_1 setting.

Thank You

< □ > < □ > < 亘 > < 亘 > < 亘 > < 亘 ≤ の < ○

• Make sparse Fourier applicable to more problems
• Make sparse Fourier applicable to more problems

Better sample complexity

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Make sparse Fourier applicable to more problems

- Better sample complexity
- Incorporate stronger notions of structure

• Make sparse Fourier applicable to more problems

- Better sample complexity
- Incorporate stronger notions of structure
- Tight constants in compressive sensing

・ 戸 ・ ・ モ ・ ・ 日 ト

• Make sparse Fourier applicable to more problems

- Better sample complexity
- Incorporate stronger notions of structure
- Tight constants in compressive sensing
 - Analogous to channel capacity in coding theory.

Make sparse Fourier applicable to more problems

- Better sample complexity
- Incorporate stronger notions of structure
- Tight constants in compressive sensing
 - Analogous to channel capacity in coding theory.
 - Lower bound techniques, from information theory, should be strong enough.

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

39/37

・ロト・西ト・モト・モー シック

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

40/37

・ロト・西ト・モト・モー シック