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The study of finite planning systems takes place from several different
perspectives at the Cenfer for Process Manufacturing located on the campus of
Penn State Erie, The Behrend College. First, we formulate practical
mathematical models to solve specific finite planning problems within the
process industries. Second, we seek to understand and categorize the vast
amount of published research on finite planning systems. Finally, we desire to
communicate to practitioners the different techniques of finite planning with data
drawn from industry.

This article describes a simple approach to finite planning involving a
combination of simulation and optimization. We will demonstrate the method
using actual demand and capacity data from a production line at Welch's. A

solution is obtained using spreadsheet software,

The Finite Planning Problem

Process oriented firms usually have high speed manufacturing lines that
produce a fixed number of end items. Production planners play an important role
in plant operations by scheduling the sequence of end item production to meet
the demand forecast, while taking into account many factors such as customer
service levels, forecast bias, manufacturing lead time, capacity, inventory
carrying cost, set-up cost and lot sizing. Complicating matters, the consumer
goods segment of the process industries often deals with dynamic demand

caused by frequent use of trade promaotion. For many consumer goods



manufacturers, it is commen to sell 0% of yearly demand for key items during
tightly focused drive periods. The resulting lumpy demand pattern proves a
difficult problem in production planning.

Spreadsheets now offer enough simulation and mathematical
programming capability to build models that accomplish finite production
planning in a lumpy demand environment. This opens a wide range of new
possibilities for solving finite production planning problems. Despite the power of
microcomputer technology, spreadsheets remain underutilized as an inexpensive
method of finite planning in the process industries.

The model presented in this article combines a deterministic simulation
previously discussed by Schuster & Finch [1990], and an integer programming
model formulated by Dzielinski & Gemory [1965], with later expansion by
Nahmias [1989, p. 115-118]. During the course of our research, we observed
interesting synergies occurred by blending the deterministic simulation model
together with the integer programming model. This “blending of models" leads
to new ways of looking at the finite planning problem. The model we now
present has the simple purpose of planning production of end items produced on
a manufacturing line operating in a dynamic demand environment.

As with any model, the first step in its understanding begins with a
discussion of underlying assumptions. The spreadsheet model described in this

article assumes the following:



1. Afixed number of items are run on a dedicated production line under
a make to stock strategy. A forecast of each end item exists and is used for
production planning.

2. In the examples to follow, finite production planning occurs in weekly
time buckets with an eight week horizon. The output of the model is a least cost
weekly production plan that meets finite capacity limits.

3. Switching from one end item to another requires a major changeover.
The time for each changeover is fixed during the planning horizon.

4. Inventory carrying costs and changeover costs are known.

5. Manufacturing line capacity and changeover capacity limits are known.

With these assumptions in mind, we now turn our attention to discussion of

the spreadsheet model.

Simulating Production Vectors

The deterministic simulation uses a time phased re-order point method to
calculate the preduction spacing required to satisfy buffer stock requirements.
Dynamic in nature, the buffer stocks depend on the demand forecast as well as
other important factors such as customer service, production lead-time and
forecast bias.

The deterministic simulation served as a useful production planning tool at

Welch's for many years. However, it had major shortcomings in dealing with

capacity constraints. Production plans developed for each end item were



capacity infinite, and independent of other items produced on the manufacturing
line. This caused frequent capacity violations and ineffective production plans.
In addition, production plans from the deterministic simulation failed to consider
set-up or holding cost, and provided no total cost optimization.

The cure to this problem begins by calculating a set of production plans
for each item using the deterministic simulation. Adjustment of several
simulation parameters results in plans with different production spacing.

For example, one way of obtaining different production plans for a single
end item involves varying the fixed lot size used for each production run over the
planning horizon. Large lot sizes mean production takes place less frequently
and average inventory remains high. On the other hand, small ot sizes mean
frequent production and low inventories. By varying the lot size in natural
increments such as half shifts of production, a set of production plans resuits.
Dzielinski & Gomory refer to each alternative production plan as a vector.

Each vector has a different cost associated with it.  Costs are calculated
by analyzing the number of changeovers and the average inventory level
associated with a particular vector. Table 1 provides an example of a set of

vectors for an item.

Please place Table 1 about here

In Table 1 we obhserve four vectors associated with product code 116.
This product code represents a frozen grape concentrate item produced by

Welch's and sold in retail stores. The first vector (labeled as vector 1) represents



a one-half shift production strategy. With small lot sizes, production occurs
frequently to meet the demand forecast.

The cost of the one-half shift lot size depends on the number of
changeovers required for production, and the average inventory level resulting
from the spacing of production. If we assume set-up cost equals $500 and

inventory carrying cost equals $0.14/unit/week, then total cost becomes:

[# of set-ups] x [cost per set-up] = set-up cost

7 set-ups x $500/set-up = $3,500

and,

[average inventory] x [inventory carrying cost per week] = inventory cost

12,800 units x $0.14/unit/ week = $1,791

[set-up cost] + [inventory cost] = total cost

$3,500 + $1,792 = §5,291

From Table 1, we notice that the two shift lot size, vector 4, has the least
cost of all vectors. The large lot size causes high average inventories, but few
expensive changeovers. [f product code 116 was the only item run on the
manufacturing line, we would pick the two shift lot size as the least cost

alternative.



A more complex situation arises with several items produced on a
manufacturing line. The two shift lot size for product code 116 may cause
capacity conflicts with the least cost vector for other items produced on the
manufacturing line. Furthermore, we have only considered actual manufacturing
time in our calculation of capacity. Set-up time is also subject to capacity limits.

Somehow we must sort through all vectors to find the best mix that
minimizes cost while satisfying production and set-up capacity limits. Integer
programming using binary variables provides a simple method to sort through
different vectors. Our discussion will now focus on a spreadsheet based model

that selects the least cost set of vectors.

The Sifter

An integer program can act like a sifter by choosing the single least cost
vector for each end item that collectively meets production and set-up capacity
limits. The sifting action occurs from using binary decision variables for each
vector. An example provides the best way to understand the sifting action.

Suppese we arrange the set of four vectors associated with product code
116 vertically on a spreadsheet. Next to the set of vectors for product code 1186,
we add five sets of four vecfors representing other products run on the

manufacturing line (see Table 2, product code 116 shown in bold).

Please place Table 2 about here




In Table 2, we manually entered a row of 1's and 0's designating selection
of a vector. When a 1 appears in this row, the corresponding vector becomes
part of the weekly production plan. If a zero appears, the production plan does
not include the vector. The weekly production plan includes one vector per item.
Spreadsheet formulas called vector products multiply the row of 1's and 0's by
the production or set-up capacity consumed for each vector, in each time period,
to arrive at total capacily requirements per week.

Summing the cost of all chosen vectors gives the total cost of the
production plan. Capacity utilization follows through division of capacity
requirements by the capacity limit. To account for set-up time, we extend the
vector to show set-up hours associated with each production run. This allows
separate limits on production capacity and set-up capacity.

As an initial try at a feasible solution, we manually selected the least cost
vector for each item in Table 2 and computed total production time, set-up time
and cost. Table 3 shows the group of least cost vectors selected from Table 2.
The cost of the production plan equals 522,693. However, we exceed
production capacity in weeks 1 and 5.

To get a feasible solution, we may try manually selecting another
combination of vectors. Deciding which vectors to choose becomes a problem.
In this example, there are 4096 possible combinations of vectors to make up a
production plan. Only by trying all combinations of vectfors can we know the least

cost mix of vectors that meet capacity limitations.



Please place Table 3 about here

Using Spreadsheet Optimization to Sift Vectors

Rather than attempting all the combinations of vectors, we can use
integer programming to mathematically sift through all possible vector
combinations and arrive at the best solution. Several software packages offer
integer programming capability in a spreadsheet environment. We chose
What's Best! (distributed by LINDO SYSTEMS) which works as an add-on to
Microsoft Excel and Lotus 1-2-3. Commands for What's Best! work from easy
to use, pull down menus. Because What's Best! overlays a spreadsheet,
managers find it easy to apply mathematical programming to production and
inventory management problems. For a complete description on how to use
What's Best! please refer to a recent book authored by Plane [1994].

For smaller problems, Microsoft Excel has a "solver” contained as part of
the spreadsheet. The solver can do integer programming and is listed under the
“tools” menu (please note that in order to activate “solver” in your spreadsheet,
you may need to specify “solver” under the add-ins option of the tools menu). In
the next Pl - SIG news letter, we will show the strengths and weaknesses of
using “solver” to find a solution to the sifter problem.

The spreadsheet appearance of the integer programming problem closely

resembles the layout of Table 2. The row of 1's and 0's serve as decision



variables. When What's Best solves the integer programming problem, 1's and
0's indicate which vectors make up the optimal solution (1=accept, O=reject).

Each row in Table 2 serves as a constraint. The right hand side of each
row must be less than the weekly capacity imit. Under circumstances of high
capacity utilization, it may be possible that no combination of vectors meets the
capacity limit for production time or set-up time.

To guard against this dilemma, several modifications of the constraints
allow for overtime at a cost penalty. With the objective to minimize cost, the
integer program seeks all possible combinations of vectors not causing overtime.
If no combinaticn of vectors meets capacity limitations, the model chooses the
closest fit of vectors that results in planned overtime. For a complete description
of the mathematical formulation for the sifter, please refer to the appendix.

Using What's Best!, we solved the finite capacity problem from Table 2.
The solution appears in Table 4. Moctice capacity viclations no longer exist in
weeks 1 and 5. However, the new solution has a slightly higher total cost

($22,776 as compared to $22,683 for our initial solution).

Please place Table 4 about here

As an exercise, we ask readers to constrain the scheduling problem
outlined in table 2 by reducing production time to 50% of normal capacity during

weeks 5 and 6. See if you can solve this scheduling problem without the use of

10



integer programming. We will publish the answer to this question in the next

issue of the Pl SIG newsletter.

Conclusion

With spreadsheet simulation and optimization tools, practitioners can build
effective finite production planning models that help in understanding the power
of mathematics to solve practical problems encountered by industry, At the
Center for Process Manufacturing, we strive to bring the ideas of mathematics to
practice, and to promote the general use of models in business problem -
solving. We hope that by our research the members of the Pl - SIG of APICS

will gain grealer insights into the underpinnings of finite planning systems.
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Appendix

1. A note concerning vectors.

The vectors presented in this article result from a deterministic spreadsheet
simulation discussed by Schuster and Finch. However, this is not the only
method available for calculating a set of vectors. To simplify the model,
practitioners can use a time phased reorder point with fixed safety stock.
Another method to quickly generate vectors involves using the exact
requirements policy [Nahmias 1989, p. 115].

2. Mathematical formulaticn of the sifter.

The sifter is an integer program with the objective function restricted to binary
variables.

i = product code

| = vector of production quantities for product i

t = weekly time periods

C(i,j) = Cost of producing item i using production vector |,

CR(t) = Production run time capacity limit for time period t

CS(t) = Set-up time capacity limit for time period t

r(i,j,t) = production time required for product code i using production vectorj in
period t

s(i J,t} = set-up time required for product code | using production vector | in time
period t.

H = Hours per shift (in our examples, we assume 8 hrs. per shift for production
and set-up)

MP = production overtime cost
MS = set-up overtime cost

M = overtime capacity (production time + set-up time) for time period t

12



Objective Equation:
Min Z:l__l ZLI Ci.j)Ki, j)+ Z:—;[ MPe(t) + MSd (t)]

Subject to!

1. Production time Constraint

Z:...Z:.H'“‘-J’-”””'” - He(r) < CR(1), for all t
2. Set-up time constraint

SN sti 00 g) — Hd(r) < CS(e), for all
3. Overtime Constraint

e(ty+d(t)s M, forallt

4. Constraint limiting vectors to one per item

ZJ..,””._H =1, foralli

Where:

(/=1 0or 0, ¢ is called a sifting variable

e(t) = production overtime for all i

d(t) = set-up overtime for all i

SPECIAL NOTE: Constraint 3 becomes necessary to place realistic limits on
set-up and preduction overtime. In a high capacity utilization situation requiring

overtime, constraint 3 may cause a non feasible solution. For this case,
generation of additional vecfors may result in a feasible solution.
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Table 1 - Set Of Feasible Production Plans For Product Code 116 (hrs ner week

Lot Size
1.5 shift
1.0 shift
1.5 shift
2.0 shift

TABLEZn

AVErage
Mumnber of Inventory
Cost  Wesk1 ‘Wesk2 Week3 Weekd WeskS Wesk8 Wesk7? Weeka Set-ups {(1000's cases)
85,281 4 4 4 4 0 4 4 4 T 2.8
54 146 B 1] 8 0 0 ] a 8 4 153
54,235 12 0 0 12 a ] 1] 12 3 19.6
54 021 16 0 0 Q 0 16 0 0 2 221

Page 1
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TABLESUnI

Total Cost
Table 3 - Least Cost Vectors Ba2693
Product Code 103 111 116 122 128 135 Capacity Capacity Litilization
Lot Size 2 Shifis 1 Shift Z Shifts 1.5 Shift 1 Shift 1.5 Shift Raguirement Lirnit {hrs)
Cost £5,969 22,047 §4.091 $3.981 £2.595 4011
Production Time (hrs per wesk)
Week 1 0 Q it 12 8 12 46 < A0 120%:
Week 2 32 o 0 g a ] 32 = 40 BO0%
Week 3 0 16 o 0 o o 14 < 40 40%
Weeak 4 0 o t) 12 8] o 12 < 40 20%
Week 5 32 3] o o 0] 12 44 < 18] 110%.
Weak & 0 o 16 0 8 Q 24 “ 40 BU%
Weak 7 0 0 0 12 o a 12 < 40 0%
Week B 3z ¥ G 0 a a 32 < 40 B0%
Set-up Trma {hrs par weak)
Veak 1 0 0 a8 8 ] ] 32 < 32 100%
VWeek 2 8 o 0 0 0 Q & < 32 25%
Wieiak 3 ] 8 4] 0 Q e} a “ 3z 25%
Week 4 ] 0] 4] B 4] 4] a8 e az 25%
Week 5 B o] 0 o 0 a 16 < 32 50%
Woek B o 0 8 0 8 0 16 < 3z 50%
Weak 7 o 0 a a 0 o B “ 32 25%
Week B <] 2] 0 1] a 0 3] < az 25%

FPage 1



TABLE4UNI!

Total Cost
Tahble 4 - Optimal Solution 522,776
Froduct Code 103 111 118 122 128 135 Capacity Capacity Lilization
Lot Size 2 Shiftz 1 Shift 1 Shift 1.5 Shift 1 Shift 1 Shift Requiremant Limit {hrs)
Cost 35,969 52047 £4.146 53881 $2.595 $4,038
Production Time (hre per week]
Week 1 [} g 8 12 B 8 13 < 40 0%
Week 2 32 ¢] o o 0 a 3z 5 40 BOY%
Weak 3 8] 16 - 2] o o 24 = 40 G0%
Weak 4 Q o 0 12 Q 8 20 - 40 0%
WWoak & 32 0 0 0 0 1] 3z “ 40 a0%
Weak & ¥} Q 8 o . 8 24 < 40 G0%:
Week 7 8] 0 0 12 a 0 12 “ 40 0%
Week 8 32 0 - 0 a 0 40 “ A 100%:
Sat-up Time (hrs per week)
Week 1 0 0 8 8 8 B 32 < 32 100%
Week 2 8 0 0 0 o} ) 8 « 32 25%
VWeak 3 8] 8 8 0 a o 16 < 32 0%
Weak 4 0 0 0 8 a 8 16 “ 32 50%
Wk 5 8 0 o 0 o} o 8 < 3z 25%
Waak & Q 0 B e} a 8 24 % 32 9%
Weak ¥ 0 0 0 8 a v} 8 < 32 25%
Week & 8 0 8 0 0 0 16 < 32 50%

Fage 1



