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The Fourier Transform
Conversion between time and frequency domains

Time Domain Frequency Domain

Fourier Transform

Displacement of Air Concert A
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The Fourier Transform is Ubiquitous

Audio Video Medical Imaging

Radar GPS Oil Exploration
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Computing the Discrete Fourier Transform

How to compute x̂ = Fx?

Naive multiplication: O(n2).
Fast Fourier Transform: O(n log n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical
calculations.

– Carl Friedrich Gauss, 1805

By hand: 22n log n seconds. [Danielson-Lanczos, 1942]
Can we do better?

When can we compute the Fourier
Transform in sublinear time?
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Idea: Leverage Sparsity
Often the Fourier transform is dominated by a small number of peaks:

Time Signal Frequency
(Exactly sparse)

Frequency
(Approximately sparse)

Sparsity is common:

Audio Video Medical
Imaging

Radar GPS Oil Exploration

Goal of this work: a sparse Fourier transform
Faster Fourier Transform on sparse data.

Eric Price (MIT) Sparse Recovery and Fourier Sampling 5 / 37



Idea: Leverage Sparsity
Often the Fourier transform is dominated by a small number of peaks:

Time Signal Frequency
(Exactly sparse)

Frequency
(Approximately sparse)

Sparsity is common:

Audio Video Medical
Imaging

Radar GPS Oil Exploration

Goal of this work: a sparse Fourier transform
Faster Fourier Transform on sparse data.

Eric Price (MIT) Sparse Recovery and Fourier Sampling 5 / 37



Idea: Leverage Sparsity
Often the Fourier transform is dominated by a small number of peaks:

Time Signal Frequency
(Exactly sparse)

Frequency
(Approximately sparse)

Sparsity is common:

Audio Video Medical
Imaging

Radar GPS Oil Exploration

Goal of this work: a sparse Fourier transform
Faster Fourier Transform on sparse data.

Eric Price (MIT) Sparse Recovery and Fourier Sampling 5 / 37



Talk Outline

1 Sparse Fourier Transform
Overview
Technical Details

2 Beyond: Sparse Recovery / Compressive Sensing
Overview
Adaptivity
Conclusion
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My Contributions

Goal: Compute the Fourier transform x̂ = Fx when x̂ is k -sparse.

Theory:
I The fastest algorithm for Fourier transforms of sparse data.
I The only algorithms faster than FFT for all k = o(n).

Practice:
I Implementation is faster than FFTW for a wide range of inputs.
I Orders of magnitude faster than previous sparse Fourier transforms.
I Useful in multiple applications.
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Applications of ideas
http://groups.csail.mit.edu/netmit/sFFT/workshop.html

GPS [HAKI]: 2× faster

Spectrum sensing [HSAHK]: 6× lower sampling rate
Dense FFT over clusters [TPKP]: 2× faster
...
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Theoretical Results
For a signal of size n with k large frequencies

First on Boolean cube [GL89, KM92, L93]

Adapted to complexes [Mansour ’92, GGIMS02, AGS03, GMS05,
Iwen ’10, Akavia ’10]

I All take at least k log4 n time.
I Only better than FFT if k � n/ log3 n.

Our results [HIKP12a, HIKP12b]

I Exactly k -sparse: O(k log n)
F Optimal if FFT is optimal.

I Approximately k -sparse: O(k log(n/k) log n)

‖result − x̂‖2 6 (1 + ε) min
k -sparse x̂(k)

‖x̂(k) − x̂‖2

I Better than FFT for any k = o(n)
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Discrete Fourier Transform (DFT) Definition

Given x ∈ Cn, compute Fourier transform x̂ :

x̂i =
1
n

∑
j

ω−ijxj for ω = eτi/n

x̂ = F x for Fij = ω
−ij/n

Inverse transform almost identical:

xi =
∑

j

ωij x̂j

I ω→ ω−1, scale

Lots of nice properties

I Convolution←→ Multiplication

(where τ is the circle constant 6.283...)
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Algorithm

Simpler case: x̂ is exactly k -sparse.

Theorem
We can compute x̂ in O(k log n) expected time.

Still kind of hard.

Simplest case: x̂ is exactly 1-sparse.

Lemma
We can compute a 1-sparse x̂ in O(1) time.
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Algorithm for k = 1

x̂ :

t

aLemma
We can compute a 1-sparse x̂ in O(1) time.

x̂i =

{
a if i = t
0 otherwise

Then x = (a,aωt ,aω2t ,aω3t , . . . ,aω(n−1)t).

x0 = a x1 = aωt

x1/x0 = ωt =⇒ t . �

(Related to OFDM, Prony’s method, matrix pencil.)
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Algorithm for general k

Reduce general k to k = 1.

“Filters”: partition frequencies into
O(k) buckets.

I Sample from time domain of each
bucket with O(log n) overhead.

I Recovered by k = 1 algorithm

Most frequencies alone in bucket.
Random permutation

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Recovers most of x̂ :

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.
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Overall outline x̂

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

Partial k -sparse recovery

x x̂ ′

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Repeat, k → k/2→ k/4→ · · ·

Theorem
We can compute x̂ in O(k log n) expected time.
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How can you isolate frequencies?
Time Frequency

×

=

∗

=
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n-dimensional DFT:
O(n log n)
x → x̂

n-dimensional DFT of first
k terms: O(n log n)
x · rect→ x̂ ∗ sinc.

k -dimensional DFT of
first k terms: O(B log B)
alias(x · rect)→
subsample(x̂ ∗ sinc).
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The issue

Frequency

We want to isolate frequencies.

The sinc filter “leaks”.
Contamination from other buckets.

We introduce a better filter:
(Gaussian / prolate spheroidal sequence) convolved with rectangle.
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Algorithm for exactly sparse signals
Original signal x Goal x̂

Lemma
If t is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Eric Price (MIT) Sparse Recovery and Fourier Sampling 19 / 37



Algorithm for exactly sparse signals
Computed F ·x Filtered signal F̂ ∗x̂

Lemma
If t is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Eric Price (MIT) Sparse Recovery and Fourier Sampling 19 / 37



Algorithm for exactly sparse signals
F ·x aliased to k terms Filtered signal F̂ ∗x̂

Lemma
If t is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Eric Price (MIT) Sparse Recovery and Fourier Sampling 19 / 37



Algorithm for exactly sparse signals
F ·x aliased to k terms Computed samples of F̂ ∗x̂

Lemma
If t is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Eric Price (MIT) Sparse Recovery and Fourier Sampling 19 / 37



Algorithm for exactly sparse signals
F ·x aliased to k terms Computed samples of F̂ ∗x̂

Lemma
If t is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Eric Price (MIT) Sparse Recovery and Fourier Sampling 19 / 37



Algorithm for exactly sparse signals
F ·x aliased to k terms Knowledge about x̂

Lemma
If t is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Eric Price (MIT) Sparse Recovery and Fourier Sampling 19 / 37



Algorithm for exactly sparse signals
F ·x aliased to k terms Knowledge about x̂

Lemma
If t is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Eric Price (MIT) Sparse Recovery and Fourier Sampling 19 / 37



Algorithm for exactly sparse signals
F ·x aliased to k terms Knowledge about x̂

Lemma
If t is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Eric Price (MIT) Sparse Recovery and Fourier Sampling 19 / 37



Algorithm for exactly sparse signals
Lemma
For most t, the value b we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Time-shift x by one and repeat: b ′ = x̂tω
t .

Divide to get b ′/b = ωt

=⇒ can compute t .
I Just like our 1-sparse recovery algorithm, x1/x0 = ωt .

Gives partial sparse recovery: x̂ ′ such that x̂ − x̂ ′ is k/2-sparse.

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Repeat k → k/2→ k/4→ · · ·
O(k log n) time sparse Fourier transform. �
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Algorithm for approximately sparse signals

What changes with noise?
Identical architecture:

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

Partial sparse recovery

x x̂ ′

Just requires robust 1-sparse recovery.
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Algorithm for approximately sparse signals: k = 1
Lemma
Suppose x̂ is approximately 1-sparse:

|x̂t |/‖x̂‖2 > 90%.

Then we can recover it with O(log n) samples and O(log2 n) time.

With exact sparsity: log n bits in a single measurement.
With noise: only constant number of useful bits.
Choose Θ(log n) time shifts c to recover i .
Error correcting code with efficient recovery =⇒ Lemma. �
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Algorithm for approximately sparse signals: general k
Lemma
If x̂ is approximately 1-sparse, we can recover it with O(log n) samples
and O(log2 n) time.

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Reduce k -sparse to 1-sparse on buckets of size n/k , with log n
overhead per sample.

Theorem
If x̂ is approximately k-sparse, we can recover it in
O(k log(n/k) log n) time.
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Empirical performance

Compare to
I FFTW, the “Fastest Fourier Transform in the West”
I AAFFT, the [GMS05] sparse Fourier transform.
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Recap of Sparse Fourier Transform

Theory:
I The fastest algorithm for Fourier transforms of sparse data.
I The only algorithms faster than FFT for all k = o(n).

Practice:
I Implementation is faster than FFTW for a wide range of inputs.
I Orders of magnitude faster than previous sparse Fourier transforms.
I Useful in multiple applications.
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Talk Outline

1 Sparse Fourier Transform
Overview
Technical Details

2 Beyond: Sparse Recovery / Compressive Sensing
Overview
Adaptivity
Conclusion

Eric Price (MIT) Sparse Recovery and Fourier Sampling 26 / 37



Sparse Recovery / Compressive Sensing

Robustly recover sparse x from linear measurements y = Ax .

x

Ay =

Sparse Fourier MRI Single-Pixel Camera

Streaming Algorithms
A(x + ∆) = Ax + A∆

Genetic Testing
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Sparse Recovery / Compressive Sensing

Robustly recover sparse x from linear measurements y = Ax .

x̂

F−1
S

yxS =

Sparse Fourier transform:
looks at set S of coordinates

Sparse Fourier

MRI Single-Pixel Camera

Streaming Algorithms
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My Contributions

Sparse Fourier: minimize time complexity [HIKP12b, HIKP12a]

MRI: minimize Fourier sample complexity [GHIKPS13, IKP14]
Camera: use Earth-Mover Distance metric [IP11, GIP10, GIPR11]
Streaming: improved analysis of Count-Sketch [MP14, PW11, P11]
Genetic testing: first asymptotic gain using adaptivity [IPW11, PW13]
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Adaptive Sparse Recovery Model

Unknown approximately k -sparse vector x ∈ Rn.

Choose v ∈ Rn, observe y = 〈v , x〉.
Choose another v and repeat as needed.
Output x ′ satisfying

‖x ′ − x‖2 < (1 + ε) min
k -sparse x(k)

‖x − x(k)‖2

Nonadaptively: Θ(k log(n/k)) measurements necessary and
sufficient. [Candès-Romberg-Tao ’06, DIPW ’10]
Natural question: does adaptivity help?

I Studied in [MSW08, JXC08, CHNR08, AWZ08, HCN09, ACD11, ...]

First asymptotic improvement: O(k log log(n/k)) measurements.
[IPW ’11]
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Applications of Adaptivity
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Outline of Algorithm

Theorem
Adaptive k-sparse recovery is possible with O(k log log(n/k))
measurements.

Permute Partition O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Suffices to solve for k = 1:

Lemma
Adaptive 1-sparse recovery is possible with O(log log n)
measurements.
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1-sparse recovery: non-adaptive lower bound

Lemma
Adaptive 1-sparse recovery is possible with O(log log n)
measurements.

Non-adaptive lower bound: why is this hard?
Hard case: x is random ei plus Gaussian noise w with ‖w‖2 ≈ 1.

Robust recovery must locate i .

Observations 〈v , x〉 = vi + 〈v ,w〉 = vi +
‖v‖2√

n z, for z ∼ N(0,1).
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1-sparse recovery: non-adaptive lower bound
Observe 〈v , x〉 = vi +

‖v‖2√
n z, where z ∼ N(0,1)

Shannon 1948: information capacity

I(i , 〈v , x〉) 6 1
2

log(1 + SNR)

where SNR denotes the “signal-to-noise ratio,”

SNR =
E[signal2]
E[noise2]

=
E[v2

i ]

‖v‖22/n
= 1

Finding i needs Ω(log n) non-adaptive measurements.
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1-sparse recovery: changes in adaptive setting

Information capacity

I(i , 〈v , x〉) 6 1
2

log(1 + SNR).

where SNR denotes the “signal-to-noise ratio,”

SNR =
E[v2

i ]

‖v‖22/n
.

If i is independent of v , this is O(1).
As we learn about i , we can increase the SNR.
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1-sparse recovery: idea
x = ei + w

0 bits

v

Candidate setSignal

SNR = 2 I(i , 〈v , x〉) 6 log SNR = 1
〈v , x〉 = vi + 〈v ,w〉
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1-sparse recovery: idea
x = ei + w

0 bits
1 bit

2 bits
4 bits
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Candidate setSignal

SNR = 28 I(i , 〈v , x〉) 6 log SNR = 8
〈v , x〉 = vi + 〈v ,w〉

Eric Price (MIT) Sparse Recovery and Fourier Sampling 35 / 37



1-sparse recovery: idea
x = ei + w

0 bits
1 bit

2 bits
4 bits
8 bits

v

Candidate setSignal

SNR = 216 I(i , 〈v , x〉) 6 log SNR = 16
〈v , x〉 = vi + 〈v ,w〉
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1-sparse recovery

Lemma (IPW11)
Adaptive 1-sparse recovery takes O(log log n) measurements.
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Summary

Sparse Fourier transform
I Fastest algorithm for Fourier transforms on sparse data
I Already has applications with substantial improvements

Broader sparse recovery theory
I Sparse Fourier: minimize time complexity [HIKP12]
I MRI: minimize Fourier sample complexity [GHIKPS13, IKP14]
I Camera: use Earth-Mover Distance metric [IP11, GIP10, GIPR11]
I Streaming: improved analysis of Count-Sketch [MP14, PW11, P11]
I Genetic testing: first asymptotic gain using adaptivity [IPW11, PW13]

Lower bounds
I Based on Gaussian channel capacity: tight bounds, extensible to

adaptive settings.
I Based on communication complexity: extends to `1 setting.

Thank You
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The Future

Make sparse Fourier applicable to more problems

I Better sample complexity
I Incorporate stronger notions of structure

Tight constants in compressive sensing

I Analogous to channel capacity in coding theory.
I Lower bound techniques, from information theory, should be strong

enough.
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