When (Low) Power Really Matters

Yogesh K. Ramadass, AnanthaGroup Microsystems Technology Laboratory

Introduction

- Voltage Scaling techniques
- Challenges with Low voltage operation
- System Examples
- Conclusion

Moore's Law

- No. of transistors doubles every two years
- Not a physical law, started of as a graphical observation
- Exponential increase in circuit complexity

Processor Power Levels

Power consumption

- More Speed \rightarrow More Power
- More Processing \rightarrow More Power

So Where is the Power Lost?

- Analog Circuits Opamps, ADC/DAC's, Current/Voltage references
 - Bias Currents
 - Switches

Digital Circuits – Processors, Memory
Charging up capacitances

Leakage!!

- □ Imagine burning calories when sitting idle
- □ 30% of total power in big microprocessors
- □ More on this later

A simplistic view of process scaling

- □ More processing
- Downside, switches don't turn off completely

Introduction

Voltage Scaling techniques

- Challenges with Low voltage operation
- System Examples
- Conclusion

Dynamic Voltage Scaling

B. Calhoun

Goal: Operate Circuits at just enough voltage

Implementation of a DVS System

Change Voltage with change in workload

V. Gutnik 1996

Power Savings by DVS

Intel Core Duo Processor

Courtesy : intel.com

- Exponential drop \rightarrow both voltage and frequency scale
- Linear drop \rightarrow only frequency scales, min. voltage

Energy Constrained Applications

Micro-sensor networks

Medical devices

Target Tracking & Detection (Courtesy of ARL)

RFID Tags

Portable Electronics

Inductive Link

Try to reduce power consumption to fit in energy budget

Sub-threshold Operation

- Sub-threshold logic operates with V_{DD} < V_T
- Both on and off current are sub-threshold "leakage"

Minimum Energy Point (MEP)

Motivation – Minimum Energy Tracking

- Minimum Energy Point (MEP) varies with workload and temperature
- MEP moves when ratio of active to leakage energy changes
- Tracking the MEP : 0.5X 1.5X energy savings

Operation of the Energy Minimizing Loop

Y. Ramadass

Parallelism

- Reduce Voltage → Slower Operation
- Parallel banks → Recover Performance
- Low power, with good performance (best of both worlds)

400mV 100Mbps baseband processor

Introduction

Voltage Scaling techniques

Challenges with Low voltage operation

- System Examples
- Conclusion

A Typical System

Challenges with sub-threshold logic

Challenges with sub-threshold logic

Order of Magnitude Higher Variability in Sub-V_TFunctionalityPerformance

- Local V_T variation \rightarrow large spread in voltage swing, delay, energy
 - Errors due to degraded noise margins and timing violations
- Variation-tolerant circuits (e.g. asynchronous logic, soft error correction)

A 180mV FFT Processor

FFT – Fast Fourier Transform

800

900

- **Operates down to 180mV!!!**
- 5X savings in energy at the minimum energy point

SRAM Challenges

Lowest previous demonstrated SRAM in 65nm is 0.7V

Sub-threshold SRAM design

- 8-transistor SRAM cell
- Operates down to 350mV!!!
- 20X leakage power savings

N. Verma

Introduction

- Voltage Scaling techniques
- Challenges with Low voltage operation
- System Examples
- Conclusion

Wireless Sensor Networks

Wireless Sensor Networks

ADC

ADC

Scalable rate
(0-100KS/s) and
precision (12b & 8b)

25mW at 100kS/s [N. Verma]

Sensor DSP

≻16-bit DSP with FFT (128-1024 points)

≻10pJ/instuction

[D. Finchelstein and N. Ickes]

Low-Rate RF

On-Off Keying using a rectification based receiver

Rx Energy: 1-3 nJ/bit [D. Daly]

Ultra-wideband (UWB) Radio

Advantages of UWB communications include

High Data Rate

Low Interference

Integrate UWB radios on battery operated devices

Need an energy efficient UWB System

Ultra-low-Power Low Rate UWB

Transmitter

D. Wentzloff and F. Lee

Hybrid CMOS/Carbon Nanotube Systems

Carbon Nanotube Characterization

Carbon Nanotube – CMOS Hybrid System Design

T. Cho, K. Lee, T. Pan (Prof. J. Kong)

Chip Design Flow

- Specifications
- Design (4-5 months)
 - □ Cadence
 - Verilog (Synopsys tools, Astro...)
 - Spice
- Layout (1-2 months)
- Long Wait...(3-6 months, Prof. asks you to start next design)
- Chip comes back
 - Package
 - □ PCB (test board)
 - Test
- Write paper (hopefully the chip has worked)

Sub-Threshold ICs

[ISLPED06]

[ISSCC07]

256kb 8-T SRAM 65nm with Redundancy

[PESC07]

500Ms/s ADC Using 36-parallel Channels (65nm)

Helpful Classes

- Circuits 6.002, 6.301, 6.374, 6.376, 6.775, 6.776, 6.334
- Devices 6.012, 6.728, 6.730, 6.774
- Control Theory 6.302, 6.331
- Signal/Image Processing 6.003, 6.341, 6.344
- Communication 6.450, 6.451

Groups at MIT

Circuit Design

- □ Prof. Anantha Chandrakasan
- □ Prof. Joel Dawson
- □ Prof. Hae-Seung Lee
- □ Prof. David Perreault
- □ Prof. Michael Perrott
- □ Prof. Rahul Sarpeshkar
- Prof. Charles Sodini
- □ Prof. Vladimir Stojanovic

A Sample of Microelectronics Companies

Intel

- Texas Instruments
- IBM
- Analog Devices
- National Semiconductor
- Infineon
- Philips
- ST Microelectronics

Conclusions

- Low Power Operation is crucial for continued success of portable electronics
- Lots of new circuit design challenges ahead
- Energy scavenged electronics has a huge potential
- Exciting field to work on, direct relevance to industry