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AbstractAbstract

When designing a new product, developers must balance the expected profit of

improving the design against the cost and time requirements of doing so.  We

investigate this tradeoff by modeling the prototyping stage of product development as a

probabilistic search process.  We study optimal policies for single-period and infinite-

horizon problems and derive closed-form solutions for the case of profits distributed

according to the three extreme-value distributions.  We demonstrate the role played by

the tail-shape parameter of the distribution in determining the level and form of

experimentation.  The effect of declining prototype costs on expected profits, number of

experiments, and spending is shown to depend on the form of the profit distribution

and its tail-shape parameter.  The paper compares the performance of pure parallel,

pure sequential and hybrid parallel-sequential experimentation policies.
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1.1. IntroductionIntroduction

Prototyping provides valuable information to designers about the customer utility,

technical feasibility and cost of a new product.  A customer-ready prototype enables

designers to discover problems and reveal opportunities that might have been

overlooked in the design’s conceptual phase.  One of the most challenging decisions

facing design teams is allocating resources to tasks such as prototyping and testing,

since their payoffs are highly uncertain.

We consider four modes of prototyping, which are summarized in Table 1:

• One-shot:  The design team builds and tests only one prototype,
consistent with a “Do it right the first time” philosophy.

• Sequential: The design team builds and tests one prototype each
period, for as many periods as are necessary to achieve a “good
enough” design.

• Parallel: The design team builds and tests multiple prototypes in a
single period, then chooses the most profitable one.

• Hybrid: The design team builds and tests multiple prototypes each
period, for as many periods as are necessary to achieve a “good
enough” design.
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Table 1: Prototyping Modes

Time-Frame

One periodOne period MultiperiodMultiperiod

1 One-shot Pure
Sequential

P
ro

to
ty

pe
s 

pe
r 

pe
ri

od

M
an

y Pure
Parallel

Hybrid
(Parallel and
Sequential)

The one-shot prototyping approach conforms to the common wisdom that freezing

design specifications early improves profits by coordinating the efforts of the functional

areas of the firm, minimizing costly redesign iterations and speeding time-to-market.

Given low technical and market risks, the one-shot mode maximizes design efficiency.

Figure 1
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Figure 1 depicts the sequential mode of search.  After researching the market and

technology, a large number of product ideas are considered and narrowed down to a

short list of leading concepts worthy of testing, as described by Ulrich and Eppinger

(1995).  The concepts on the short list are then ranked according to a process that

includes competitive benchmarking, Pugh concept selection and similar structured

methodologies.  Next the “best bet” alternative is chosen as the first step in the search.

This design alternative is prototyped and tested to see if it satisfies internal
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requirements for market demand, manufacturing cost and technical feasibility prior to

being launched.  An iterative process of improvement ensues until an observed outcome

meets or exceeds the internally imposed profit hurdle.

For products with long design cycles, the sequential-iteration approach is effective.

However, an optimal prototyping policy should consider not only development cost and

product performance, which favor sequential prototyping, but also the benefits of faster

time-to-market, which favor parallelism.  Due to shrinking product life cycles and

competitive pressure, the design team may need to accelerate the process of testing

promising prototypes (c.f. Fine 1998, Mendelson and Pillai 1998).  An empirical study

by McKinsey claimed that the penalty for being six months late in releasing a new

product is about a third of overall profits [Vesey 1991].  Products such as Internet

software, computers, pharmaceuticals, semiconductors and even movies, to name only a

few, demand urgency in their design and development.  The expression “time is money”

is literally true in these situations.

Accelerating clockspeed increases demand for parallel prototyping since product

development is speeded up as shown in Figure 2.  As before, the market and technology

are researched, and then a plethora of ideas within the product category are considered.

In the parallel mode, however, leading design concepts need not be narrowed to a single

best concept.  The design team decides how many parallel prototypes to build by

balancing the cost of prototyping against the benefit of expected profit enhancement,

given a single period in which to conduct experiments.  After prototyping, the firm

launches the design with the highest profit projection or abandons launch if even the

best design is projected to lose money.
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Figure 2
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On the supply side, declining prototyping costs improve the economics of parallel

prototyping.  Virtual and rapid prototyping techniques portend dramatic declines in the

cost per prototype.  Virtual prototypes, such as those employed by Boeing for its 777

aircraft, allow design concepts to be tested without the expense and time requirements

of physical prototyping.  When distributed over the World Wide Web, using formats

such as VRML (virtual reality markup language) or streaming video, virtual prototypes

allow potential customers to experience the “look and feel” of new designs before

physical versions are built [c.f. Dahan and Srinivasan 1998].  Preference and demand

data may be collected efficiently in this way.

Combinatorial prototyping methods [Thomke, et. al. 1997] enable researchers to

efficiently search through thousands of variations of custom-designed chemical

compounds, to see, for example, which metallic oxide is the best superconductor or

which organic compound is the most pharmacologically active.  Rapid prototyping

allows computer-controlled technology to create topologically complex physical

prototypes using layering and etching techniques in place of traditional methods such as

machining and casting.  The economics of getting “from art to (prototyped) part”

continue to improve, making parallelism more affordable.
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In summary, the attractiveness of parallel prototyping is enhanced by the increased

importance of time-to-market, the steady decline in prototyping costs, and the

availability of new prototyping technologies.

Prior research related to sequential and parallel prototyping can be broadly divided into

three categories: (1) models of search, (2) prototyping processes, and (3) R&D projects

as real options.

Models from the broad literature on optimal search provide insight into the economics

of prototyping.  Weitzman [1979] develops an optimal solution to the problem of

sequential experimentation under uncertainty, but does not consider parallel search.

This is natural in the context of his analysis, since when individuals search for low

prices or high-paying jobs, parallel search is not feasible.  Weitzman’s optimal policy

ranks uncertain alternatives by their reservation prices, which depend on the reward

distribution and cost of search.  Weitzman orders the experiments and delineates the

optimal stopping rule for a pure sequential policy (discussed in section 3.1).

Morgan and Manning [1985] study the optimization of sequential and parallel search

policies and prove that a hybrid parallel/sequential policy dominates both pure policies.

Gross [1972] extols the wisdom of developing multiple advertising campaigns and

develops a one-period model of optimal parallel search incorporating residual

uncertainty after the advertising campaigns are designed and tested.  The number of

parallel concepts to be tested is determined heuristically.

Srinivasan, Lovejoy, and Beach [1997] provide empirical evidence that parallel

prototyping resolves some of the residual uncertainty remaining after the concept phase

of product design.  They show that, under reasonable assumptions, parallel prototyping
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is more profitable than the one-shot approach and propose parallel development of

customer-ready prototypes as an attractive method of reducing risk.

A second line of research suggests that parallel prototyping requires appropriate

processes, resources, and organizational structure.  In a rapidly changing market

environment, the design process must facilitate high-speed, high-performance

innovation.  Smith and Reinertson [1995] emphasize the importance of speeding up new

product development and suggest parallelism as one method for doing so.  Leonard-

Barton [1995] coins the term “failing forward” to describe experimentation in which

firms learn from failures and take advantage of the creativity inherent in highly variable

experimental outcomes.  Wheelwright and Clark [1992] discuss the positive and negative

organizational implications of having internal teams compete to design the same new

product.  Thomke, Von Hippel, and Franke [1997] demonstrate how new prototyping

technology facilitates parallel search.  They cite, as an example, combinatorial

chemistry in which pharmaceutical firms conduct large numbers of parallel experiments

in the search for new drugs.

The third line of research suggests that multiple prototypes be viewed as real options.

Hauser [1996] provides a comprehensive annotated bibliography on valuing R&D

projects, including research on their real options nature.  For example, Hauser and

Zettelmeyer [1997] characterize optimal policies for managing R&D portfolios and show

the value of the options provided by alternative solutions to a given problem, even if

the alternatives come from R&D spillovers from outside firms.

This paper analyzes parallel- and sequential prototyping in new product development,

modeling how time-to-market, prototyping mode and cost impact expected profit.  We

develop optimal policies for parallel and sequential prototyping, show how the

parameters and form of the profit distribution drive the optimal policy, and evaluate
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the real option to abandon launch. We also specify a hybrid policy that optimizes time

and resource tradeoffs.  We find that the shape of the upper tail of the profit

distribution, whether bounded, exponential, or fat-tailed, is a key driver.  In short, the

degree of uncertainty about upside profit potential determines the optimal level of

experimentation and degree of parallelism.

The remainder of the paper proceeds as follows. In section 2 we study optimal parallel

prototyping.  Section 3 develops optimal hybrid policies that include parallel and

sequential experiments. Section 4 concludes with a discussion of the results and

managerial implications.

2.2. Parallel prototypingParallel prototyping

2.1. The Model 1

Assume the profit resulting from a single prototype is a random variable, X, with

cumulative distribution function F(x) and a continuous probability density function f(x).

X includes the net present value of incremental gross profits resulting from launching

the new product, net of all costs other than the prototyping costs themselves.  Hence, X

captures the uncertainty about market risk, technology risk, and management risk.  The

parameters of the profit distribution derive from prior research on the market,

technology, and competition facing the firm.  This front-end process employs methods

such as voice of the customer, target costing, lead user analysis, benchmarking, conjoint

analysis, quality function deployment, parametric analysis and the like (c.f. Dahan

[1997]).

                                               

1Model notation is summarized in Appendix A.
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Profit outcomes for a firm developing n prototypes are modeled as independent draws

from F(x).  Actually, this assumption can be relaxed.  If outcomes are statistically

dependent due to common additive factors, then it is sufficient to assume that,

conditioning on the common factors, the residual profits are independent.  In that case

the profit distribution shifts, but the optimal parallel policy (ignoring the option to

abandon) remains the same.

Prototypes cost c each and deducting the total cost of prototyping, cn× , from gross

profit determines net profit.  The number of parallel prototypes, n, is treated as a

continuous decision variable (even though it would be integer-valued in actuality).

2.2. Optimal Parallel Prototyping

We focus on pure parallel prototyping within a single period.  When a tight

development window limits the firm to one prototyping cycle, a single period model of

pure parallel search fits.  The firm decides on n*, the optimal number of prototypes to

build and test so as to maximize expected profit.  After the profit outcomes for each of

the n prototypes is revealed, the firm launches the one with the highest profit as its new

product.

The cumulative distribution function of the maximum of n independent prototypes is

[ ] nxF )( , and the corresponding density function is [ ] 1)()( −⋅⋅ nxFxfn .  Given that the

prototype with the maximum observed profit is launched, the expected profit from

building and testing n prototypes, is given by

(1)           [ ] [ ] ncdxxfxFxnE n
n ⋅−⋅⋅= ∫

∞

∞−

− )()( 1π .
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When the objective function (1) is strictly concave in n, the globally optimal number of

prototypes, n*, is determined by differentiating [ ]E nπ  with respect to n and solving the

first order condition,

(2)           [ ] [ ] cdxxfxFxxFn n =⋅⋅⋅+⋅∫
∞

∞−

− )()(1)(ln 1 ,

which equates the marginal benefit of the nth draw with its marginal cost.  We note that

the solution to equation (2) depends on the ratio between c and the scale of X, hence n*

does not change when X and c are both scaled by a constant.

The optimality condition implies:

(3)     
( ) ( )

*
)]([)(*

*

])(*[]),(*[ *** n
c

cE

c

cn

n

cnE

c

ccnE nnn −=
∂

∂
+

∂
∂

⋅
∂

∂
=

∂
∂ πππ

,

since 
( )

0
])(*[ * =

∂
∂

n

cnE nπ
 at *n .  Since 0* >n  for any prototyping experiment worth

running, 0
][ * <

∂
∂

c

E nπ
, so equation (3) demonstrates that a (small) reduction in unit

prototyping cost impacts profit by n*, the number of prototypes.  That is, if the cost for

each prototype is cut by one dollar, and if n* remains (approximately) the same, the

overall cost reduction will be n*.

2.2.1. Real Option

When the option to abandon product launch is not available, equations (1) and (2)

apply.  But if the profit distribution, F(x), allows negative outcomes (i.e., losses), then

even the best of n* draws may be negative, an event that occurs with probability

*)0( nF . In that instance, the firm benefits from having the option to abandon product

launch.  The option to abandon may not be available if: (a) the firm is contractually
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obligated to deliver, (b) the product is a required component of a larger system, or (c)

the firm pre-announced launch, thus creating an implicit contract with its customers.

Also, personal incentives on the part of individual decision-makers may preclude the

abandonment option from being exercised, even when that choice might be optimal for

the firm. In cases where potential losses are small or unlikely, the option to abandon is

virtually worthless, in which case early commitment to launch may provide a

competitive advantage.

When the option to abandon is available, the expected profit from building and testing

n prototypes improves compared with the no-option case (i.e. the option value is non-

negative).  The expected profit from n prototypes given the option to abandon,

][ option
nE π , is given by:

(4)          [ ] ncdxxfxFxnncXXEE n
n

option
n ⋅−⋅⋅⋅=⋅−= ∫

∞
−

0

1
*1 )()(  )],...,,0[max(][π .

The value of the abandonment option, given that the firm develops n prototypes, is

given by the difference between (1) and (4),

(5)         [ ] [ ] [ ]∫
∞−

− ⋅⋅⋅−=−
0

1 )()( dxxfxFnxEE n
n

option
n ππ ,

which is the mean minimum loss, given that all n outcomes are negative, weighted by

the corresponding probability of that event.  In other words, the option value is the

probability-weighted loss that is being avoided since the firm is not forced to launch.

Clearly, the option value at the optimum requires a comparison of ][ **
option
nE π  and

][ *nE π , where n** maximizes (4).  The difference between the two is higher than in

expression (5) with *nn =  since *n  maximizes (1), but is only a feasible solution to (4).

Hence, ( ) ( ) ( )optionoption
nnn EEE **** πππ ≤≤ .
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2.3. Product Design and Extreme Value Theory

This section applies the statistical theory of extreme values to product development.

F(x), which characterizes prototype profit uncertainty, is determined by the process of

concept generation depicted in the first two boxes of Figure 2.  As described in chapter

5 of Ulrich and Eppinger (1995, p.78), “an effective development team will generate

hundreds of concepts, of which 5 to 20 will merit serious consideration during the

concept selection activity.”  Hence, we model F(x) as a distribution over product

concepts, each of which is the maximum of a larger subset of product possibilities.  In

addition, as shown in the previous section, the value of the prototype chosen for launch

is the maximum of the sample of prototype outcomes.  When the maximum is taken

over a large number of i.i.d. random variables, its asymptotic distribution is given by

extreme value theory (Gumbel (1958), Galambos (1978)).  The following theorem

summarizes the pertinent results.

Theorem Theorem 11: : [Galambos 1978]: Let H(x) be a distribution function from which m

independent draws are taken.  Then )(lim xH m

m ∞→
, the limiting distribution of the

maximum of m draws from H(x), converges to one of three distributions (with properly

chosen ma  and mb ) or to none at all:

(6) 

α−
−

−




















= m
b

xx

exF m
I

0

)(  iff α−=
−
−

∞→
x

tH

txH
t )(1

)(1
lim  for some ),0( ∞∈α ,

(7) 

α




















−

−

= m
b

xx

exF m
II

0

)(  iff αx
txH

txxH
t

=
−−
−−

→ )(1

)(1
lim

0

0

0
 for some ),0( ∞∈α , or
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(8) 
mb

max

eexF m
III

−
−

−=)(  iff xe
tH

txRtH −=
−

+−
)(1

))((1
lim  where ∫

∞

−
−

=
t

dxxH
tH

tR )(1
)(1

1
)( .

We assume that H(x), the underlying profit distribution for the universe of possible

design ideas, satisfies one of the limits in (6) - (8).  Since product ideas that are good

enough to make it onto Figure 2’s “short list” are each a maximum from a large sample

drawn from H(x), F(x) takes the form of one of the three extreme-value distributions.

Appendix B summarizes the three extreme value distributions, provides their means

and variances, and illustrates their unique property of closedness under maximization,

which states that the highest of n draws from IIIIIIixFi ,,),( =  is also distributed )(xFi

with modified parameters.  Appendix C summarizes the appropriate limit tests and

distribution parameters connecting a given underlying distribution to its limiting

extreme value distribution.

The three extreme value distributions can be unified under a single, continuous model,

(9)          

α
α

−
+− 









=
x

exF
1

)(        [von Mises 1936],

where the distribution is Frechet if 0>α , Weibull if 0<α , and Gumbel as ∞→α .

This last fact suggests that for sufficiently large α , the optimal parallel prototyping

results for the Gumbel distribution apply broadly.  The parameter α captures essential

information about the upper tail of the profit distribution.  Our analysis reveals that

lower absolute values of α lead to widely different optimal policies.

The extreme-value distributions, normalized to zero mean and unit variance, are shown

in Figure 3 and interpreted in the context of new product development below.  We note
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the pronounced variation in the upper quantiles of three normalized distributions, as

exemplified by the 99th-percentile stars in Figure 3.

Figure 3: Densities for the three extreme value distributions (µ = 0, σ 2 = 1)
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• Weibull:  Some firms face predictably finite bounds on the upside profit

potential of a new product due to limited market potential, price ceilings,

or fixed price contracts.  Such might be the case for a product that serves

a small market, upgrades an existing user base, conforms to a fixed-price

contract, or is capacity-constrained.  When the gross profit is upper-

bounded, the Weibull distribution applies.  The gross profits from each

prototype are distributed over an interval ],[ 0x−∞ , where 00 >x .

• Gumbel:  In many industries, there are no specific limits on the gross

profit potential from a new product, but profit outcomes outside of a

central range are extremely unlikely.  Established products such as

automobiles, food staples or commodities are not narrowly constrained by

production capacity or market potential limits, but nevertheless tend

towards somewhat predictable profit performance.  When gross profit is
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unbounded from above, but with steeply declining probability density, a

distribution with exponential tails is appropriate.  The Gumbel

distribution is the asymptotic distribution for the maximum of multiple

draws from exponential-tailed distributions such as the normal.

• Frechet:  Consider a product category with great upside uncertainty such

as pharmaceuticals or new mass-market consumer durables.  In such

cases, products may become “mega-hits,” accounting for the vast majority

of the firm’s profits.  This may be due to network externality and

dominant design effects, resulting in random variables that may be highly

correlated in their effect on profit.  When the gross profit distribution has

a fat tail (e.g. when F(x) declines as α−x ), the Frechet distribution applies

with higher values of α denoting “thinner” upper tails.  The gross profits

from each prototype are then distributed over an interval ],[ 0 ∞x .  As

shown in Appendix B the Frechet distribution has infinite mean when

10 ≤< α .  Hence, we assume throughout that 1>α .

We next evaluate (1)-(5) and obtain closed form solutions for n* for the Frechet,

Weibull and Gumbel distributions.

2.4. Optimal Parallel Prototyping for the Three Extreme Value Distributions

2.4.1. Frechet Distribution

For the Frechet distribution, equation (1) becomes

(10)           [ ] cndxe
b

xx
x

b

n
E

x

b

xx

n ⋅−





 −

⋅= ∫
∞ 






 −

−
−−

−

0

01

0

α
α

α
π ,

which is maximized when
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(11)          
11

*
−















 −= Γ

α
α

α
α

αc

b
n .

Since 
[ ]

0
1

2
1

21

2

2

<





⋅







⋅⋅−=
∂

∂ −− Γ
−

α

α

α

αα
απ

nb
n

E n  for all 1>α , ][ nE π  is strictly concave and

n* is globally optimal.  As mentioned in the context of equation (2), it is the ratio of

profit scale, b, to experimentation cost, c, that drives n*.  Thus, scaling b and c by the

same constant in equation (11) leaves n* unchanged.  Also, 0
*

<
∂
∂

α
n

 since higher values

of α  imply “thinner” tails.

We note that n* is independent of the lower bound shift parameter, x0 (and therefore of

the mean) of the distribution.  This is due to the fact that the benefit from extra

experiments comes from incremental, relative improvements rather than absolute

outcomes.  The n*th experiment has an expected marginal benefit exactly equal to the

cost of that experiment, c.

As the cost per experiment, c, declines, profit increases, 
[ ]

0** <−= n
c

E n

∂
π∂

, consistent

with (3). As c declines, the optimal number of prototypes increases, 0
*

<
∂

∂
c

n
.

Deriving the objective function as in (4) with the option to abandon yields:

(12)      [ ]
























⋅−−−






+=

−
−−

−−−− ΓΓ 





 α

α

α
α

α

α ααπ
b

xb
xn

nbnexncbnxE opt
n

0
1

0

1

0 ,
11 0

.

Thus, the option to abandon is only relevant when the lower bound in the Frechet

distribution is negative ( 00 <x ).  Given that n prototypes are built, and subtracting
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(10) from (12), the value of the option to abandon is

























⋅−−

−
−−

−−−
Γ





 α

α

α
α

α

b

xb
xn

nbnex 0
1

0 ,
10

, which can be interpreted as follows.  The

expression is the probability weighted loss that would be avoided when the option to

abandon would be exercised.  In particular, as the downside risk increases (i.e., as 0x

becomes more negative and losses more likely), both terms of the option value increase.

2.4.2. Weibull Distribution

For the Weibull distribution, equation (1) becomes

(13)          [ ] ncdxe
b

xx

b
xnE

x

b

xx

n ⋅−





 −

⋅= ∫
∞ 






 −

−
−−

−

0

01

0

α
α

α
π ,

which is maximized when

(14)          
11

*
+















=

+Γ
α
α

α

α

αc

b
n .

Since 
[ ]

0
11

21

2

2

2 <





−=

∂
∂ ++ Γ

+
−

α

α

α

α α
απ

bn
n

E n , ][ nE π  is strictly concave and n* is globally

optimal.  Again we note that scaling b and c by a constant leaves n* unchanged and

that n* is independent of the upper bound of the distribution, x0, since in the no option

case the decision on n compares relative, incremental improvements in expected

outcomes to the marginal cost of those improvements.

As the cost per experiment, c, declines, the optimal number of prototypes increases,

0
*

<
∂

∂
c

n
 and, once again, 

[ ]
0** <−= n

c

E n

∂
π∂

, consistent with (3).

Deriving the objective function with the option to abandon as in (4) yields:
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First, we note that the Weibull distribution is only relevant when the upper bound is

positive, that is, when 00 >x , since otherwise profits would not be possible and no

experimentation would take place.  Given that n prototypes are built, and subtracting

(13) from (15), the value is 


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
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nbnex 0
1

0 ,
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, which is the

probability weighted loss that would be avoided when the option to abandon is

exercised.  In particular, as the upper bound of the Weibull, 0x , decreases towards zero,

both terms of the option value increase.

2.4.3. Gumbel Distribution

Employing the Gumbel’s closure under maximization, the expected maximum profit

from n draws is given by

(16)          [ ] cnbnbaE n −++= γπ ln .

Since 
[ ]

0
22

2

<−=
n

b

n

E n

∂
π∂

, ][ nE π  is strictly concave and n* is a global maximum.  The

first order condition leads to the remarkably simple expression

(17)          
c

b
n =* .

Equation (17) again reveals that the optimal number of prototypes is independent of

the mean of the underlying profit distribution since the shift parameter a  does not

appear in the expression.  Rather, the result depends only on the ratio between the

profit scale and the cost per experiment.  This simple result is intuitively appealing in
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that both declining prototyping costs and greater profit uncertainty increase

prototyping activity.

As the cost per experiment, c, declines, the optimal number of prototypes increases,

0
*

2
<−=

c

b

c

n

∂
∂

.  As c declines, profit increases, 
[ ]

0* <−=
c

b

c

E n

∂
π∂

, consistent with (3).

Deriving the objective function as before, but retaining the option to abandon the

project if even the best of n prototypes generates a loss, yields:

(18)          [ ] 



 





−⋅−+−++= b

a
opt
n nebcnbnbaE Eiln γπ ,

where Ei(y) is the exponential integral function, ∫
∞−

−

=−
y y

dy
y

e
y)(Ei .  Given that n

prototypes are built, the value of the option to abandon is 



 





−⋅− b

a
neb Ei , which can

be interpreted as follows.  For negative values of y, -Ei(y) is always positive and

decreases in y .  Thus, as b
a

ne  increases, 



 





−⋅− b

a
neb Ei  stays positive, but decreases

in magnitude.  Indeed, the option to abandon has the greatest value when only a few

experiments are run (low n), when uncertainty is very high (high b), or when mean

profit is low (low a).  When many experiments are run (high n), and high profits (high

a) are relatively certain (low b), the option value approaches zero, as one might expect.

The comparative statics results when the option to abandon exists fit our intuition. As

profit variability, b, increases, so does the optimal number of prototypes, since the

possibility of at least one very high outcome increases and we must remember that only

the highest outcome matters.  As a, the shift parameter of the distribution, is increased,

the optimal number of prototypes increases.  The reason is that when a increases,
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downside costs are less likely, so the option value 



 





−⋅− b

a
neb Ei  decreases.  In the no

option case, upward or downward shifts in the distribution (i.e., changes to a) have no

effect on n*.

Figure 4 depicts expected profits for Frechet, Gumbel and Weibull profit distributions

which have been normalized to zero mean and unit variance.  The two cases of

experimentation costs 001.0=c  and 1.0=c  are depicted as the tail shape parameter, α,

increases towards infinity.

Figure 4

Effect of Tail Shape Parameter α  on Expected Profit
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As the absolute value of the tail shape parameter, α, increases, we note that the Frechet

and Weibull distributions converge to the Gumbel.  Thus, the optimal number of

parallel prototypes and the expected profits resulting from building them also converge

as α  increases.  For lower values of α , however, the three distributions diverge

greatly in their profit implications and in their optimal number of experiments,

particularly when experimentation costs are low.  Holding mean and variance constant,
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lower α  values imply fatter tails in the case of the Frechet distribution and tighter

upper bounds in the Weibull case.  Thus, the upper-tail-shape of the profit distribution,

as parameterized by α, plays a pivotal role in determining the optimal experimentation

policy and the expected profit that results from following that policy.

2.5. Total Prototyping Spending as Unit Prototyping Costs Decline

How do declining prototyping costs affect total spending for firms conducting

experiments in parallel?

Figure 5: Total Prototype Expenditures as Prototype Costs Decrease

In the Frechet case, reducing the unit prototyping cost increases optimal total

prototyping expenditures, 
( )

0
*

<
×

c

cn

∂
∂

 when 1>α 2, in a convex fashion, i.e.

( )
0

*
2

2

>
×

c

cn

∂
∂

.  In other words, the firm’s demand for prototyping is elastic when profits

follow a Frechet distribution.  Thus, when profits are highly uncertain on the upside,

the firm should exploit lower-cost prototyping technologies by increasing not only the

                                               

2 Recall 1>α  is the case of interest for the Frechet since it is required for the mean to remain finite.

Frechet
Gumbel
Weibull

Spending
(n* x c)

c

Decreasing Prototype Costs
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number of parallel experiments, but also the total amount spent on those experiments.

This behavior contrasts with total expenditures for the Weibull and Gumbel profit

distributions as depicted in Figure 5.

In the Weibull case, the induced demand for prototyping is inelastic as declining unit

prototyping costs concavely reduce optimal total expenditures, that is, 
( )

0
*

>
×

c

cn

∂
∂

 and

( )
0

*
2

2

<
×

c

cn

∂
∂

.  Intuitively, since Weibull-regime firms are constrained in their upside

profit potential, the marginal benefits of additional experiments are small, hence total

spending declines as prototyping costs drop.

In the Gumbel case, reducing the unit prototyping cost has no effect on total spending,

(
( )

0
*

=
×

c

cn

∂
∂

), since total spending stays constant at b, the scale parameter of the

distribution.  Thus, the induced demand for prototyping has unit elasticity in the

Gumbel case.  To the extent that the Gumbel distribution captures the underlying

profit behavior of many product development efforts, the unit elasticity result explains

the relative stability of total prototyping spending as a percentage of firm profits even

in the context of rapidly declining unit prototyping costs.

We can quantify the opportunity cost of sub-optimal spending by evaluating the

constrained optimization problem: 








⋅−⋅⋅⋅ ∫
∞

∞−

− ncdxxfxFxn n

n
)()]([max 1 subject to Mnc ≤⋅ ,

where M is the prototyping budget constraint.  The shadow price on prototyping budget

is [ ] 1)()(1)(ln
1 1

−⋅⋅⋅



 +⋅= ∫

∞

∞−

−
dxxfxFxxF

c

M

c
c

M

λ .  For example, equation (17) gives total

optimal spending for the Gumbel case as bcn =×* .  When the budget is an amount
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bM < , so that only *nc
M <  prototypes can be built, the shadow price on an extra

prototyping dollar takes the simple form 1−=
M

b
Gumbelλ .  When bM ≥ , the constraint

does not bind, but when bM < , it is optimal to “rent” additional prototyping resources.

Similar analyses for the Frechet and Weibull distributions lead to
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3.3. Hybrid Parallel/Sequential PoliciesHybrid Parallel/Sequential Policies

While most firms are organized to take advantage of pure sequential or pure parallel

prototyping, but not both, some “ambidextrous” firms may be able to conduct a hybrid

sequential/parallel policy.  Such firms conduct smaller parallel efforts, observe the best

outcome from each effort, and iterate until a good enough result is observed.  By

balancing the relationship between cost, expected profit and the need for speed-to-

market, ambidextrous firms can globally optimize their net expected profit.

In this section we relax the constraint that all prototypes must be built in a single

period.  We assume an infinite time horizon with discount factor δ per period, 10 ≤< δ

(periods are measured relative to the end of period one).  Any number of i.i.d.

prototyping experiments can be run in each period.  We show that for sufficiently low δ,

the optimal policy can be characterized as a hybrid sequential/parallel policy in which

m* parallel prototypes are built in each period until a “good enough” result is achieved.
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If δ is sufficiently close to 1, that is if delays to market are not very costly, then a pure

sequential policy will be optimal.  We conclude by comparing the expected profits of the

optimal pure parallel, pure sequential, and hybrid policies.

3.1. Purely Sequential Experimentation

As a basis for comparison against pure parallel and hybrid parallel/sequential processes,

we use the result in Weitzman [1979] for the optimal pure sequential search policy,

referred to as Pandora’s rule since it consists of opening one box at a time (building a

single prototype) with unpredictable contents (observing a stochastic outcome).  Each

possible prototype is parameterized by the cost of building it and the probability

distribution of possible rewards.  A reservation price, z, is assigned to each experiment

and is the solution to the following equation:

(19)          ∫∫
∞−

∞

⋅⋅+⋅+−=
z

z

dxxfzdxxfxcz )()( δ ,

which can also be written as:

(20)          )()1()()( zFzdxxfzxc
z

⋅⋅−+−= ∫
∞

δ ,

where c is the cost of the prototype, F(x) the density function of the profit distribution,

and δ the discount factor per period.  Equation (19) reveals that the reservation price

equals the net expected value of running sequential experiments until realizing the first

outcome greater than or equal to the reservation price.  That is, z is the expected value

of following a sequential experimentation policy in which the cutoff value for stopping is

z itself.  From equation (20) we see that z increases monotonically in δ (intuitively, if

future dollars are worth more, then the cutoff for stopping should be higher since we are

more willing to wait for the reward) and decreases monotonically in c.
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Weitzman proves that the optimal pure sequential search policy is to open the box with

the highest reservation price, observe the stochastic outcome, and stop if the outcome is

higher than the reservation prices for all remaining boxes.  When replacement is

permitted, for example when an unlimited number of the same box may be opened,

Weitzman’s optimal policy suggests opening just one type of box, the one with the

highest reservation price, until exceeding that reservation price.

When delay is of no consequence, 1=δ  and there is no economic advantage to building

prototypes in parallel.  The optimal policy is then purely sequential with one prototype

built at a time order according to Weitzman’s Pandora’s rule.  Figure 6 illustrates the

benefits of pure sequential experimentation when there is no discounting.

Figure 6

Effect of tail shape α  on Profit of Sequential vs. Parallel
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In general, higher prototyping costs are seen to enhance the relative profit advantage of

sequential experimentation for all distributions since parallel experimentation grows too

costly.  Fatter tails in the Frechet distribution (lower α’s) also favor sequential

experimentation as the firm sets ever higher expectations for what level of profit

performance is “good enough.”
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When discounting exists, as would be the case when time-to-market is relevant, the

relative profit improvement due to sequential experimentation declines with the

discount factor.  In fact, with a discount factor at or below 0.9 per period, the profit

improvements depicted in Figure 6 disappear in all but the most extreme cases

(e.g. 1.0>c  and 2<α ).

For 1<δ , the following proposition shows that there exists a discount factor, Switchδ , for

which the expected value of following a pure parallel policy actually exceeds that of

following a pure sequential policy.

Proposition Proposition 11: Given experiment cost c  and profit distribution )(xF , let )(δz  solve

equation (20).  Let ][ *n
E π  be the expected value of following the optimal pure parallel

policy, given c  and )(xF .  Assume ][][ 1* ππ EE
n

> , the expected profit from a one-shot

policy.  Then there exists Switchδ  such that: (1) ][)( *n
Ez Switch πδ = , (2) ][)( *n

Ez πδ <  for

Switchδδ < , and (3) ][)( *n
Ez πδ >  for Switchδδ > .

Proof: When 0=δ , ][][)0( *1 n
EEz ππ <= , since rewards from future periods are

completely discounted.  When 1=δ , ][)1( *n
Ez π≥  since, when there is no discounting,

running *n  or fewer sequential experiments is at least as good as running *n  at the

same time.  Equation (20) gives us that )(δz  increases monotonically in δ  and since

10 ≤≤ δ , this completes the proof.

3.2. Optimal hybrid Policy

Next we consider a hybrid parallel/sequential policy in an infinite-horizon setting.  In

order to determine the optimal hybrid policy, we note that m i.i.d. parallel experiments

can be viewed as a single, composite experiment with prototyping cost cm ⋅ ,

distribution function [ ]m
m xFxF )()( = , and density [ ] 1)()()( −⋅⋅= m

m xFxfmxf .  Thus, the

hybrid problem becomes a special case of the optimal pure sequential problem, where
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the choice of the number of parallel experiments within a period is recast as a choice

from alternative experiments, parameterized by m. The corresponding reservation price,

mz , solves

(21)          m
mm

mz

m
m zFzdxxFxfmxcmz )]([)]([)( 1 ⋅⋅+⋅⋅⋅+⋅−= ∫

∞
− δ .

By maximizing m, we obtain the optimal composite experiment (consisting of

m* parallel prototypes) with the highest net expected value. Since the experiment with

the highest reservation price, *mz , should be run first, it follows that the optimal hybrid

policy in the infinite horizon problem is to run m* experiments in parallel in each period

until a result greater than *mz  is observed.  The expected profits resulting from the

optimal hybrid policy is *mz , which can be compared with the expected profits from

pure sequential and pure parallel policies as depicted in Figure 7.

Figure 7: Comparative Performance as a function of δ
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In fact, as Proposition 2 shows, it is clear that the optimal hybrid policy strictly

dominates either pure parallel policy over an interior range of discount factors δ .
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Proposition Proposition 22: Given experiment cost c  and profit distribution )(xF , let )(* δmz , the

expected value of following the optimal hybrid policy, solve equation (21).  Let )(δz ,

the expected value of following a pure sequential policy, solve equation (20).  Finally, let

][ *n
E π , the expected value of following the optimal pure parallel policy, maximize

equation (1) and exceed the expected value of a one-shot policy.  Then there exists a

range ),( HighLow δδ  such that ( )][),(max)( ** nm Ezz πδδ >  for all ),( HighLow δδδ ∈ . Further,

),( HighLowSwitch δδδ ∈ .

ProofProof:  By definition, 10 ≤≤ δ .  When 0=δ , rewards from future periods are

completely discounted so ** nm =  and ][)0( ** nm Ez π= , since the problem reduces to a

single-period optimization.  When 1=δ , )1()1(* zzm =  and 1* =m  since only individual,

sequential experiments will be run when there is no discounting.  Equation (20) gives us

that )(δz  and )(* δmz  both increase monotonically in δ  (letting )()( * xFxF m=  and

cmc ⋅= * in case of )(* δmz ).  Since )(δz  increases monotonically from )0(z  to ][ *n
E π

over the range ],0[ Switchδδ ∈  from Proposition  11, and )(* δmz  increases monotonically

over the same range from a starting point of )0(][][)0( 1** zEEz
nm =>= ππ , then clearly

the proposition holds over the range ],0( Switchδ  for some ),0( SwitchLow δδ ∈ .  Likewise, over

the range ]1,[ Switchδδ ∈ , both )(* δmz  and )(δz  monotonically increase until they are

equal at 1=δ , but )(* δmz  starts out at a higher value, so the proposition holds over

the range )1,[ Switchδ  for some )1,( SwitchHigh δδ ∈ .  This completes the proof.

The optimal hybrid parallel/sequential cutoff values for Frechet, Weibull and Gumbel

distributed prototyping experiments depend on δ, the discount factor per period, in that

lower values of δ reduce the present value of profits from later design iterations in a

sequential prototyping mode.  Heavy discounting for time-to-market delays makes

parallel prototyping a more attractive choice. Applying (19) to the cases of Frechet,

Weibull and Gumbel distributed profit, but with F(x) replaced by the distribution
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function [ ]m
m xFxF )()( = , the cutoff values for the optimal hybrid policies satisfy the

following equations:

(22) Hybrid Frechet: 
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(23) Hybrid Weibull: 
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(24) Hybrid Gumbel: 
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Equations (22)-(24) do not have closed-form solutions, but are useful in deriving

comparative statics results and can be solved numerically for the optimal policy.  For

example, it becomes clear that lowering the cost per prototype, c, increases the

reservation price z, while lowering δ, the per period discount factor, reduces z and

increases m*, the optimal number of experiments per cycle.

We can compare the performance of the optimal hybrid policy to that of either pure

policy.  Numeric results showing relative profit performance under the three

distributions, all with zero mean and unit variance, are presented in Figure 8 for the

case of low ( 001.0=c ) and high ( 1.0=c ) experimentation costs.  A period-to-period

discount factor of 9.0=δ  is assumed, a period being defined as the time needed to

complete one round of experimentation.
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Figure 8

Effect of Tail-Shape on the Incremental Benefit of 
Hybrid
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These results indicate that while the optimal hybrid policy dominates either pure policy

as shown in Proposition 2, its incremental impact on expected profit only exceeds 15%

when experimentation is costly or the profit distribution has a fat tail.  Otherwise, when

discounting is minimal and/or experiments costly, the pure sequential policy will

perform almost as well as the hybrid.  And when discounting is heavy and/or

experimentation costs low, the pure parallel policy will perform as well as the hybrid.

4.4. Concluding RemarksConcluding Remarks

This paper investigates optimal policies of parallel and sequential prototyping from

economic and probabilistic perspectives and quantifies the tradeoffs between

development speed, development cost, and profit performance.

Time-to-market pressures, parameterized by a discount factor δ, are shown to favor

parallel over sequential prototyping when δ is less than a unique cutoff discount factor,

δswitch.  Thus, the trends towards shorter product development cycles and accelerating
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industry clockspeeds (Mendelson and Pillai (1998)) favor parallel prototyping.  We

specify the optimal hybrid policy that dominates the profit performance of both pure

policies by combining the speed advantage of parallelism with the development cost

advantage of sequentialism.

Our model utilizes the statistical theory of extreme values to calculate optimal parallel

prototyping policies.  We demonstrate the Gumbel distribution's central role in

characterizing profit uncertainty for product concepts that are selected as the best of

many ideas considered.  Our analysis leads to the remarkably simple result that for

Gumbel-distributed profits, the optimal number of parallel prototypes is c
bn =* , where

b is the scale parameter for the distribution and c is the cost per prototype.  Thus, the

optimal number of prototypes depends only on the ratio between the profit

distribution's scale parameter and the cost per prototype.

Parallel prototyping policies under the other extreme value distributions, i.e. those for

which the tail-shape parameter α  is small, are also shown to depend on c
b .  However,

expected profit under low- α  regimes, even with the same mean and variance, diverges

significantly from that under a Gumbel (infinite- α ) regime.  When α is negative, but

small, the upside is bounded and both expected profits and optimal number of parallel

experiments are dramatically lower.  Conversely, when α is positive, but small, profits

are fat-tailed and the expected profit and number of parallel experiments are

dramatically higher.  Thus, we show that the upper tail-shape of the profit distribution

drives the number of parallel prototypes and the extent to which they are expected to

pay off.
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The effect of lower unit prototyping costs on total prototyping spending also depends on

the profit distribution tail-shape parameter, α.  Development costs remain stable when

profits are Gumbel-distributed, with reductions in unit prototyping costs being exactly

offset by an increased number of prototypes.  But declining unit prototyping costs

under a bounded profit distribution lead to reductions in total development spending;

the firm “takes the money and runs”.  In contrast, declining unit prototyping costs

under a fat-tailed profit distribution lead to increases in total development spending.

In short, parallel prototyping gains importance when: (a) time-to-market pressures

increase (δ declines), (b) upside profits are less certain (i.e., are distributed with fatter

upper tails), or (c) experimentation costs decline.

Firms seeking to maximize new product profits should: (1) encourage creativity and

experimentation as a way of fattening the upper tail of the profit distribution, (2) invest

in cost efficient prototyping technologies to lower unit experimentation costs, and (3)

remember that “time is money” when setting R&D capacities and budgets.

The firm may be able to enhance its profit distribution by supporting a culture of

creativity, involving outside idea suppliers, and encouraging experimentation even if it

ultimately leads to failure.  Having design teams compete may also improve the profit

distribution, but members of the losing team will require proper incentives to “fail

forward” (Leonard-Barton 1995).  Intel, for example, holds a big party to honor the

“losers”.  Competition between design teams may improve results, speed up the design

process, and create incentives to perform.  Where internal competition might cause

strife or where prototyping resources are limited, external suppliers can be hired to

build and test multiple prototypes.
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The trend towards lower unit prototype costs is fueled by investment in technologies

such as virtual design, rapid prototyping, combinatorial methods and automated

processing.  Lower unit costs may also derive from economies of scale inherent in

parallel prototyping itself, since some costs may be fixed.  Combinatorial chemists can

automatically test the performance of one hundred compounds on a test substrate just

as they can ten.  And consumers can respond to multiple designs on a web page as

easily as they can to one, without significantly impacting the cost of market testing.

Recent work by Dahan and Srinivasan (1998) demonstrates that virtual prototypes on

the Web result in market share predictions that are nearly identical to those for costlier

physical prototypes.  We could soon witness a period of widespread virtual parallel

prototyping and market testing.

Organizational structure also affects the suitability of one-shot, sequential and parallel

modes of prototyping.  Firms may be organized to better utilize one mode or another,

but design teams that are ambidextrous, and can successfully implement hybrid policies

of parallel and sequential prototyping, can gain a distinct advantage over their

competitors.

Parallel prototypes may be actual products.  Firms engaging in mass-customization may

launch multiple permutations of a product, allowing customers to express their

preferences directly through purchase.  After observing real demand, the firm can focus

on the most profitable designs.  Seiko watches, Motorola pagers, and Dell personal

computers embody this product-as-prototype approach.  In fact, for some of its personal

computers, according to Dell Vice President Stuart Smith, Dell has had only a single

shipment.

In summary, the choice of prototyping mode profoundly impacts the profitability of

products that the firm develops.
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n Number of prototypes to be built and tested; a decision variable.

*n Optimal number of prototypes to build without the abandonment
option

**n Optimal number of prototypes when the option to abandon is
available

*m Optimal number of prototypes per period for a hybrid policy

c Cost to build and test each prototype

X Random variable for the gross profit from a single prototype

Zn Random variable for ( )nXXX ,,,max 21 L

F(x) Cumulative distribution function for X

F(x) Probability density function for X

β Discount factor per period, 10 ≤< β

βswitch β producing equal expected profit for parallel and sequential policies

π n Random variable for the maximum net profit available after n draws,

cnZnn ⋅−=π

option
nπ Random variable for Max (0, π n ), i.e., the maximum net profit

from n draws, given the option to abandon

nz Reservation price used to optimally order sequential experiments;

Solves n
n

nz

n
n xFzdxxFxfnxcnz )]([)]([)( 1 ⋅⋅+⋅⋅⋅+⋅−= ∫

∞
− β
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