A SIMPLE METHOD FOR THE MULTI-ITEM,
SINGLE-LEVEL, CAPACITATED SCHEDULING
PROBLEM WITH SETUP TIMES AND COSTS

In this article, we describe the development of a
“home-grown” system for scheduling packaging lines
al Welch's, a major food manufacturer. The system is
simple in that it requires no spedalized math program-
ming knowledge or software but is based on intui-
tively appealing rules which achieve feasible sched-
ules while accounting for holding and setup costs.
Schedules are produced in an Excel 50 spreadsheet
using, Visual Basic macros. We cannot claim that the
results are optimal, but we will provide evidence later
that they are competitive with the most sophisticated
mathematical procedures currently available. At any
rate, no known methods can guarantee a priori that
optimal or even feasible solutions will be found for
scheduling problems of this type.

The software, which we describe in subsequent sec-
tions, was developed at the Center for Process Manu-
facturing, a partnership with APICS and Penn State-
Erie, and sponsored by Welch's. The Center is
dedicated to helping process industries rationalize de-
cision making by translating academic studies into
practical applications.

In keeping with the goals of the Center for Process
Manufacturing, our purpose here is not only to tell the
story of a successful scheduling implementation but to
provide sufficient detail that others can develop a
scheduling tool uniquely suited to their own needs.

THE PRODUCTION SCHEDULING
ENVIRONMENT

Some of the factors which the scheduling proce-
dures must address are:

» A make-to-stock manufacturing firm with no stock-
outs or backorders permitted

* Multi-item, single-level, dedicated production lines
with finite capacity
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independent
* Sequencing of multiple items to be produced wilhin
a specific time period is not considered
= Safety stocks (buffers) are determined “outside’ the
scheduling system
For scheduling problems with sequence dependen-
cies, it may be possible to eliminate these dependen-
cies by grouping items into families. This leads to a
hierarchical approach to scheduling and we reler the
interested reader to [1].

DATA REQUIREMENTS AND
PRECONDITIONING

For the scheduling system we have designed, data
collection and preliminary calculations are performesd
outside of the scheduling module.

Data Requirements

We assume the following data have been collected:

1. Demand forecasts, F(i, t), for each item number i (i
=1, 2, ..., NITEMS) and each period t (t = 1, 2,
..., HORIZ).

2. Safety stocks, Bii, t), for each item and each period.
Welch's safety stocks are not constant but change
by period reflecting dynamic demand patterns.
They incorporate both forecast error and bias. See
Schuster and Finch [6] for a description of the
Welch’s buffer computations.

3. Capacity absorpton coefficients, A(i), by item. This

measures the units of capacity absorbed per unit of

output produced for each item.

Holding costs, H{i), by item, $/unit/ period.

. Setup cost, SCU), by item, $/setup.

. Setup time, ST(i}, by item, units of capacity /setup.
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7. Production capacity, Lit), by time peried, in some
comvenien| time measure,

8, Beginning inventories, [(i, 00, by item. Note that this
is the total of all inventory for an item irTespective
of how it 15 allocated—as bulfer or toward future
demands.

Preliminary Computations

Before invoking the scheduling system, two sets of
compultations must be carried out using the data de-
seribed above.

L. Incorporate el changes insafety stocks over subse-
quent periods into the demand forecasts for each
item, This is accomplished as follows:

26, 8 = Ffi, () + B, 10

Bii, t — 1) with B(1, 0) = O

[

Met outl beginning inventories from demands for
each item, o abtain final demands, TN, )

A complete set of preconditioned data is given in
Table 1 for an eight-atem, 13-peniod packaging line at
Welch's. We will use these data to illustrate the final
resulls of the scheduling process.

The process easily handles holding and setup
costs, setup times and capacity absorption coeffi-
cients which vary over items and production capac-
ities that vary by period. In our illustration these re-
main constant, but this is not to be construed as a
limitation on the method. In addition, the schedul-
ing system does not require zero demand over all
items in early periods as reflected by the Welch's
example in Table 1. These demands simply reflect
that we are dealing with a consumer good with as-
sociated large inventories which must be netted out
prior to the scheduling process.

Asan example of a more general set of conditions
we have applied the system to the Lucas Workcentre
example given in Dixon and Silver [2]. This is a 20-
item, 13-period scheduling problem with varying
holding and setup costs, capacity absorption coeffi-
cienks and production capacities. This example con-
tains heavy demands in the early periods but zero
setup times. We obtained a feasible schedule for the
case of zero setup times with a cost of 6,032, while
Dixen and Silver [2] report a cost of $5,944. How-

L]
ever, their solution and cost are in doubt since the u
schedule is not consistent with the original demand Z
data. We have also obtained feasible schedules for =
A4l PRODLICTION AND INVENTORY

Final Form of Scheduling Data
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the Lucas Workcentre data for a variety of assumed
selup limes.

AN OVERVIEW OF THE SCHEDULING
METHODOLOGY

The scheduling problem we face with non-zero
setup times is very difficult to solve to optimality. The
problem is very easy to pose mathematically as a
mixed-integer programming (MIP) formulation (see
171). However, with our current state of knowledge
there is no way to know in advance whether or not an
gptimal selution will be found. As Trigeiro et al. (71
pulit, ., one cannol expect to find a fast algorithm
to el whether or nol a feasible solution exists, let
alome find an optimal solubion.”

For this reason, most efforts at solving this problem
have focussed on heuristic methods combined with
math programming, We will not pursue that direction
since it requires rather specalized knowledge and
software, Instead we have examined the large litera-
ture on scheduling with setup cosls but zero setup
timae {see Maes and Van Wassenhove [4] for an excel-
lent survey). Dixon and Silver (2] and Maes and Van
Wassenhowve [3] are representative of pure rule-based
approaches o this problem

The Dixon-Silver hearistic is conceptually appeal-
ing, requires only simple calculations and uses the
proven Silver-Meal [5] method of determining eco-
nomical transfers of future demands, backward in
time to current production. Our strategy then was o
adapt the Dixon-Silver method to the case of non-zero
setup times,

A Summary of Important Module Funclions

We first give a brief description of the key subrou-
tines of the scheduling system.

1. Read data. Data of the type shown in Table 1 reside
in an Excel 5.0 spreadsheet in the form of named
ranges. These data are read into one- and two-di-
mensional arrays in a Visual Basic macro, which is
attached to the spreadsheet as module 1.

2. Compute feasibility requirements for each pericd.
The feasibility requirement for each period, R{t), is
that amount of capacity which must be expended
in that period, over and above the immediate de-
mand for that period, to overcome infeasibilities in
later period{s). A sticky problem here is that we
have no way of knowing in advance how many set-
ups will be required in the final solution.

3. Salisfy immediate demand and feasibility re-
quirements. For each peried, beginning with pe-

rod one, immediate demand 1s first satistied and
the most economical transfers of future demands
are then carried out backward in ime to the current
perind, using full or partial lots until feasibility re-
quirements are satisfied. Some or all of these de-
mand transfers may result in cost increases sinee
the first priority is to preserve feasibility, If capacity
remains after feasibility is satisfied, only cost-saving
transfers are permitted thereafter. If capacity is ex-
hausted before feasibility requirements are met, ad-
ditional capacity 15 allocated to that period so that
the feasibility requirement can be satisfied. Upon
complehion of this step, we have a produchion
schedule specifying which items are to be produced
and in what quantity for each peeind. This schedule
will not necessarily be feasible, However, we have
more transfers to carry out, forward in time, in the
next module, and these transfers frequently elimi-
nate infeasible periods,

4. Improve the solution. Here cost-saving transfers
are carmied out forward in time until ne further im-
provements can be found. If earlier infeasibilities
are not salisfied in this process, it is not necessarily
true that no feasible solution exists. However, as we
will see later, this method does find feasible solu-
tions where mixed-integer programming methods
have failed.

5 Report solution results. Production and invento-
ries by item and period along with costs are wrilten
from the Visual Basic arrays into Excel 5.0 spread-
sheet ranges. In addition, the report exhibits any
additional capacity requirements, by period, when
no feasible solution is found.

Feasibility Requirements

Maes and Van Wassenhove [3] presented a simple
method of computing feasibility requirements, R(t),
for the case of zero setup time. This method recur-
sively computes Rit) backward in time beginning at
the horizon:

R{HORIZ} = R(13) =0,
Rit — 1) = Rit) = Period t Production — L(t).
Now production in period t should include both pro-

duction and setup time

NITEM _
Production (£) = ¥ [A(D = D, t) + ST

But if we include every setup, we are assuming a lot-
for-lot solution which clearly will overstate the feasi-
bility requirements. This typically leads to overpro-
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duction in early periods and large capacity add-ons to
the capacity limits. The improvement module may not
be able to eliminate these early infeasibilities. Even
when it does, the heavy distribution of production
early in time cannot be entirely overcome by forward
transfers, and holding costs tend to be higher than nec-
e,w:lr}r.

O the other hand, we must be careful not to unduly
limit the estimated number of setups. If we understate
the feasibility requirements, there will be too little pro-
duction in earty periods and resulting add-ons to ca-
pacity in Liter periods. Late period capacity add-ons
are seldom remedied by the improvement module.

Our solution to this dilemma is to have the user in-
tervene in setting the maximum number of setups o
be included in the feasibility computations in any pe-
riodl. A search process is then carried out beginning at
the largest number of setups to be permitted and de-
creasing until infeasibilities occur in later ime periods
or solution cost stops improving. For data in Table 1,
the best cost, feasible solution occurs when no more
than seven setups are allowed in the feasibility re-
guirement computation. Using a maximum of seven
setups and R(13) = 0, the reader can now determine
that:

R(12) = R(13) + ¥ [AG) » DG, 13) + ST(i)] — L(13)

=]
R{12) =0 + [22 + 42] - 32 = 32,

and

8
R{11) = R(12) + ¥ [AG)Y « D, 12} + ST — L{12)

le=1
R{11) = 4.

The remaining R(t) follow similarly and are listed in
Table 1. We emphasize that setting the maximum
number of setups to be counted toward feasibility re-
quirements in no way limits the number of setups that
can be used in the remainder of the scheduling pro-
cedure.

Satisfy Immediate Demand and Feasibility

Requirements

We illustrate the structure of this module with the
flowchart in Figure 1. The process of finding the closest
future period with non-zero demand deserves further
consideration. 5o long as the feasibility requirements
are not completely satisfied in the current period, we
must insist that any admissible transfer of production
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FIGURE 1: Madule which satisfies immediate demand
and feasibility requirements

from a future period, backward in time to the current
period, reduces the feasibility requirement of the cur-
rent period. Situations can arise in which feasible
transfers backward to the current period will not re-
duce the feasibility requirement but will reduce cur-
rent production capacity, If these are not prohibited,
capacity can be exhausted before the feasibility re-
quirements are satisfied.

To demonstrate an inadmissible transfer, consider
the following situation not related to Table 1 data. The
current period is t = 1, we have satisfied immediate
demand, remaining capacity is ten units and we have
a feasibility requirement of five units. Suppose we re-
strict our example to one specific item, call it item k,
and the closest non-zero demand for the item is ten
units and occurs in period 3. However, the intervening
period 2 has a feasibility requirement of zero units.
The situation is summarized in Table 2.

Recall that the feasibility requirement for any period
represents production that must occur in that period
overand above immediate demand in order to prevent
infeasibilities from occurring in future periods. Since
period 2 has no feasibility requirement, the set of de-
mands in period 3 are feasible and can be met entirely
out of that period’s capacity. However, period | hasa
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TABLE 2: Example of an Inadmissible Transfer for
Item K from Period 3 into Pericd 1

Demand, O4,1), Uinis Parfod, t

Product, § 1 2 3
: —
}:q 20 . .[!I 10
I:=|{1Il. units 5 0 15.
Capdl), units 10 an 50

non-zero feasibility requirement of five umits which
means that period 2 cannot meel immediate demand
with available capacity. This infeasibility must be ab-
sorbed by production in period 1. Now the transfer of
ten units of demand from period 3 o peried 1 is pos-
sible since ten units of capacity are available. How-
ever, such a transfer must not be admissible since, if it
wins (he savings competition among items, such a
transfer will eliminate period 1 capacity and not re-
move the infeasibility for period 2. When this situation
occurs, we make this transfer non-competitive by as-
stpning a large negative value to LG,

In computing savings of permissible transfers, we
have adopted the Dixon-5ilver method of forming
the savings per unit of capacity absorbed. Savings,
U{1), can be positive or negative (cost increase) and
are computed using Silver-Meal, ie., savings per
span, without regard to capacity, However, because
items are in competition for capacity absorption,
multi-period transfers are not considered as they
would be in the uncapacitated case. Whenever the
“winning'’ item has U(i) = 0, i.e., a true cost saving,
its average cost and the number of time periods
spanned are preserved so that after the transfer they
can be used to continue the Silver-Meal average cost
per span algorithm.

We will not present here the detailed structure of
the equations for the U(i). Four different savings func-
tions are defined: full-lot transfer into an existing
setup, full-lot transfer into no setup, and the two cor-
responding part-lot transfers. Only full-lot transfers
into an existing setup present the potental for positive
cost savings, U(1) = 0. For example, consider time pe-
riod 5 in Table 1. After producing items 4 and 6 we
still have 32 — 2.5 (2.45) = 25875 hours of capacity
available. Consider only item 6. The closest future non-
zero demand of (.85 units occurs in period 6, Back
shifting the entire lot into period 5 requires only 0.55

(2.5) = 2.125 hours of capacity, which is available. The
savings would be

Savings = setup cost for period 6 — incr. inv. cost
=200 — 85 (la6) = 4589,

Now Dixon and Silver [2] use savings per unit capac-
ity absorption as the priority index for competing
transfers and we follow their lead. Then in period 5

Uip) = +58.9/2.125 = 42772,

This item will win the competition in this period and
we must then reduce remaining capacity by 2.125. Bul
the feasibility requirement for period 5 will be reduced
by 2,125 + 6.0, the setup hours saved in period 6. This
is the means by which infeasibilities can be reduced or
eliminated,

Improving the Solution

In the previous module, the primary elfort was o
reduce feasibility requirements to zero, In order Lo ac-
complish this, additional capacity may have been re-
quired, typically in the early periods. When additional
capacity is needed, in effect, we have an infeasible
schedule. Furthermore, feasible or not, the schedule
tends to be highly onented toward early praduction
with relatively high inventory carrying costs, We nex|
search for transfers forward in time into periods that
have excess capacity. This process will reduce costs
and frequently eliminate all additional capacity re-
quirements.

We begin by examining each period, in order, start-
ing with period 2. First we check to see if the period
has any remaining capacity. If it does not, we move to
the next period. If it does have remaining capacity,
then we need to examine each item for potential for-
ward transfers (which cannat exceed remaining ca-
pacity). We then choose the item with the largest say-
ings and update costs, production requirements,
inventories and capacities.

Suppose we have found a period with remaining,
capacity. Mow suppose that an item has a setup sched-
uled and there is a positive ending inventory in the
previous period. We can save carrying costs by pro-
ducing all possible units of that item in the current
period, rather than earlier. If we have sufficient capac-
ity, we may even be able to eliminate an earlier setup
cost and lime.

For items with no setup scheduled, it may also be
possible to realize a savings. If there is an ending in-
ventory for the current period, this must have been
produced one or more periods earlier. If there is suf-
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total cost of the schedule (517,398 compares very fa-
vorably with the best available mixed-integer pro-
gramming result of $17,724. The MIT* computations
were carried out on an IBM mainframe using GAMS
for problem input and an OSL solver. The solver found
an integer valued feasible solution but was not able to
improve on our modified Dixon-Silver method even
with 100,000 iterations.

Some What-1f Investigations

In the cause of succinctness, henceforth, when we
refer to the modified Dixon-Silver scheduling method
described herein, we will call it simply MODS. The
MOLIS system can also be used to investigate the cost
implications of changes in capacity limits, setup limes,
holding and setup costs, capacity absorption coeffi-
cients and demand scenarios. In Table 4 we give two
examples of potential cost improvement as setup time
is reduced or as capacity is increased. Capacity in-
creases were explored with setup time fixed al 6.0
hours, and for setup time changes, capacity was fixed
at Z24 hours, Each time a parameter is changed it is
necessary to carry oul a search procedure for the best
available feasible solution by varying the maximum
number of setups allowed. Normally this involves two
or three {rials,

TESTS OF CONSISTENCY OF THE
SCHEDULING SYSTEM

We now report the results of tests conducted to de-
termine how well the proposed system (MODS) per-
torms. The goal here was twofold: to gain some un-
derstanding of how costs compared to the “best

available” costs of a mixed-integer programming so-
lution and to uncover any software bugs.

We have been guided by the work done by Trigiero
et al. [7] to test their linear programming-based ap-
proach to solving capacitated scheduling problems
with setup times. Their procedure uses Lagrangian re-
laxation combined with a “"smoothing’” heuristic, Tests
explored the effects of: level of capacity utilization,
setup time level and variability across items, ratio of
setup cost/holding cost, problem size (number of
items and periods), demand variability, variability of
capacity absorption (across items), level and variabil-
ity of setup and holding costs,

Trigiero et al. [7] measured the pap between final
schedule costs and lower bounds on cost obtained in
the process of using his algorithm, Average gap over
all tests was less than 4%, and this gap is interpreted
as a measure of difficulty of obtaining oplimal solu-
tions,

Demands were selected from a uniform distribulion
with the same mean over all items. Varying demand
coefficient of variation was found to have no effect on
solution gap. Capacity requirements were established
by first utilizing EOQ to estimate setup times. Total
capacity requirements were then averaged over all pe-
riods and divided by the desired capacity utilization
factors (75%, 85%, 95% ). Using this method, Trigiero
et al. [7] found that setup time level and variability
across items did not affect the solution gap.

Factors contributing most strongly to an increase
in solution gap were: increasing capacity utilization,
increasing EQQ time between orders (TBO), and
decreasing number of items. Variability of capacity
absorption factors across items did not affect solu-
tion gap.

TABLE 4: Effect of Reducing Setup Time or Increasing Capacity

Capacity Increase-Hrs Cost-$ Setup Time-Hrs Cost-$
0 17,398 6 17,398
2 15,717 5 15,681
4 14,223 - 12,955
6 13,625 3 10,738
8 11,965 2 9,771
L I 9,491 _J
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For our testing, we have elected to vary the follow-
ing factors: capacity utilization (55%, 75%), TBO (1, 3),
number of items (8, 20), setup cost level (mean) (430,
4,500 and setup cost vartability (range /mean) (0, T).

Demand

A mean demand of ten units was used for all items
with demands drawn from a umiform distribution on
the interval (5, 153} with a coefficient of vanation of
{1.24. This of course resulls in every item having a non-
zero demand in every period, which is not realistic
Trigiero el al. [7] remedied this by randomly selecting
some early periods and assigning zero demands. Non-
zero demands were then inflated o preserve the de-
sircd mean, This was done “in order to simulate . . .
[an] increasing trend"” over time,

We have laken a somewhat different approach. Data
from actual applications at Welch's and reported by
Dixon and Silver [2] indicate approximately 45% to
A% of entries in the demand array are zero We have
randomly selected 45% of our demands to be zero and
adjusted the non-zero entries upward to preserve the
mean of 1040,

Capacity Absorption and Setup Time

Trigiero et al. [7] found in preliminary tests that
varying capacity absorption coefficients did not have
an effect on solution gap, They chose to use a coeffi-
cient for unity for all items in subsequent tests and we
will do likewise. They also found that variability of
setup times “had a minor effect on the results.” For
this reason, we have elected to hold setup time con-
stant al 6.0 units of capacity. While this choice 1s spme-
whal arbitrary, it is consistent with the Welch's ex-
ample and represents a significant fraction (20%) of
production capacity for a lot-for-lot schedule at 75%
utilization,

Setup and Helding Costs

Chuice of an EOQ time between orders implies a
{mean} ratio of setup to holding cost for given de-
mand. A TBO of 1 implies a ratio of 3 while TBO = 3
yields a ratio of 45, Holding costs were computed us-
ing these ratios and the given mean levels for setup
costs (430, 4,500). In the case of variable setup costs,
both holding and setup costs were drawn indepen-
dently from uniform distributions with ranges equal to
their respective means.

Production Capacity

Once demand and TBO are prescribed, the number
of sefups can be estimated, and minimum total capac-
ity follows. This is then averaged over all periods and
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the result is divided by the capacity utilization factor
{55% and 75%}. With TBO = 1, setups are lot-for-lot
and the capacity attains its largest value. For TBO = 3,
capacity is at its smallest value and it was not possible
to find feasible solutions using MODS for any capacity
utilization factors (CUF) above 75%. This, then, deter-
mined the upper value of CUF. As we will see shortly,
the MII" solver was unable to find feasible solutions
for this combination of TBO and CUF.

Test Design and Cost Results

O intent was to run a one-half fraction of a 2° fac-
torial design to determine how the factors affected the
difference between our costs and the best available MIP
costs. Based on our experiences with using MIP to solve
scheduling problems of this type, best available was
taken o be MIT feasible solution cost at 50,000 iterations.

Examination of Table 5 reveals that our original in-
tent did not bear fruil since in six out of the 16 test
prrablems, the MIP solver was unable to find a feasible
sodution. Run number 15 was taken to 330,000 itera-
tions but no feasible solution was located by the solver,
MNo further improvement was found for the feasible
solution in run number 5 at 623,000 iterations. All
MODS run times were less than ten seconds using a
33 mhz desklop computer.

Runs numbered 1 to 4 are all lot-for-lot solutions and
may well be optimal but the MIP solver was not able to
demonstrate this to be the case within the 50,000 iteration
limit, None of the other runs vielded lot-for-lot schedules,

The MODS method performs quite well with the
worst-case cost penalty of some 12% in run number 5.
The other two cost penalties are under 3.5%, There is,
of course, no way to assess how well the method per-
formed in the last six runs, but feasible solutions were
found, certainly a major advantage over no solution
whatever. '
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