Two Questions That You Must Deal With Every Day In Business

• Do your employees have a suitable background to make the best decisions for the organization?

• What new events and technology will the future bring?

What is a Model?

- A simple representation of characteristics of the real world that the modeler feels important
- Highlights facts and interests at hand
- Depicts only part of reality
- J. Forester Massachusetts Inst. of Tech.

Advantages of Modeling

- Help simplify and clarify thinking
- Identify important issues
- An aid to communication
- Suggested explanations for events
- The Henry Ford of Modeling

What is an "Optimal" Solution?

- Hard to visualize the concept of optimal without doing the mathematics
- Spreadsheet models play an important role in education of planners
- A spreadsheet "sifter" provides a simple example for discussion

Low productivity in Model Implementation:

- 1. Models require three representations:
 - a. natural representation (communication)
 - b. mathematical representation (notation)
 - c. computer-executable representation (code)
- 2. Choice of a solver
- 3. Difficulty dealing with multiple models
- 4. Phases of the modeling cycle

Packaged software solves 1,2, and 4; spreadsheets for 3.

The Power of Spreadsheet Modeling for LP Multi-dimensional indexing

New Methods of Computation

- Parallel versus serial
- Brain versus integrated circuit
- Biological computing
- Virtual web based computing

The Modeling Life Cycle for Finite Planning Systems:

- 1. Model development
- 2. Algorithm development
- 3. Solution analysis
- 4. Results presentation
- 5. Implementation

Software Companies

Practitioners

CHARACTORISTICS OF A "GOOD" SOLUTION

- Use costs of set-ups and inventories as a criterion
- When a set of demands is infeasible:
 - -Indicates which periods require additional capacity
 - -Provides a schedule for the revised capacity
- Accessible
 - -Can be implemented and understood
 - -Does not require specialized math programming software of knowledge
- Permits "what-if" analysis in terms of cost consequences
- Provides schedules without excessive computer time

Implications for the Practice of Model Building

- Role of model building increases as an aid to rational decision making
- Traditional university training for logistics and operations management will change
- More applied research emphasis
- Broad education needed to train the model builders of the future

IMPLICATIONS FOR CTL

- The role of model building in the supply chain is increasing as capacity utilization becomes the driving force in industry
- Traditional logistics education is shifting toward quantitative analysis combined with teamwork
- An urgent need exists for applied research
- MIT must play a role in providing the broad education needed to train the model builders of the next century MLog, MST, Operations Research Center...

The Future Industrial Structure for Food Manufacturing

Networks of specialized co-packers, plus third party logistics = *virtual companies*

<u>Traditional</u> mfg. plants, with wide product line, dispersed through the US.

A new generation of highly "focused" plants, with improved efficiency, centrally located in the US

A 5 Year Transition?

CAPACITY MANAGEMENT

Value Creation Through Restructuring

Small, Incremental Change in **ROIC**