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Abstract:

We consider a single-period, single product decision by a profit-maximizing firm facing
uncertain demand. The firm must make two decisions; (1) select a capacity level, and (2)
allocate it between low-cost mass production and higher-cost make-to-order production. We
show that both solutions take the form of a critical fractile solution to different Newsvendor
problems. A boundary on marginal capacity cost exists beyond which make-to-stock production
isstrictly favored. |If product obsolescence isrelatively costly and technology lowers the cost of
make-to-order production, then make-to-order production isfavored. Asimproved information
reduces the degree of uncertainty about demand, make-to-stock production becomes more
attractive once again.

I ntroduction:

Recently, several PC manufacturers have announced their intention to convert at least part of their
manufacturing capacity from mass production which for simplicity we characterize as make-to-
stock, to aform of mass customization which we characterize as make-to-order. Specifically,
they have decided to produce PC's after having received orders from customers. In the past,
these firms built products to stock and filled orders from inventory.

This shift in manufacturing strategy raises some interesting questions:

Why should a firm choose to devote some of its capacity to a make-to-order
strategy?

Why did PC firms wait until now to adopt a make-to-order strategy?

Will future trends in production technology and information gathering
necessarily favor a shift towards mass-customization?

Could the make-to-order strategy be justified even if the product being
delivered were identical to the mass-produced product?

How much capacity of each type (make-to-stock and make-to-order) is
optimal in the face of uncertain demands? How much should be produced in
the period?

How does the optimal alocation of capacity and the production decision
change as product obsolescence accelerates? As technology improves (so that
make-to-stock doesn’t cost much more than mass production? Asafunction
of the cost of capacity?

To answer these questions, we consider asimplified model of afirm making a single period, single
product decision on quantity. The firm seeks to maximize its total profit by optimizing two
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tradeoffs. First, it selectsatotal capacity level, K, by comparing the cost of that capacity with the
benefit of being able to fill uncertain demand.

Second, the firm decides the fraction of the capacity to allocate between the low direct cost mass
production (a) and make-to-order production (1 - a). The cost of producing one unit to stock is
Cs and the cost of producing one unit to order is Cy, with C, > Cs. (Clearly, if make-to-order
production costs the same or less as making-to-stock, it would be the preferred method since it
would eliminate the cost of overstocks without adding any other costs.)

For each unit sold, the firm realizes revenue of p, which can be thought of as the revenue in the
current period plus the net present value of the gross margin from future sales. For each unit |eft
in stock after demand is realized, the firm incurs a holding cost h that represents the expected cost
of obsolescence and inventory holding. The cost of K units of capacity (of either type of
production) is q(K), which is convex in K. Demand is characterized as a non-negative,
continuous random variable with probability density f (K) and cumulative density F (K).

The analysis proceeds aong the line of atraditional Newsvendor problem, but with the added
feature of two sets of overage and underage costs. An objective function that reflects the two
stage decision is optimized using first order conditions. The objective function, F(a, K),
incorporates decision variables for total capacity and the alocation of that capacity to stock- and
order-production.

Model Parameters:
K = capacity

g(K) = total cost of capcity K (in $ per period)
a = % of capacity that is make - to - stock

p = price / unit

C, = unit cost for stock production

C, = unit cost of make - to- order production
h = holding cost/ unit (obsolescence cost)

f (X) = demand distribution probability density

F (X) = demand distribution cumulative density
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The objective function maximizes the sum of five terms:

Low Demand Gross Profit: The expected amount realized given that demand
was satisfied fully with stock production (with some inventory |eft over).

+Medium Demand Gross Profit: The expected gross profit given that demand
was met out of stock production and some make-to-order.

+ High Demand Gross Profit: The expected profit made from both kinds of
production given that a complete stock-out occurred.

- Low Demand Holding Costs: The expected holding and obsolescence costs
given that stock production exceeded the demand for the period.

- Capacity Costs. Thetotal cost of investing in capacity level K.

It is expressed mathematically below:

Objective Function:

F(a,K) = max,  (p- c)xf () +Q) [(p- ¢,)(x - aK) +(p- ¢)aKIf (x)dx

+ QK (p- c)+ (- a)(p- &)F ()dk - (@K - x)f (x)dx - q(K)

Now we seek the first order conditions for a maximum, so we differentiate the objective with
respect to the two decision variables (see Appendix). The first order condition with respect to a
yields the following result.

Critica Fractile for Make-to-Stock Percentage:

C, - G
F(aK):—h+C T e (1)

S

Thisis an interesting result. It says that the proportion of capacity that should be reserved for
stock production is the critical fractile solution to a particular Newsvendor problem. The cost of
underage is the difference between the unit costs of order- versus stock-production. The overage
cost is the holding cost per unit which occurs when stock production exceeds demand.
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As production technology improves, and make-to-order production is very cost competitive with
stock production, the critical fractile decreases and so does the proportion of make-to-stock
production for a given capacity. This provides one reason that the PC firms moved to last minute
production: new technology enabled the move.

Also, as holding and obsolescence costs increase, the critical fractile decreases, again favoring last
minute production. When Compag and IBM got stuck with excess 80486 PC inventory, they may
have realized that inventory holding costs were smply too high. This provides a second
motivation for the move towards make-to-order production.

The first order condition with respect to K also yields interesting results,

Critica Fractile for Total Capacity

q'(K) =(p- &) [1- F(K)] @)

This second result tells us that total capacity will be chosen so that the marginal cost of capacity,
q'(K), will equal (p- c,)” [1- F(K)], which is the expected revenue from one more unit of

make-to-order sales. Equation (2) can also be rewritten as a critical fractile:

F(K)= p_co_ql(K)
() (p- ¢, - a'(K))+q'(K)

Here we see that the cost of underage of capacity isthe lost profit of one unit of make-to-order
production minus the savings on the capacity itself. The reason that profits are determined by c,
isthat whenever a islessthan 1, as assumed here, the next unit of capacity must be make-to-
order. If a isequal to 1, that isif all capacity is make-to-stock, then the entire problem reduces to
another Newsvendor solution as shown in the next section.
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Numerical Example:
g(K) = total cost of capcity K (in $ per period) = $3K

p =price / unit = $50
< = unit cost for stock production = $25
C, = unit cost of make - to - order production =$40
h =holding cost/ unit (obsolescence cost) = $10
F (X) = demand distribution cumulative density ~ Uniform(0,100)
f (x) = demand distribution probability density = 0.01

p- ¢, -q'(K) _ $50- $40- 3 W7

= = =0.7,30K*=70
(p-c,- q'(K))+q'(K)  (850- $40- $3)+$3 $10 =

F(K*)=

Fa*K*) = C, - C, $40- $25 _$15

h+c,-c, $10+$40- $25 $25

=0.6,0a* = % =86% make- to- stock.

These results are illustrated in the graph on the next page. The objective function is maximized
when K = 70 units of capacity and a=86% of capacity dedicated to stock production. Note that
the objective function does not appear to be concave for low values of a and K, but rather has a
dight “bell” shape.

Global Optimality Requirements

It is not obvious from simple observation that the second order conditions for concavity of the
objective function are met by the Hessian in the Appendix. In fact, there are additiona conditions
on the parameters of the problem to ensure that our optimality results hold.

One condition that must logically be met isthat F (aK) £ F (K) sincea isthe proportion of
capacity allocated to make-to-stock production. This condition can be restated in the terms of
equations (1) and (2) asfollows:

F(aK) £ F(K), butsince F(aK) =—% =% andF(K) =1- -9 e have that
h+c, - c, (p- )
G- & £1- a'(K) , Which can be rewritten in the following useful form:
h+c, - c, (p- )
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Boundary Condition for Margina Capacity Cost:

' h(p' Co)
q (K)Em ©)

S

Equation (3) provides a convenient method of checking whether it is worthwhile to invest in
make-to-order capacity. If the marginal cost of capacity istoo high, that isif g° (K) exceeds the
ratio on the right hand side of equation (3), then a will equal 1 and the firm will make everything
to stock.

In fact, assuming linear capacity costs, the problem reduces to the classic Newsvendor problem
where the cost of overageis h+q'(K), the sum of one unit of holding and wasted capacity costs.

The cost of underageis p- c, - q'(K) since by under-stocking by one unit we lose one unit of
profit, p- c, but we aso save the cost of one unit of capacity, q'(K) .

Classic Newsvendor Problem When a = 100%
Another way of deriving thisresult isto add a constraint that a be less than or equal to 1 to our
original optimization. Thisyields the following changes to equation (1):

C,- C,- K
Ty @

where| isthe LaGrange multiplier for the constraint on a. This equation reduces to (1) when the
constraint is non-binding, that iswhen a isless than or equal to 1.

Given that the constraint is binding, i.e. that a=1, equation (2) becomes:

p- ¢, -q'(K) _P-c,-q'(K) 2

SO e (] p-c+h

which is exactly the critical fractile solution for the Newsvendor problem.
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Summary and Conclusions.

We have derived three simple results in the form of equations (1), (2) and (3). Equation (1)
shows that the optimal allocation of make-to-stock versus make-to-order capacity takes the form
of acritical fractile solution where overage costs come from excess capacity and inventory

obsol escence and underage comes from lost profits.

Likewise, equation (2) reveals that the optimal total capacity is the critical fractile solution to a
different Newsvendor problem. The optimal capacity can be shown to occur when marginal
capacity cost is equated with the expected marginal revenue.

Finaly, equation (3) sets a boundary on the parameters of the problem by recognizing that if
margina capacity costs are high enough, the firm will make everything to stock.

One troubling question remains. Doesn’t the Hessian need to be negative semi-definite for the
objective function to be concave? If the objective function is not concave, how are we sure that
our solution is optimal ?

Consider two possibilities: (@) the constraint on a £ 1 isbinding so al production is make-to-
stock, or (b) the constraint on a does not bind, i.e. 0 £ a < 1. If condition (@) holds, then we
have shown that the problem reduces to a classic Newsvendor problem which is concavein its
objective, so the solution is a global maximum. In other words, the firm can choose any capacity
level (assuming linear capacity costs). If (b) holds, then we know that aK can be determined
independently of K since for any value of K, there exists aK such that equation (1) may be solved.

Thus, (1) and (2) may be solved as functions of single variables and we have shown that each is
concave in its respective decision variable. So the solutions expressed in equations (1) and (2) are
optimal if a <1, that isif at least some make-to-order production is suggested.

Our analysis providesinsight into the PC firms' decision to convert some capacity to make-to-
order production. Severa reasons for the move to mass customization are suggested:

(a) obsolescence costs may have become more significant as product innovation accel erated,

(b) production technology improved to the point that the cost of last-minute production became
competitive with stock production, and (c) the cost of marginal capacity declined so as to make
additional make-to-order capacity economical.

Interestingly, these three justifications for make-to-order production do not depend on another
natural advantage, namely the ability to customize products to meet specific customer needs. The
advantages of product differentiation are in addition to the probabilistic advantages of responding
to demand after it is known with certainty.
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Appendix:

First Order Condition With Respect to Make-to-Stock Percentage (a):
We employ Liebnitz' s rule (stated below) to differentiate each term of F(a,K).

b TIF _ s@ff

If F@@)= Qa))f (x,a)dx, thenﬂ—a = Qa)ﬂ—adx +f (b(a),a).l.?—:- f (a(a),a):]]—z

For thefirst term,a(@) =0,a/fa =0,b(a) =aK,andfb/fa = K, sothederivativeis:
0+(p- c)aK* (@aK)+0
For thesecond term,a(a) =aK,fa/fa = K,b(@a) = K,and fb/fa =0, sothederivativeis:
K(c, - ¢)(F(K)- F(@K))- (p-c,)aK*¥ (aK)
For thethird term,a@) = K,fa/fa =0,b(@) =¥,and b/ Ya =0, so thederivativeis:
QK(p- ¢, - P+C,)f ()dX =K(c, - ¢)" (- F(K))
Findly, for thefourth term,a(@) =0,9a/fa =0,b(a) =aK,andfb/fa = K, sothe
derivativeis: - hKF (aK).
Assembling all four resultsgives thefirst order condition :
(p- c)aK’f @K)+K(c, - c)(F(K)- F(@K))- (p-c,)aK* (aK) +

K(c, - ¢,)” (1- F(K))- hKF (aK) =0,

IF@,K)
fa

which gives the following as

K(c, - ¢.)(F(K)- F(@K))+K(c, - ¢c,)” (1- F(K))- hKF (aK) =0, which smplifiesto:

G- G
ATy

Second Order Condition with respect to a:

2 2
f I:](az, K) and 1 1']:(%’<K) for use in the Hessian to check concavity:
a a

We calculate

%= K(c, - ¢)(F(K)- F@K))+K(c, - ¢,)” (1- F(K))- hKF (aK)=0,s0
ﬂzlj = K2(h+c;0 - ¢ )f @K)
fa
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‘HZF _ i i i -
ﬂaﬂK-(co-cs)[(F(K)-F(aK)]+K(co ¢ (K)- af @K)]+(c, - c,)” (- F(K))

- K(c, - ¢,)” f (K)- hF (aK) - ahKf (aK)
=- (h+C0 - CS)F (aK)_ aK(h+Co - Cs)f (aK)+(Co - Cs)

1°F(@,K)

fa? <0 shows that the

We note that if K were given, that isif total capacity were fixed,

objectiveis concaveina. Moreon this later.

First Order Condition With Respect to Capacity (K):
Use Liebnitz' sRule to differenti ate the objective function for first order conditions:

_bK) F _ b0 9f
If F(K)= QK) f (x,K)dx, thenﬂ_K = QK)ﬂ_K

b fa
dx + f(b(K),K)ﬂ—K- f(a(K),K).”—K

For thefirst term, a(K) =0,fa/ K =0,b(K) =aK,andfb/fa =a, sothe

derivativeis: (p- c.)a’Kf (aK)

For thesecond term, a(K) =aK,fa/JK =a,b(K) =K, and b/ K =1,sothe

derivativeis: a(c, - ¢,)[F (K)- F@K)]+Kf (K)a(p- c,)+(-a)(p- c,)|
- (p- c)a’Kf @K)

For thethird term, a(K) = K,fa/K =1, b(K) =¥, andb/JK =0, so the
derivativeis:[a (p- c)+ (- a)(p- c,)]” - F(K))+0
- Kf (K)a(p- c,) + (- a)(p- c,)]
For thefourth term, a(K) = 0,fa/ K =0,b(K) =aK,and b/ YK =a,sothe
derivativeis: - haF (@K)- 0+0
Findly, thederivative of thefifthtermis:-q'(K)

Assembling dl five resultsgives thefirst order condition :
(p- c.)a Kf @K)+a(c, - ¢,)[F (K)- F@K)]+

K (K)a (p- c;)+ (- a)(p- ¢,)]- (p- c,)a’KF @K)
+fa(p-c,)+@-a)(p- ¢,)] [1- F(K)]

- Kf (K)a(p-c,) +(1- a)(p- c,)]- haF (aK)-q'(K) =0

which smplifies to:

F(aK): (p_ Co), [1_ F(K)]+a(co_ Cs)' qI(K)
alh+(c, - c)]
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Recalling thepreviousresult that F (aK) = hi"—cs , we have

C- ¢ _(p-c) [I- F()]+a(,-c)-a'(K)
h+c, - c, alh+(c, - c.)]

q'(K)=(p- ¢,)" [L- F(K)]

Second Order Condition with respect to K:

2 2
We again calculate l ;l(i’K)and l ;((‘%K) for use in the Hessian to check concavity:
E—Ez-a[hﬂco - ¢)F@K)+(p-c,)” [i- F(K)]+a(c, - c.)-q'(K),s0
2
..ll]mi =-a’[h+(c, - c,)f @K)- (p- c,)f (K)-q"(K)
2
ﬂﬂKﬂZ =-[h+(c, - ¢,)JF @K)- aK[h+(c, - ) (@K)+(c, - c,).

. . é fF u
which is exactly thesame as thecrosspartia we had before ", s expected.
eé';l afKy

Hessian Matrix:
The second order conditions can be combined to form the following Hessian:

£ , (C, - ¢,)- [n+(c, - c)JF @K)u
g - K°(h+c, - c)f (aK) ) aK[h+(co ] cs)]f @K) 3
é u
8- C)- [h+(c, - c)F@K)  -a?h+(c,- c)f @K) 0
& ak[h+(c, - ) @K) - (p- c)f (K)-a"(K) ¢
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