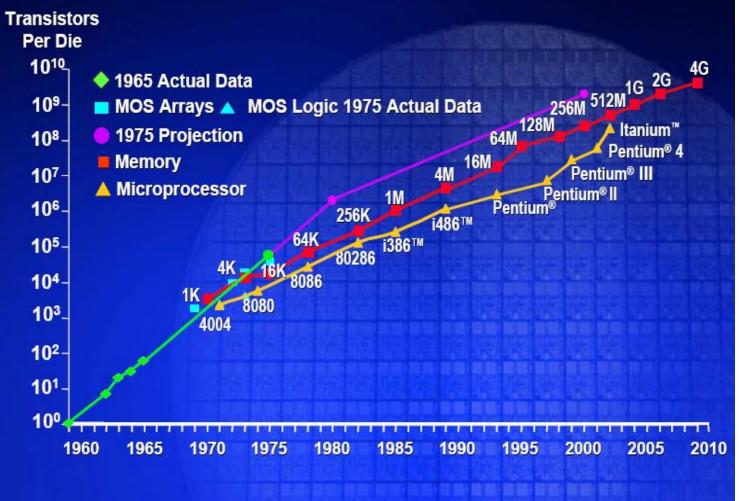


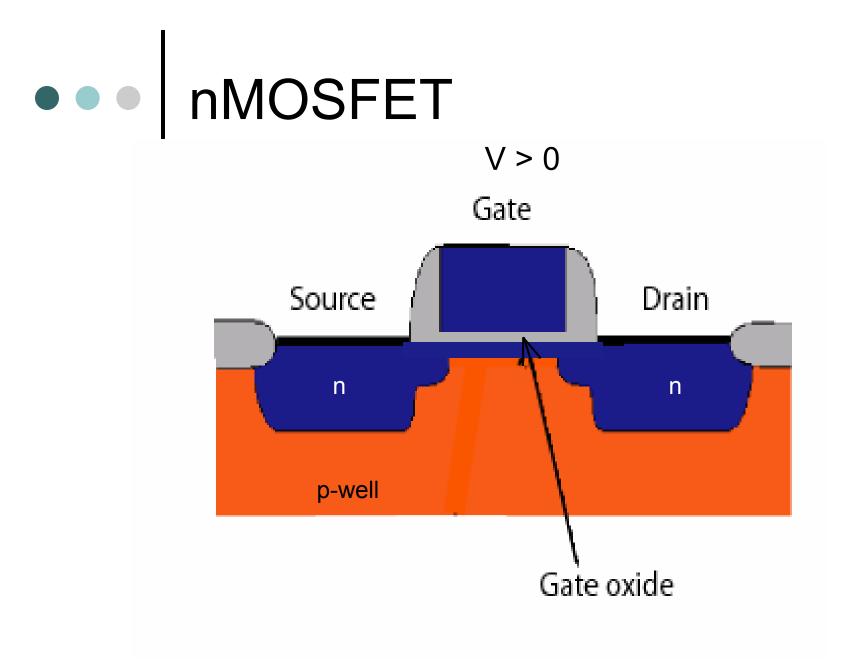
Although We've Come to the End of the Road(map): The Future of CMOS

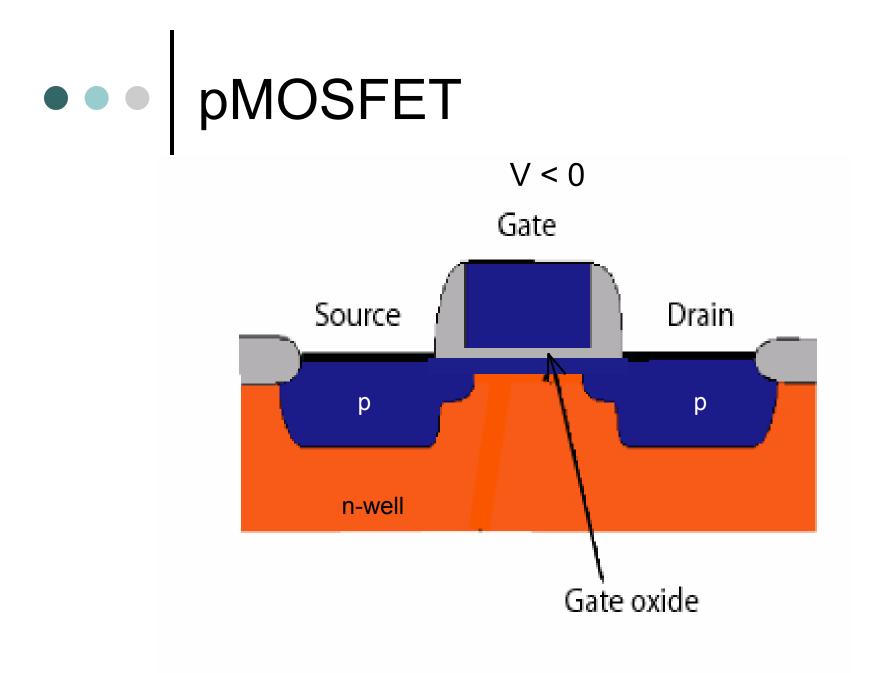
Nicole DiLello 6.Insight April 3, 2007

Although we've come To the end of the road Still I can't let go It's unnatural You belong to me I belong to you

- Introduction
- Current technology
- Next generation
- o 20 years from now
- Conclusion

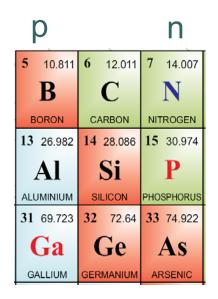


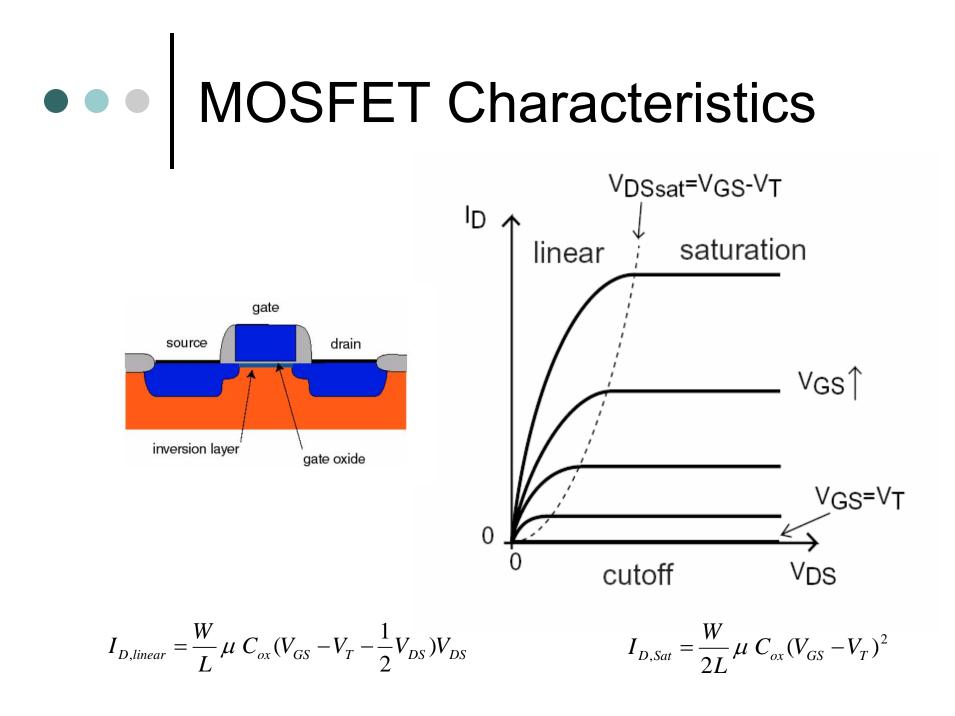

Introduction

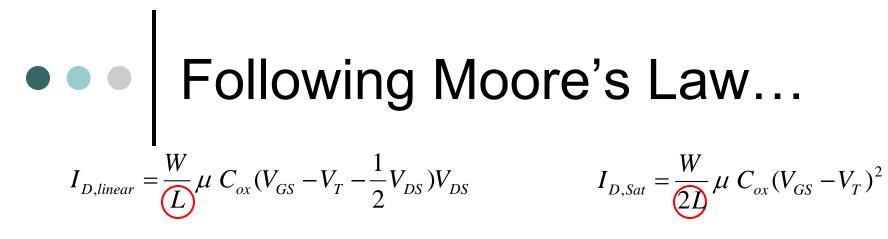

- o Current technology
- o Next generation
- o 20 years from now
- o Conclusion

Moore's Law

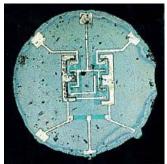
Integrated Circuit Complexity

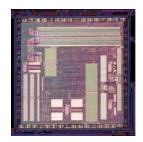



• • Before continuing...


o nMOS + pMOS = CMOS

Standard MOSFET


- Made entirely from Si
- Crystalline
- n/p regions are doped



- Make transistors smaller
- International Technology Roadmap for Semiconductors (ITRS)
 - U.S., Europe, Japan, Taiwan, Korea
 - Chip manufacturers, academia

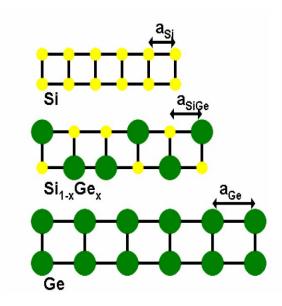
• • • ITRS (2005)

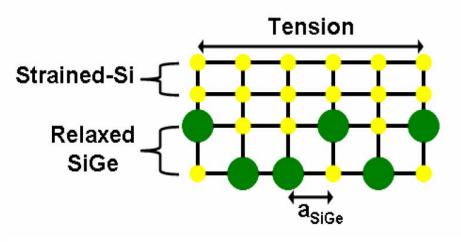
Year of Production	2005	2006	2007	2008	2009	2010	2011	2012	2013
DRAM ½ Pitch (nm) (contacted)	80	70	65	57	50	45	40	36	32
MPU/ASIC Metal 1 (M1) ½ Pitch (nm)(contacted)	90	78	68	59	52	45	40	36	32
MPU Physical Gate Length (nm)	32	28	25	22	20	18	16	14	13
Lg: Physical Lgate for High Performance logic (mm) [1]	32	28	25	22	20	18	16	14	13
EOT: Equivalent Oxide Thickness [2]									
Extended planar bulk (Å)	12	11	11	9	7.5	6.5	5	5	
UTB FD (Å)				9	8	7	6	5	5
DG (Å)							8	7	6
Gate Poly Depletion and Inversion-Layer Thick	ness [3]								
Extended Planar Bulk (Å)	7.3	7.4	7.4	2.9	2.8	2.7	2.5	2.5	
UTB FD (Å)				4	4	4	4	4	4
DG (Å)						_	4	4	4
EOT _{elec} : Electrical Equivalent Oxide Thicknes	, s in inversio	n [4]							
Extended Planar Bulk (Å)	19.3	18.4	18.4	11.9	10.3	9.2	7.5	7.5	
UTB FD (Å)				13	12	11	10	9	9
DG (Å)							12	11	10
J _{g.limit} : Maximum gate leakage current density	[5]								
Extended Planar Bulk (A/cm ²)	1.88E+02	5.36E+02	8.00E+02	9.09E+02	1.10E+03	1.56E+03	2.00E+03	2.43E+03	2
FDSOI (A/cm ²)	1			7.73E+02	9.50E+02	1.22E+03	1.38E+03	2.07E+03	2.23E+0
DG (A/cm ²)								7.86E+02	
V _{dd} : Power Supply Voltage (V) [6]	1.1	1.1	1.1	1	1	1	1	0.9	0.9
V _{t.sat} : Saturation Threshold Voltage [7]									
Extended Planar Bulk (mV)	195	168	165	160	159	151	146	148	
UTB FD (mV)				169	168	167	170	166	167
DG (mV)							181	184	185
Isd leak: Source/Drain Subthreshold Off-State Le	akase Curr	ent [8]							
Extended Planar Bulk (µA/µm)	0.06	0.15	0.2	0.2	0.22	0.28	0.32	0.34	
UTB FD (µA/µm)	0.00	0.10	V.2	0.17	0.19	0.22	0.22	0.29	0.29
	2			V.11	0010	Villa B	0.22	0.120	0.20

••• ITRS (2005)

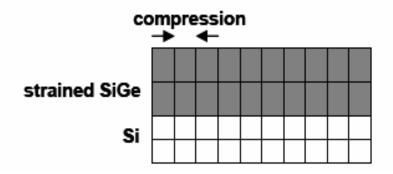
Year of Production	2014	2015	2016	2017	2018	2019	2020
DRAM ½ Pitch (nm) (contacted)	28	25	22	20	18	16	14
MPU/ASIC Metal 1 (M1) ½ Pitch (nm)(contacted)	28	25	22	20	18	16	14
MPU Physical Gate Length (nm)	11	10	9	8	7	6	6
Lg: Physical Lgate for High Performance logic (nm) [1]	11	10	9	8	7	6	5
EOT: Equivalent Oxide Thickness [2]							
Extended planar bulk (Å)							
UTB FD (Å)	5	5					
DG (Å)	6	6	5	5	5	5	5
Gate Poly Depletion & Inversion-Layer Thickness [3]			da ang ang ang ang ang ang ang ang ang an		2023 - 1925 - 1925 - 1925 - 1925 - 1925 - 1925 - 1925 - 1925 - 1925 - 1925 - 1925 - 1925 - 1925 - 1925 - 1925 -	Now of the second	
Extended planar bulk (Å)							
UTB FD (Å)	4	4					
DG (Å)	4	4	4	4	4	4	4
EOT _{elec} : Electrical Equivalent Oxide Thickness in inversion [4]	1		20 V. V. V.			ka seren a seren a	
Extended Planar Bulk (Å)						C. 22	
UTB FD (Å)	9	9		1			
DG (Å)	10	10	9	9	9	9	9
I _{g.limit} : Maximum gate leakage current density [5]							
Extended Planar Bulk (A/cm ²)							
FDSOI (A/cm ²)	3.27E+03	3.70E+03					
DG (A/cm ²)	1.00E+03	1.10E+03	1.22E+03	1.38E+03	1.57E+03	1.83E+03	2.20E+
V_{dd} : Power Supply Voltage (V) [6]	0.9	0.8	0.8	0.7	0.7	0.7	0.7
V _{t,sat} : Saturation Threshold Voltage [7]		a			2	y	
Extended Planar Bulk (mV)							
UTB FD (mV)	164	166	1				
DG (mV)	190	192	195	200	201	205	208
Isd, leak: Source/Drain Subthreshold Off-State Leakage Current [8	1						
Extended Planar Bulk (µA/µm)							
UTB FD (µA/µm)	0.36	0.37					
CONTRACTOR AND A DESCRIPTION	0.30	0.37					

Red brick wall

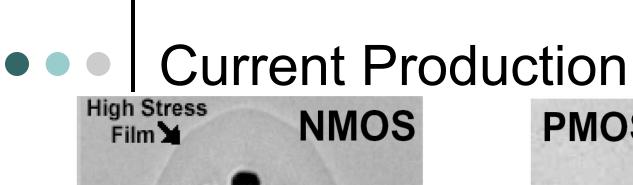



o Introduction
o Current technology
o Next generation
o 20 years from now

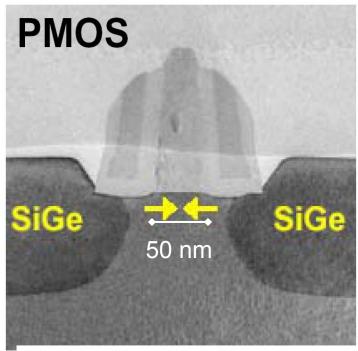
o Conclusion


$$I_{D,linear} = \frac{W}{L} \mathcal{L} \mathcal{O}_{ox} (V_{GS} - V_T - \frac{1}{2} V_{DS}) V_{DS}$$

$$I_{D,Sat} = \frac{W}{2L} (\mu C_{ox} (V_{GS} - V_T)^2)$$







 μ_e increases for tensile strain $\mu_h \text{ increases for compressive strain}$

Nitride film causes tensile stress in channel \rightarrow increase μ_e

SiGe causes compressive stress in channel \rightarrow increase μ_h

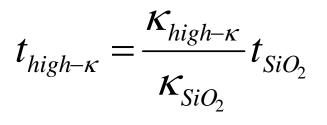
Can induce stress for both nMOS and pMOS on the same wafer!

Introduction
Current technology
Next generation
20 years from now
Conclusion

$$I_{D} = \frac{W}{L} \mu (C_{ox}) (V_{GS} - V_{T} - \frac{1}{2} V_{DS}) V_{DS}$$

$$I_D = \frac{W}{2L} \mu (C_{os} - V_T)^2$$

• SiO₂: How do I love thee? Let me count the ways...


- Native oxide for Si \rightarrow easy to grow
- Good quality: resistant to water, other atmospheric elements
- Matches Si lattice well → no dangling bonds
- High breakdown voltage

•
$$\varepsilon_{SiO2} = 3.9^* \varepsilon_0$$

High-к (k, if you're lazy)

- Measured in terms of "equivalent oxide thickness" (EOT)
- Can make thicker layers

If $\kappa = 16$, can have a thickness of 4 nm that gives roughly the same C_{ox} as 1 nm of SiO₂.

• • • SiO_xN_y

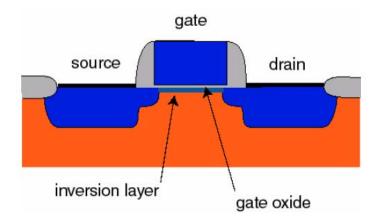
- Relatively easy to integrate (just add some N₂)
- o Increases κ a bit ($\kappa_{Si3N4} \sim 7$)
- Intel introduced at 90 nm node (2004)
- Probably limited to a thickness of ~1.3 nm
- Need a better fix

Some Other Options

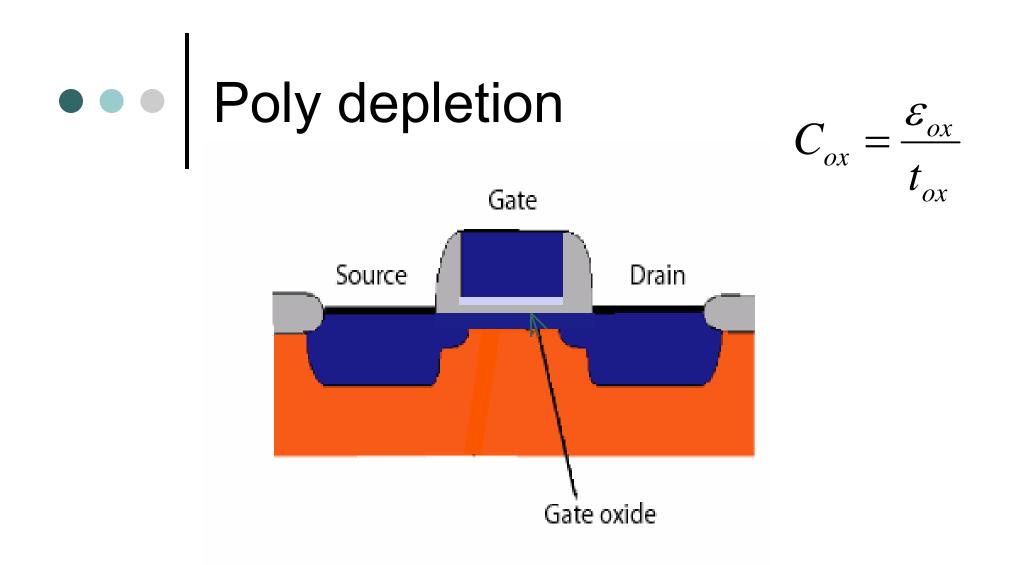
Dielectric ΔE_C (eV) Crystal Band gap E_G (eV) to Si Material constant (κ) structure(s) SiO_2 3.9 8.9 3.2 Amorphous Si₃N₄ 5.1 Amorphous 7 2 Amorphous 9 8.7 Al_2O_3 2.8^a Y_2O_3 15 5.6 2.3^a Cubic Pick La_2O_3 4.3 2.3^a Hexagonal, cubic 30 me! Ta_2O_5 26 4.5 1 - 1.5Orthorhombic TiO₂ 3.5 Tetrag.^c (rutile, anatase) 80 1.2 Mono.^b, tetrag.^c, cubic HfO₂ 25 5.7 1.5^{a} Mono.^b, tetrag.^c, cubic ZrO₂ 25 7.8 1.4^{a}

TABLE I. Comparison of relevant properties for high- κ candidates.

^aCalculated by Robertson (See Ref. 153).


^bMono.=monoclinic.

^cTetrag.=tetragonal.


Intel's Announcement

- Jan. 27, 2007, New York Times: 45 nm process (in production later this year) will use Hf-based dielectric (HfO₂? Si-based alloy? Shhhh...) and metal gate
- Leakage current is down, drive current is up, power consumption is down
- IBM: Hey, we did it too!

- Currently: gates made from poly-Si
- Doped at >10²⁰ cm⁻³
- Pro: same material for nMOS and pMOS
- Cons: Can only dope so high, poly depletion effects

Deplete 3 – 4 Å in the gate \rightarrow adds 3 – 4 Å to dielectric (significant when dielectric is 12 Å) \rightarrow reduces C_{ox}

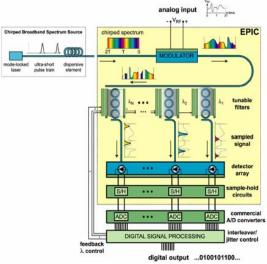
No poly depletion
Lower series resistance
Different for nMOS and pMOS

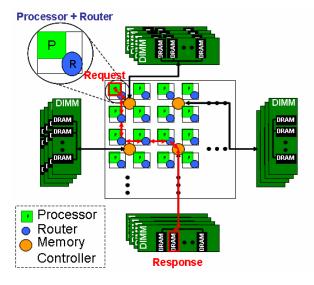
 Incorporating SiGe, Hf-based dielectric, and metal gates show that the industry is willing to (slowly) incorporate new materials

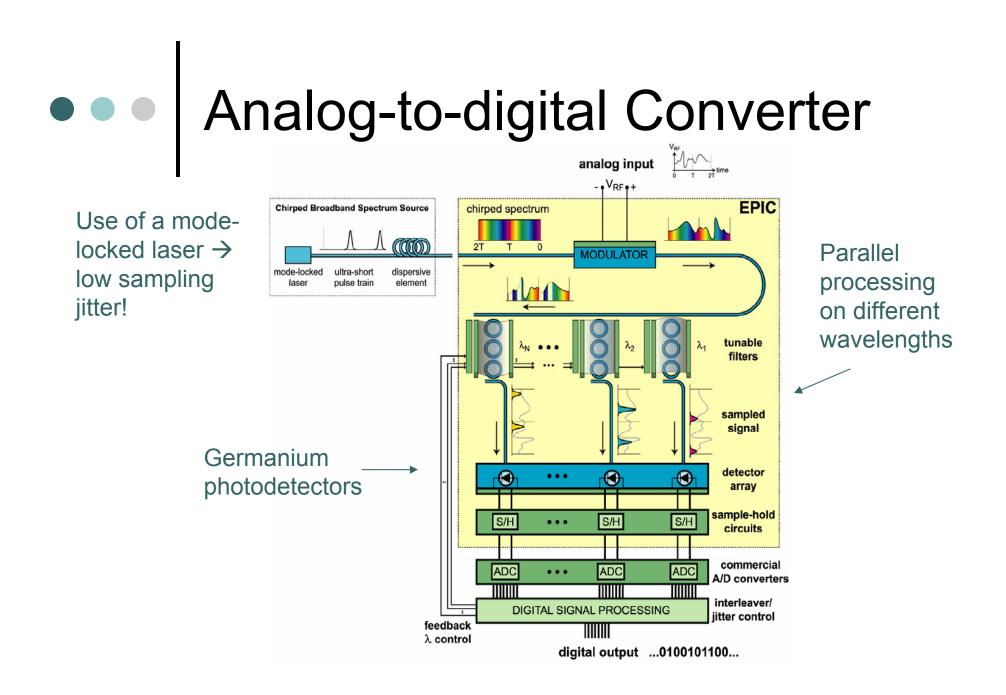
- o Introduction
- o Current technology
- o Next generation
- o 20 years from now
- o Conclusion

Look at bigger picture

• What if we change the mode of transportation entirely?

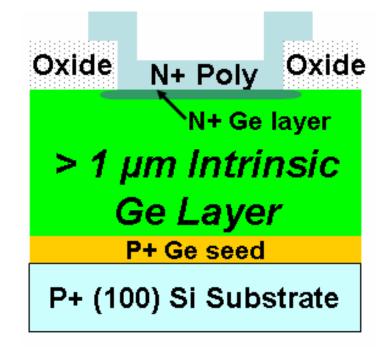

- Tunneling FET (TFET)?
- Carbon nanotubes?
- Computation bubbles?
- PHOTONICS!
- Before we go crazy-nuts, should probably look into a hybrid system

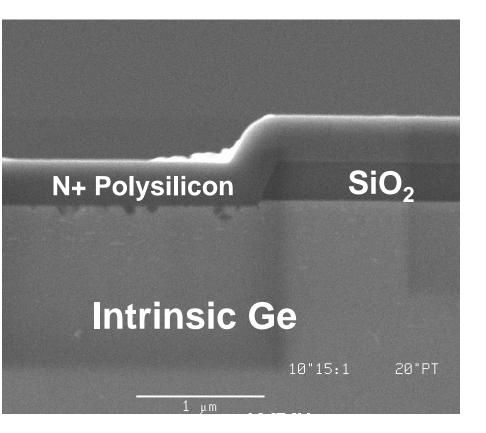

Integrated electronic/photonic system


 Photonics are good for transmitting data, high frequency applications

 $\bullet \bullet \bullet$

- Electronics are good for processing data, especially in a small area
- Let's use both!

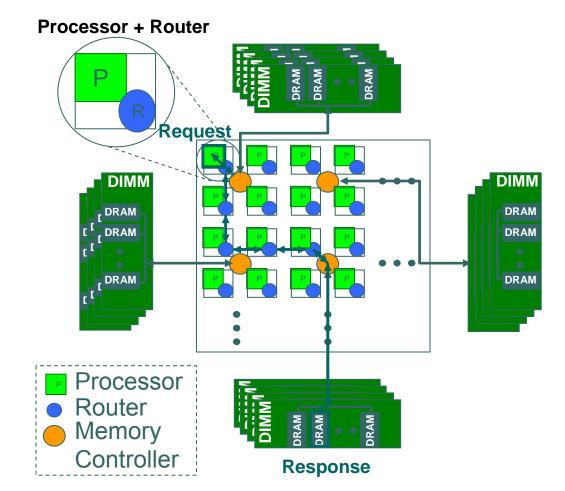




But still Si-based

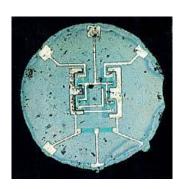
- Everything on-chip \rightarrow faster!
- Integrate laser
- Si modulator
- Ge photodetectors
 - SiGe already in CMOS process
- SiO₂ and SiN_x waveguides
 - Already in CMOS process
- Key: Optical sampling drastically reduces the timing jitter

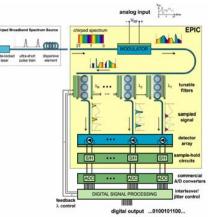
• • Germanium photodiode



Another system: Multi-core Processor

- Working within an existing CMOS process
- Materials constraints
- Process constraints
- Pros: 1,000 cores, much more energy efficient, faster


- Devices: 6.012, 6.720J, 6.728, 6.730, 6.731
- Processing: 6.152J, 6.774, 6.781
- o Optics/Photonics: 6.013, 6.630, 6.631
- o Circuits: 6.002, 6.301
- Computer Architecture: 6.823


• • Groups at MIT

- Strain engineering Hoyt, Fitzgerald
- o High-κ materials Antoniadis
- Electronic Photonic Integrated Circuits (EPIC) – Kaertner, Hoyt, Ram, H.I.
 Smith, Ippen
- Multi-core processor Stojanovic, Asanovic, Hoyt, Ram, Kaertner, H.I. Smith, Schmidt

• • Conclusions

- "No exponential is forever, but we can delay 'forever."
- New materials: whoo!
- Electronic photonic architectures: whoo!

