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“Master Production Schedule Stability under Conditions of Finite Capacity” 
 

 
 

ABSTRACT 
 
In this article, we propose a new way to improve master production schedule (MPS) stability 

under conditions of finite capacity.  The purpose is to optimize product availability and customer 
service for typical situations encountered in the consumer goods industry.  Using a comprehensive 
MPS model, we conduct a simulation study with experimental design to identify factors having a 
significant influence on MPS stability.  Then we perform sensitivity analysis on select factors that 
hold the greatest promise for improvement by employing a simple predictive equation.  Finally, we 
test a different way to plan safety stocks and report the results.  In general, elimination of forecast 
bias and choice of safety stock method both are particularly important for improving MPS stability 
and ultimately customer service.     
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INTRODUCTION 

Customer service plays a central role in achieving marketing objectives for firms in the 

consumer goods industry.  The most important element of customer service is product availability 

(Coyle, Bardi, and Langley 1992, p. 81).  Commonly measured as the fill rate for incoming orders, 

product availability depends on the amount of end-item inventory in situations where a make-to-

stock policy exists.  Manufacturing firms in the consumer goods industry adopt the make-to-stock 

policy because the manufacturing lead-time for end-items is often longer than the cycle time for 

taking and shipping an order.    

 The main tool to control product availability is the master production schedule (MPS).  By 

using the beginning inventory and the sales forecast for a particular end item, a planner can calculate 

the amount of production needed per period to meet anticipated customer demand.  This calculation 

becomes more complex in a multi-product environment where forecast errors and capacity 

constraints can add a great deal of uncertainty to the planning process.  As firms continue to 

integrate the MPS into logistical planning, it is becoming increasingly clear that MPS stability plays 

a major role in managing the trade-off between costs and product availability. 

This study examines a practical solution that enhances MPS stability.  Data used for analysis is 

from a real situation in the consumer goods industry.a  Divided into three parts, the study begins with 

the use of experimental design to test the impact of selected factors on MPS stability.  The second 

                                           
aAll data for this study is from Welch Foods, Inc. 
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part involves application of an equation to predict MPS stability given several inputs.  The study 

concludes with discussion of a solution to improve stability using dynamic safety stocks. 

Before investigating the quantitative aspects of MPS stability, the next two sections provide a 

literature review of the topic and a definition of the specific problem under consideration for this 

study.   

 
LITERATURE REVIEW 

 
Though no formal definition exists, MPS stability relates to the frequency of changes in timing 

and quantity over time for end-items appearing in the MPS.  While there is little empirical research 

on the subject, a consensus has emerged that either a) carrying safety stock at the end item level or b) 

freezing the MPS in a rolling horizon environment can improve MPS stability.  Both of these 

approaches have a significant impact on costs and product availability that are quantifiable through 

mathematical modeling. 

Several researchers propose solutions to the MPS stability problem.  For a single product 

environment under conditions of demand uncertainty, Sridharan and Berry (1990) show that 

increasing the length of the frozen interval improves schedule stability but also increases costs.  

Chung and Krajewski (1986) demonstrate that in a hierarchical production planning framework for a 

rolling horizon MPS, the product cost structure influences the optimal choice of frozen interval 

lengths.  In a comparative study, Shridharan and LaForge (1989) find that freezing a portion of the 

MPS produces lower lot-size cost and more stable schedules than using safety stock at the MPS 

level.   Campbell (1992), using three different methods for determining safety stock requirements, 

concludes that as the length of frozen interval increases there could be a greater need for safety 

stock.  Lin and Krajewski (1992) identify three MPS factors, namely, the length of the frozen 

interval, the replanning interval, and the forecast window that could have a significant impact on the 
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total system costs.  Finally, Zhao and Lee (1993), using a simulation model, find that longer frozen 

intervals could lead to greater scheduling stability but at the expense of lower customer service level 

and higher total cost.  In contrast, Sridharan and LaForge (1994), assuming a single product 

environment, state that increasing the freezing interval does not result in a major loss in customer 

service (as measured by product availability), but increased freezing does lead to higher end-item 

inventory. 

In summary, although these researchers have addressed some issues of MPS stability and its 

impact on product availability, they often assume a single item production environment with no 

capacity constraints.  Data used for these models is theoretical.  While these studies are valuable in 

establishing a framework for quantitative analysis, most logistics managers would consider the 

approaches and assumptions unrealistic for nearly all manufacturing environments.  This creates a 

gap between solutions proposed from academic research and MPS instability encountered in the real 

world. 

One study does deal with real world conditions involving a case study of MPS stability for 

paint manufacturing (Venkataraman 1996).  The author finds that under conditions of minimum 

batch-sizes and demand certainty, freezing the MPS leads to considerably higher levels of inventory 

and higher costs during peak periods of demand.  In addition, Zhoa, Xie, and Jiang (2001) provide a 

comprehensive analysis of lot-sizing choice and freezing of the MPS as related to stability.  Both of 

these studies analyze MPS stability under conditions of finite capacity (FC), an important 

consideration in the real world of manufacturing.  As noted, several previous studies of MPS 

stability under conditions of infinite capacity exist, however Zhoa, Xie, and Jiang (2001, p. 47) 

comment, “It is uncertain whether the results found under uncapacitated systems can be applied to 

capacitated systems.” 
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Given this background, the need exists to establish a robust model for determining the 

importance of factors that influence MPS stability in addition to providing a quantitative framework 

for making complex tradeoffs between MPS stability, product availability, and cost within the 

consumer goods industry. 

 
 

PROBLEM DEFINITION  

 
The goal of this study is to analyze the factors that affect MPS stability and to propose a 

method for improvement involving dynamic safety stocks.  The MPS is important to link the sales 

forecast with production and material plans.  Practitioners find that sudden changes in demand often 

cause MPS instability, disruption to material planning, and disruption to relationships with suppliers 

and customers alike. 

Complicating matters, the pattern of forecast errors is seldom normally distributed for firms 

manufacturing and distributing products in the consumer goods industry.  Since most mathematical 

models for determining the amount of on-hand inventory required to meet product availability 

targets assume normality of forecast errors, the chance for miscalculating inventory increases as 

forecasts become more biased.  Planning production to the wrong inventory levels further 

complicates efforts to improve stability of the MPS and often leads to poor product availability or 

excessive amounts of inventory. 

Although forecast bias is rarely incorporated into inventory calculations, an example from 

industry does make mention of the importance of dealing with this issue.  Kakouros, Kuettner, and 

Cargille (2002) provide a case study of the impact of forecast bias on a product line produced by HP.  

They state that eliminating bias from forecasts resulted in a 20 to 30 percent reduction in inventory 
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while still maintaining high levels of product availability.  Similar results can be extended to the 

consumer goods industry where forecast bias is prevalent.   

The causes of forecast bias come from several different sources.  First, forecasts often are a 

sales goal rather than a realistic appraisal of demand.  This leads to positive forecast bias and higher 

inventory levels.  Second, the aggregate forecasting method often used in the consumer goods 

industry depends on accurate data to allocate a high-level forecast to manufacturing plants.  Mis-

allocation of a high-level forecast results in bias.  Finally, with dynamic demand characteristic of the 

consumer goods industry it is difficult to re-center forecasts over time.  In contrast, it is easy to see 

and eliminate bias when demand is constant.  However, this is seldom typical for the consumer 

goods industry where product promotions can drive demand to high levels during short time periods.  

Generally, lumpy demand forecasts contain a great deal of bias. 

In the context of forecast bias, finite capacity, and the proposed use of dynamic safety stocks, 

this study examines the typical situation in consumer goods manufacturing where a number of end-

items are produced on a common manufacturing line and have to be sequenced to meet forecasted 

demand.  Rather that use the practice of freezing a portion of the MPS, the focus of this study is on 

employing a safety stock method that accounts for forecast bias, and testing this approach against 

traditional safety stock methods in achieving improved MPS stability.  The thesis of this study is that 

the use of bias adjusted dynamic safety stock methods will improve MPS stability as compared to 

the use of traditional methods for planning safety stock.   

 
 

EXPERIMENTAL DESIGN  
 

For analysis of factors that affect stability, the Modified Dixon Silver (MODS) method is used 

to develop the MPS under a variety of operating conditions (Allen, Martin, and Schuster 1997).  The 

       



 8

MODS model is a heuristic that gives realistic schedules based on deterministic forecast demand.  

All planning includes FC for a multiple-item production environment characteristic of 

manufacturing lines for consumer goods.  Parameters include capacity, setup time, holding and setup 

cost, non-zero forecast bias, forecast error, demand variability safety stock method, and target 

customer service levels (product availability).  The test example includes 22 products with a 

scheduling time-span of 52 weeks.  The interval for planning is the amount of weekly production 

needed to meet forecasted demand.  This represents a real situation encountered at Welch Foods, 

Inc., Concord, MA.  For the assumptions of MODS see APPENDIX A.   

The study uses experimental design (Box, Hunter, and Hunter 1978), in conjunction with the 

MODS model for producing a schedule, to observe the impact of selected MPS factors (inputs) on 

the measure of stability (the response).  APPENDIX B shows the formula for the stability measure.  

A higher value means greater MPS instability over the 52-week planning horizon.  The stability 

measure is statistically weighted to amplify schedule changes (instability) early in the planning 

horizon (1 – 5 weeks).  This assumes near-term schedule changes are the most disruptive.  Graph 1 

shows the weights assigned to the stability measure for the first 20 weeks of the 52-week planning 

horizon (see APPENDIX B).  
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GRAPH 1 

WEIGHTS ASSIGNED TO THE STABILITY MEASURE VERSUS TIME 

(SEE APPENDIX B FOR DETAILS) 

 

                         

 

Weight Assigned to Stability Measure

0

0.5

1

1.5

2

0 5 10 15 20

Planning Horizon (weeks)

W
ei

gh
t

To obtain the response, MODS is run for two planning cycles.  Planning cycle 1 represents 

initial conditions. Planning cycle 2, one-step forward in time, includes a new forecast plus 

adjustments to select MPS parameters.  This simulates a rolling 52-week horizon. Beginning 

inventories are adjusted to account for simulated shipments before running planning cycle 2.  

Measurement of the response (stability) occurs after completion of planning cycle 2 using the 

procedure outlined in APPENDIX B.   

 

FACTORS AFFECTING STABILITY 

The experimental design contains five factors for analysis that have potential to affect MPS 

stability.  Four factors are quantitative and one factor is qualitative.  The factors include:  
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•  Forecast bias – Graph 2 shows an actual example of positive bias for a consumer 
product. The forecast is higher than actual demand for an extended time.  The current 
study deals exclusively with positive forecast bias.  Within MODS, a range of forecast 
bias is simulated from low (5%) to high (60%).  This can be visualized as shifting the 
actual demand (red in Graph 2) up and down relative to the forecast while maintaining 
the same pattern.  It should be noted that bias is calculated based on historical forecast 
and shipments.  If a strong pattern of bias emerges, it is assumed this underlying process 
is stationary and will extend into the future unless independent action is taken to re-center 
the forecast. 

 

GRAPH 2 

An Actual Case of Forecast Bias Experienced in the Consumer Goods Industry 
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• Capacity - This represents line time available for production.  We vary capacity 
from a minimum of 90 hours/week to a maximum of 110 hours/week.  Normal capacity is 
100 hours per week. 

     
• Demand Variability – Represents the amplitude of actual demand fluctuation in 

relation to the mean forecast.  Again, within MODS we can simulate a range of 
alternatives from low variability (15%) to high variability (50%).   
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• Customer service level - The proportion of cycles for which inventory can meet 
all demands.  We vary customer service from 75% (low) to 99.5% (high). 
 

• Safety stock method - We evaluate two methods of safety stock planning (Krupp 
1982). The traditional method for safety stock (TMSS) assumes forecast errors are 
independent and randomly distributed according to the normal distribution.  At any 
instant in time, there is an equal probability of actual demand being above or below the 
forecast.  In contrast, Krupp’s method for safety stock (KMSS) has a mechanism to adjust 
safety stock based on forecast bias.  If forecast bias exists, KMSS adjusts safety stock 
based on a formula to compensate for the non normal distribution of forecast errors.  For 
more details on TMSS and KMSS, please refer to APPENDIX C. 

 

 

RESULTS AND ANALYSIS 

A 25 full factorial design is run with two center points to determine how the five factors and all 

two-factor interactions affect the MPS stability measure.  Raw data for this design is enumerated in 

APPENDIX D.  These runs use coded variables for high/low settings +1 (high), -1 (low) or 0 

(intermediate levels, for runs 33 and 34).  

The full 15 factor model is significant (p = 5.7E-07, F = 13.98).  However, not all of the 15 

factors contribute to the model.  We find forecast bias (p = 3.57E-10), capacity (p = 3.2E-05) and 

safety stock method (p = .0076) the only main factors that are significant.  A joint interaction factor, 

forecast bias x safety stock, also contributes at p = .015.  

Focusing on these four factors, a reduced model is formulated (APPENDIX E).  The reduced 

model is significant (p = 3.69E-12, F = 46.08) and upon performing a partial F test, it is determined 

that the full 15-factor model is not a significant improvement over the reduced model.  The two 

intermediate level runs provide a test for curvature which has an observed significance of p = .017. 

Graph 3 and Graph 4 confirm the presence of curvature by showing that slope changes when passing 

through the zero point for each choice of safety stock method.  Graph 3 shows some evidence of 
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interaction between forecast bias and safety stock method while Graph 4 shows little interaction 

between capacity and safety stock method.  

 

                 GRAPH 3                                        GRAPH 4 
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PREDICTING MPS STABILITY 

The reduced model is a simple tool to predict MPS Stability in advance based on different 

settings for the factors.  Since forecast bias has the largest coefficient, it is a good candidate to see 

the pattern of MPS stability over a range of settings.  Keeping in mind a coded model is used, the 

equation to predict stability becomes: 

 
Stability = 17.29 + 7.44 (Bias) - 3.33 (Capacity) – 1.77 (SS Method) - 1.63 (Bias x SS Method)  
 
To convert coded independent variables the following general expression is used: 

 
2/

-
=

_

r
xx

y , where y is the coded variable, x is the physical variable, and r is the range. 
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The results are graphed over a range of forecast bias from 5% to 60%, for a typical capacity of 

90 hours per week and TMSS (Graph 5): 

 
 

 GRAPH 5 
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From Graph 5 it is observed that MPS instability more than doubles when moving from 5% to 

60% positive forecast bias.  It is common to experience forecast bias of 35% or more in the 

consumer goods industry.  Based on Graph 5 this implies a 74% increase in MPS instability as 

compared to a centered forecast.  It can be concluded that reducing forecast bias prior to FC 

scheduling is a good way to alleviate MPS instability.  This is the approach adopted by Kakouros, 

Kuettner, and Cargille (2002). 

 

SAFETY STOCK METHOD AS A MEANS OF IMPROVING STABILITY 

In Appendix D, it is observed that forecast bias and safety stock method show a joint 

interaction affect on MPS stability (p = .015).   This suggests that choice of safety stock method 
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could be a way to reduce MPS instability caused by forecast bias.  Further, any method incorporating 

forecast bias as an independent variable in the calculation of safety stock should have a positive 

impact on MPS stability. Based on analysis of the two safety stock methods used for this study, and 

the typical non normal distribution of forecast errors encountered in practice, it can be theorized that 

KMSS should provide more MPS stability in situations with high forecast bias. 

KMSS also provides another advantage.  It incorporates demand forecasts into safety stock 

calculations so that safety stock levels are dynamic.  This is a powerful method to deal with lumpy 

demand situations encountered in the consumer goods industry (Schuster and Finch 1990). 

 

TESTING THE TWO SAFETY STOCK METHODS 

  Graph 3 shows that under low bias situations, performance of the two safety stock methods on 

MPS stability is very close.  However, the choice of safety stock method is significant in the high 

bias situation.  KMSS reduces MPS instability, offering a 32% improvement compared to TMSS.  

Since no penalty exists for the low bias situation, it seems reasonable to use KMSS for all safety 

stock calculations regardless of the level of forecast bias. 

Graph 4 shows the performance of the two safety stock methods under different conditions of 

capacity.  Again, KMSS outperforms TMSS in reducing MPS instability.  From these tests, it is clear 

that KMSS provides a robust solution that reduces MPS instability under conditions of FC. 

 

CONCLUSION 

From the experimental results of this study, it is reasonable to conclude that forecast bias is an 

important factor influencing MPS stability under conditions of FC.  Since forecast bias appears to be 

prevalent in the consumer goods industry, steps to re-center the forecast would be the best approach 
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to improving MPS stability.  However, since many consumer goods firms produce hundreds of 

different stock keeping units in many different manufacturing plants it might not be possible to 

review and re-center each forecast manually. 

 In cases where re-centering is not possible, using KMSS mitigates the negative affects of 

forecast bias and improves MPS stability without freezing a portion of the planning horizon.  Even if 

the forecast is re-centered, KMSS offers no penalty in terms of MPS stability.  For this reason, 

KMSS should be considered a general solution for make-to-stock situations.  If bias does creep into 

the forecast, the KMSS will automatically adjust out front safety stock projections based on the 

amount of historical bias identified.  The result is improved MPS stability and optimized inventory 

levels based on product availability targets.  In this way, the KMSS approach approximates a form of 

control theory where the ongoing recalculation of bias obtained from rolling forward through a finite 

time horizon serves as feedback mechanism to control production and the level of end-item 

inventory. 

As a concluding note, a survey by LaForge and Craighead (2000) reports that only 25% of 

those firms with computerized scheduling systems use FC in some form.  Based on the results from 

our study, we conclude that forecast bias is a contributing factor limiting the effectiveness of FC 

scheduling in practice.  Better understanding of forecast bias and its impact on safety stock 

calculations, MPS stability, and cost will give logistics managers the capability to deliver improved 

customer service levels.  This represents a significant incremental step in understanding the complex 

logistical trade-offs that firms must perform on a day-to-day basis to remain competitive in the 

consumer goods industry. 
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APPENDIX A - ASSUMPTIONS FOR MODS  

 
1)  Assume planning horizon = 52 weeks. 
   
2)  Setup cost, setup time, beginning inventory and carrying cost are non-zero and are known and 
constant throughout the 52-week period. 
 
3)  Assume finite capacity 
 
4)  No sequence dependencies.  We model 22 products during a time span of 52 weeks. 
 
5)  Scheduling instability during the period close to actual production is likely to have greater impact 
than instability during a period in the distant future. 
 
6)  Assume that demand forecasts are independent. 
 
7)  Use Modified Dixon-Silver (MODS) heuristic model as a scheduling model. 

 
We choose MODS for producing the MPS because it gives quick and reliable answers to 

difficult FC scheduling problems.  Though MODS is a heuristic, extensive testing using 
experimental design proves it gives consistent answers that are close, if not equal, to optimal (Allen, 
Martin and Schuster 1997). The testing provides assurance that MODS will not introduce 
measurable noise into the experimental design because of algorithmic factors. 
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APPENDIX B - STABILITY MEASUREMENT 

 

Several authors provide stability measures (Enns 1995; Inman and Gonsalvez 1997; Sridharan, 
Berry, and Udayabhanu 1988).  For this study, we use a version of the stability measurement model 
presented by Sridharan, Berry, and Udayabhanu (1988).  The measure is: 

 

 
                   

Stability =  Bk QQW
p

ti

p

ti

n

i

H

t t /  -××
1

,

2

,1= 1=
∑ ∑  

               
where: 

 
 

i  = Item number 
t  = Time period, weeks 

 
n = Total number of products, n = 1…22 

 
H  = Planning horizon length, H = 1…52 

Qp

ti

2

,
= Scheduled production for item i, period t, during planning cycle 2  

Qp

ti

1

,
 = Scheduled production for item i, period t during planning cycle 1  

B  = Total  production for planning cycle 2 
k  = Multiple factor used to amplify the result, 

for calculations in this paper k = 100  
W t  = Weighting factor, Exp(1/t) - 1  

 
We incorporate a weighting factor because we believe the impact of schedule instability is not 

necessarily linear through time.  Scheduling instability that occurs close to actual production has a 
greater impact and causes more disruption than instability during distant future periods. 
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APPENDIX C 

 

Traditionally, safety stock is determined by the formula: 

Safety Stock of item (i) = kσI  

Where: 

k = service level factor 

σi = Standard deviation of the difference between forecasted value of 
item (i) and actual value of item (i). 
 

The traditional model for safety stock (TMSS) assumes forecast errors (forecast minus actual 

for a time period) are independent and randomly distributed according to a Normal distribution.  At 

any instant in time there is an equal probability of actual demand being above or below the forecast.   

TMSS is simple to understand. However, it may cause an overstocked or under stocked situation 

when there is a significant forecast bias.  In this case, forecast errors do not form a Normal 

distribution through time. 

It is the authors’ experience that nearly all forecasts in the consumer goods industry have some 

degree of bias, making TMSS a poor choice to determine appropriate safety stock levels.  In 

addition, TMSS has no visibility into future forecasts, relying only on historical data to calculate 

safety stock.  With TMSS, a set level of safety stock is used for the entire planning horizon. For 

lumpy demand situations common to the fast moving consumer goods industry, a static safety stock 

based only on historical data is not effective (Schuster and Finch 1990).  

In order to deal with forecast bias and lumpy demand, we introduce a different safety stock 

technique.  Krupp (1982) put forth a method that has a mechanism to adjust safety stock based on 

forecast bias (KMSS).  If any level of forecast bias exists, KMSS adjusts safety stock based on a 

formula to compensate for the non Normal distribution of forecast errors associated with forecast 
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bias.  If there is no bias in the forecast, KMSS approaches values generated by TMSS.  As well, 

KMSS also incorporates demand forecasts into safety stock calculations so that safety stock levels 

change with time.  This is a powerful method to deal with lumpy demand situations often 

encountered in FC planning situations by allowing safety stock levels to change dynamically.  The 

following summarizes KMSS in mathematical terms: 

 

Safety Stock = (S)  x  (k)  x  (TICF)  x  (u ) x  (t) 

Where: 

u = future forecasted demand per week 
t = lead time 
k = service level multiplier 
s = suppression factor (straight line) = 1 – FETS 
TICF = a measure of variability indexed to the forecast 

TICF u i x i u i n
i

n
= −

=∑ ( ) ( ) / ( ) / /
1

 
 

     FETS = a measure of forecast bias 
    FETS u i x i u i TICF

i

n
= −

=∑ ( ( ) ( ) / ( ) / /
1

/ /n 

u(i) = past forecast 
x(i) = past actual sales 

   n    = number of periods 
 
 
KMSS deals with long-term forecast bias by adjusting the level of safety stock using (s).  If 

negative bias occurs (forecast consistently less than actual demand), KMSS will increase safety 

stock.  The amount of increase is in proportion to the probability of overselling the forecast.  In 

contrast, for positive forecast bias (forecast consistently more than actual demand), KMSS will 

adjust safety stock lower.  However, KMSS works only under a certain range of forecast bias.  

KMSS does not work well in situations where there is a very high negative or positive forecast bias.  

The main reason is that by definition FETS will never be lower than –1 or greater than 1, limiting the 
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capability to adjust safety stock for the severity of the forecast bias.  The value for (s) will never 

range beyond 0 to 2.  The authors have observed situations where extreme positive forecast bias 

caused over production even when safety stock was adjusted to zero using KMSS. 
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APPENDIX D – EXPERIMENTAL DATA 

The following is experimental data used to run a 25 full factorial design to determine how the 
factors affect the MPS stability measure: 

 
Experiment 
 Number 

     Bias   Capacity   Demand 
 Variation 

   Service 
     Level 

SS Method  Instability 
  Measure 

1 .05 .90 .15 .75 1 11.81
2 .05 .90 .15 .995 -1 12.98
3 .05 .90 .50 .75 -1 14.37
4 .05 .90 .50 .995 1 14.58
5 .05 1.10 .15 .75 -1 5.79 
6 .05 1.10 .15 .995 1 4.62 
7 .05 1.10 .50 .75 1 8.73 
8 .05 1.10 .50 .995 -1 8.95 
9 .60 .90 .15 .75 -1 37.55
10 .60 .90 .15 .995 1 26.99
11 .60 .90 .50 .75 1 23.94
12 .60 .90 .50 .995 -1 37.98
13 .60 1.10 .15 .75 1 20.48
14 .60 1.10 .15 .995 -1 25.65
15 .60 1.10 .50 .75 -1 18.80
16 .60 1.10 .50 .995 1 17.85
17 .05 .90 .15 .75 -1 11.51
18 .05 .90 .15 .995 1 12.39
19 .05 .90 .50 .75 1 13.91
20 .05 .90 .50 .995 -1 15.35
21 .05 1.10 .15 .75 1 5.45 
22 .05 1.10 .15 .995 -1 5.61 
23 .05 1.10 .50 .75 -1 8.71 
24 .05 1.10 .50 .995 1 8.51 
25 .60 .90 .15 .75 1 21.82
26 .60 .90 .15 .995 -1 33.09
27 .60 .90 .50 .75 -1 23.22
28 .60 .90 .50 .995 1 24.11
29 .60 1.10 .15 .75 -1 21.30
30 .60 1.10 .15 .995 1 20.06
31 .60 1.10 .50 .75 1 17.67
32 .60 1.10 .50 .995 -1 30.72
33 .325 1.0 .325 .8725 -1 12.33
34 .325 1.0 .325 .8725 1 10.92
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APPENDIX E – RESULTS OF THE REDUCED MODEL 

SUMMARY OUTPUT 
  
Regression Statistics 
Multiple R 0.92954 
R Square 0.864044 
Adjusted R Squa 0.845291 
Standard Error 3.545131 
Observations 34 
  
ANOVA  
  df SS MS F Significance 
Regression 4 2316.328 579.082 46.07607 3.68E-12 
Residual 29 364.4707 12.56795   
Total 33 2680.799       
      
  Coefficients Standard Err t Stat P-value 
Intercept 17.28676 0.607985 28.43288 9.91E-23
Bias 7.43625 0.626697 11.86579 1.19E-12
Capacity -3.33438 0.626697 -5.32056 1.04E-05
SS Method -1.76676 0.607985 -2.90593 0.006944
SSMethodxBias -1.62875 0.626697 -2.59895 0.014551

 

 

 

 

 

 

 

    

 

 

       



 

       

25

 


	INTRODUCTION
	PROBLEM DEFINITION
	SAFETY STOCK METHOD AS A MEANS OF IMPROVING STABILITY
	CONCLUSION
	The following is experimental data used to run a 25 full factorial design to determine how the factors affect the MPS stability measure:

