Novel Features in eRHIC

Vladimir N. Litvinenko,
for eRHIC group

Collider-Accelerator Department
Brookhaven National Laboratory

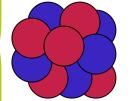
e-RHIC (V. Litvinenko), Head (V. Ptitsyn), Deputy (A. Petway), Secretary Beam Dynamics (V. Ptitsýn), GL Ŷ. Hαo+´ (E. Pozdeyev) (D. Trbojevic) (N. Tsoupas) (I. Ben Zvi), GL (A. Burrill) (H. Hahn) (D. Naik) (L. Hammons) Polarization (M. Bai), GL (H. Huana) (J. Kewish) (A. Luccio) (A. Zelenski) (C. Montag), GL (A. Drees) (J. Beebe-Wang)

Contributions: I.Ben Zvi, A.Deshpande, A.Fedotov, D.Kayran, V.Ptitsyn, T.Roser, T.Ulrich, S.Vigdor

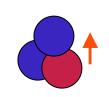
Novel features

- · Coherent electron cooling the key for many novel features in eRHIC
- · Choosing the focus: ERL for electrons
 - Advantages and challenges of ERL driver
 - · spin transparency
 - R&D items for ERL-based eRHIC
- eRHIC is the future of RHIC: eRHIC staging
 - Energy challenge
 - 20 GeV e x 325 GeV p and 30 GeV e x 125 GeV/n heavy ions
 - Loss on synchrotron radiation
 - Polarized beam current
- Luminosity challenge:
 - Can eRHIC deliver 10³⁵ cm⁻² sec⁻¹ luminosity?
 - High rep-rate, crab cavities, coating RHIC arc vacuum chambers and more
- Other novelties and oldies
 - Low (350 MHz) RF frequency, no 3rd harmonic, higher real estate gradient
 - Small magnets for re-circulating passes, resistive-wall losses
 - e-lens or fast a quads for matching ERL beam
 - compact and flexible separators and combiners
 - Possibility of eRHIC II up-grade

eRHIC Scope -QCD Factory


Electron accelerator

Unpolarized and polarized leptons 12-30 GeV


70% beam polarization goal Positrons at low intensities

Polarized protons 25↓ 50-325 GeV

Heavy ions (Au) 50-130 GeV/u

Polarized light ions (He³) 215 GeV/u

Center mass energy range: 15-200 GeV

New requirements: eA program for eRHIC needs as high as possible energies of electron beams even with a trade-off for the luminosity. 20 GeV is absolutely essential and 30 GeV is strongly desirable.

ERL spin transparency at all energies

Bargman, Mitchel, Telegdi equation

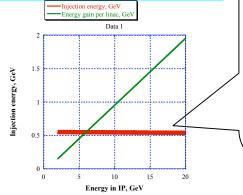
$$\frac{d\hat{s}}{dt} = \frac{e}{mc}\hat{s} \times \left[\left(\frac{g}{2} - 1 + \frac{1}{\gamma} \right) \vec{B} - \frac{\gamma}{\gamma + 1} \left(\frac{g}{2} - 1 \right) \hat{\beta} \left(\hat{\beta} \cdot \vec{B} \right) - \left(\frac{g}{2} - \frac{\gamma}{\gamma + 1} \right) \left[\vec{\beta} \times \vec{E} \right] \right]$$

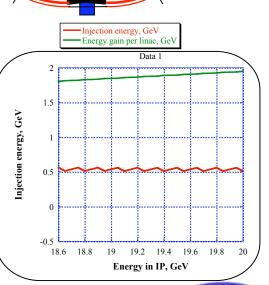
 $a = g/2 - 1 = 1.1596521884 \cdot 10^{-3}$

$$\hat{\mu} = \frac{g}{2} \frac{e}{m_o} \hat{s} = (1+a) \frac{e}{m_o} \hat{s};$$
 $v_{spin} = a \cdot \gamma = \frac{E_e}{0.44065[GeV]}$

$$\Delta \varphi = a \cdot \gamma \theta$$

Total angle


$$\varphi = 2\pi a \cdot \left((n - 1/2)\gamma_i + \left\{ 2n(n - 2) - 1/6 \right\} \Delta \gamma \right) + \varphi_i$$


Has solution
$$\int \Delta \gamma = (\gamma_f - \gamma_i)/2n$$

for all energies!
$$\left\{ 2\pi a \cdot \left((n-1/2)\gamma_i + \left\{ n(n-2) - 1/3 \right\} \Delta \gamma \right) + \varphi_i \right. = \theta + N\pi \right\}$$

$$E_i = \frac{0.44065[GeV]}{n + 1 + 1/3n} \mod \left(\varphi_f - \varphi_i - \left(n - 2 - \frac{1}{3n}\right) \frac{E_f}{0.44065[GeV]}, \pi\right)$$

$$\delta E_{i \max} = \pm 37 \ MeV \ \lor n = 5$$

 $\Delta \gamma$

ePHENIX

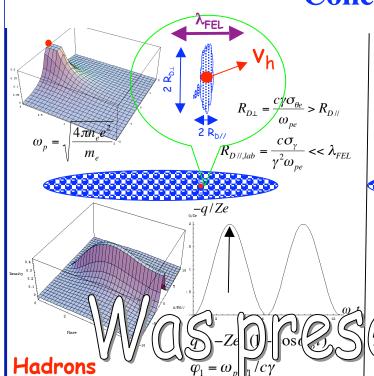
 $\Delta \gamma$

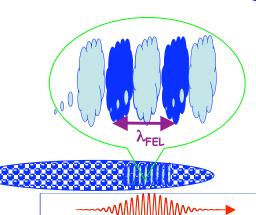
V.N. Litvinenko, EIC Collaboration Meeting, Hampton University, May 20, 2008

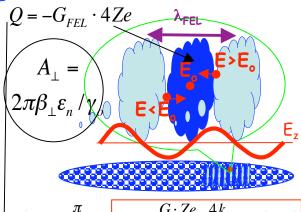
Main advantages of ERL + cooling

$$L = \gamma_{p} \frac{f_{col} N_{p}}{\beta_{p}^{*} r_{p}} \xi_{p} \qquad \xi_{p} = \frac{r_{p}}{4\pi} \cdot \frac{N_{e}}{\varepsilon_{p \text{ norm}}};$$

$$\frac{N_{e}}{\varepsilon_{p \text{ norm}}} = const \Rightarrow \xi_{p} = const; \quad L = const$$


$$N_{e} \propto \varepsilon_{p \text{ norm}} \Rightarrow I_{e} \propto \varepsilon_{p \text{ norm}} \Rightarrow P_{SR} \propto \varepsilon_{p \text{ norm}}!$$


- Main point is very simple: if one cools the emittance of a hadron beam in electron-hadron collider, the intensity of the electron beam can be reduced proportionally without any loss in luminosity or increase in the beam-beam parameter for hadrons
- Hadron beam size is reduced in the IR triplets hence it opens possibility of further β^* squeeze and increase in luminosity
- Electron beam current goes down -> relaxed gun!, losses for synchrotron radiation going down, X-ray background in the detectors goes down....


Coherent electron cooling

$$\lambda_{FEL} = \frac{\lambda_{w}}{2\gamma^{2}}(1 + a_{w}^{2}) \quad L_{Go} = \frac{\lambda_{w}}{4\pi\rho\sqrt{3}}$$

$$\Delta \rho = \frac{\lambda_{w}}{4\pi\rho\sqrt{3}}$$

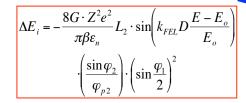
$$k_{cm} = \frac{\pi}{\gamma_o \lambda_{FEL}} \qquad \rho_{amp} = \frac{G \cdot Ze}{2\pi\beta\varepsilon_n} \cdot \frac{4k_{cm}}{\pi} \cos(k_{cm}z)$$

$$\Delta \varphi = 4\pi\rho \Rightarrow \varphi = -\frac{8G \cdot Ze}{\pi\beta\varepsilon_n \gamma_{cm}} \cdot \cos(k_{cm}z)$$

Electrons

$$Q_{\lambda_{FEL}} \approx \int_{0}^{\lambda_{FEL}} \rho(z) \cos(k_{FEL}z) dz$$

$$Q_{\lambda_{FEL}}(\max) \approx -2Ze; \rho_k = -Ze \frac{4k}{\pi A_\perp}$$


Modulator: region 1 a quarter to a half of plasma oscillation

Longitudinal dispersion for

hadrons
$$\Delta t = -D \cdot \frac{\gamma - \gamma_o}{\gamma_o}; \ D = D_{free} + D_{chicane};$$

$$D_{free} = \frac{L}{\gamma^2}; \quad D_{chicane} = l_{chicane} \cdot \theta^2$$

 $D_{free} = \frac{L}{\gamma^2}; \ D_{chicane} = l_{chicane} \cdot \theta^2$ Amplifier of the e-beam modulation via FEL with gain $G_{\text{FEL}} \sim 10^2 - 10^3$ Most versatile option

Kicker: region 2, less then a quarter of plasma oscillation

NATIONAL LABORATORY

V.N. Litvinenko, EIC Collaboration Meeting, Hampton University, May 20, 2008

Coherent e-Cooling for eRHIC

(protons are the main challenge)

Main Parameters	CeC	
Modulator Length	15	m
Kicker length	5	m
Peak current, e	100.0	A
Amplification	200.00	
Wavelength	500	nm
$\lambda_{ m w}$	5	cm
FEL bandwidth	0.1	

Cooling time		
Emittance, Full bunch	0.086	hrs
Ampl, Full bunch	0.171	hrs
Local	50.23	sec
Length of the system	32.49	m
FEL length	12.49	m
FEL gain length	0.99	m

Hadrons		
Z	1	
A	1	
Energy per nucleon	325	GeV
Energy per nucleon	3.250000E+11	eV
γ	346.38	=
N, part/bunch	2.00E+11	
Charge	32.04	nC
Bunch length	0.433	nsec
Bunch lengt, RMS	0.130	m
Peak current	29.50	A
Emmitance, norm	2	mm mrad
Emmitance, m rad	5.77398E-09	
σΕ/Ε	4.00E-04	

Electrons		
	1	
Energy	0.177	GeV
Energy	1.770E+08	eV
γ	346.38	
N, part/bunch	3.12E+10	
Charge	5.0	nC
Bunch length	0.050	nsec
Bunch lengt, full	0.015	m
Peak current	100.0	A
Emittance, norm, RMS	5	mm mrad
Emittance, RMS	1.443E-08	m rad
σΕ/Ε	2.26E-04	
$\sigma_{\!\scriptscriptstyle E}$	4.00E+04	eV
Long emittance	2.000E-06	eV sec

Stationary state: IBS vs. CeC

$$\frac{\sigma_{\varepsilon}^{2}}{\tau_{IBS/l}} = \frac{Nr_{c}^{2}c}{2^{5}\pi\gamma^{3}\varepsilon_{x}^{3/2}\sigma_{s}} \left\langle \frac{f(\chi_{m})}{\beta_{y}v} \right\rangle; \quad \frac{\varepsilon_{x}}{\tau_{IBS\perp}} = \frac{Nr_{c}^{2}c}{2^{5}\pi\gamma^{3}\varepsilon_{x}^{3/2}\sigma_{s}} \left\langle \frac{H}{\beta_{y}^{1/2}}f(\chi_{m}) \right\rangle; \kappa = 1$$

$$f(\chi_{m}) = \int_{\kappa}^{\infty} \frac{d\chi}{\chi} \ln\left(\frac{\chi}{\chi_{m}}\right) e^{-\chi}; \quad \chi_{m} = \frac{r_{c}m^{2}c^{4}}{b_{max}\sigma_{E}}; b_{max} \approx n^{-1/3}; \quad r_{c} = \frac{e^{2}}{mc^{2}}; \quad (e - > Ze; m - > Am)$$

J.LeDuff, "Single and Multiple Touschek effects", Proceedings of CERN Accelerator School, Rhodes, Greece, 20 September - 1 October, 1993, Editor: S.Turner, CERN 95-06, 22 November 1995, Vol. II, p. 57

$$X = \frac{\varepsilon_x}{\varepsilon_{xo}}; S = \left(\frac{\sigma_s}{\sigma_{so}}\right)^2 = \left(\frac{\sigma_E}{\sigma_{sE}}\right)^2;$$

$$\frac{dX}{dt} = \frac{1}{\tau_{IBS\perp}} \frac{1}{X^{3/2} S^{1/2}} - \frac{\xi_{\perp}}{\tau_{CeC}} \frac{1}{S};$$

$$\frac{dS}{dt} = \frac{1}{\tau_{IBS\parallel}} \frac{1}{X^{3/2} Y} - \frac{1 - 2\xi_{\perp}}{\tau_{CeC}} \frac{1}{X};$$

Norm emittance, um

$$\varepsilon_{xn0} = 2 \, \mu m; \ \sigma_{s0} = 13 \, cm; \ \sigma_{\delta 0} = 4 \cdot 10^{-4}$$

$$\tau_{IBS\perp} = 4.6 \ hrs; \ \tau_{IBS//} = 1.6 \ hrs;$$

IBS in RHIC for eRHIC, 250 GeV, N_p=2·10¹¹ Beta-cool, ©A.Fedotov

Stationary solution:

$$X = \frac{\tau_{CeC}}{\sqrt{\tau_{IBS/!}}\tau_{IBS\perp}} \frac{1}{\sqrt{\xi_{\perp}(1 - 2\xi_{\perp})}}; \quad S = \frac{\tau_{CeC}}{\tau_{IBS/!}} \cdot \sqrt{\frac{\tau_{IBS/!}}{\tau_{IBS/!}}} \cdot \sqrt{\frac{\xi_{\perp}}{(1 - 2\xi_{\perp})^3}}$$

$$\varepsilon_{xn} = 0.2 \, \mu m; \ \sigma_s = 4.9 \ \text{cm}$$

This allows

- a) keep the luminosity as it is
- b) reduce polarized beam current down to 25 mA (5 mA for e-I)
- c) increase electron beam energy to 20 GeV (30 GeV for e-I)
- d) increase luminosity by reducing β^* from 25 cm down to 5 cm

0.05

0.1

0.15

Time, hours

Staging of eRHIC: Energy Reach and Luminosity

- MEIC: Medium Energy Electron-Ion Collider
 - Located at IP2 (with a modest detector)
 - 2 GeV $e^- \times 250$ GeV p (45 GeV c.m.), L ~ 10^{32} cm⁻² sec ⁻¹
- eRHIC Full energy, nominal luminosity, inside RHIC tunnel
 - Polarized 20 GeV e- x 325 GeV p (160 GeV c.m), L ~ 4.10³³ cm⁻² sec -1
 - 30 GeV e x 120 GeV/n Au (120 GeV c.m.), $L \sim 10^{31}$ cm⁻² sec ⁻¹
 - 20 GeV e x 120 GeV/n Au (120 GeV c.m.), $L \sim 5 \cdot 10^{31}$ cm⁻² sec ⁻¹
- eRHIC High luminosity at reduced energy, inside RHIC tunnel
 - Polarized 10 GeV e- x 325 GeV p, L ~ 10³⁵ cm⁻² sec -1
 - Smaller improvements (3-4 fold) in e-Ion collisions

More detail during discussion on staged eRHIC, Today 5:25 p.m.

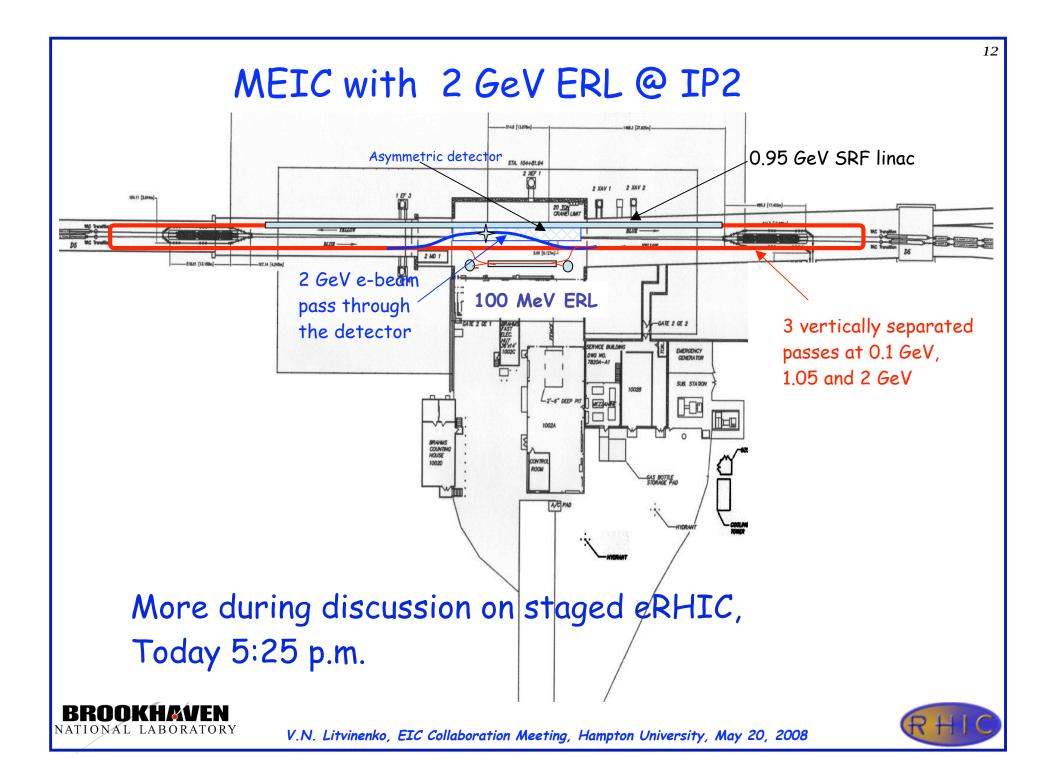
Staging of eRHIC:

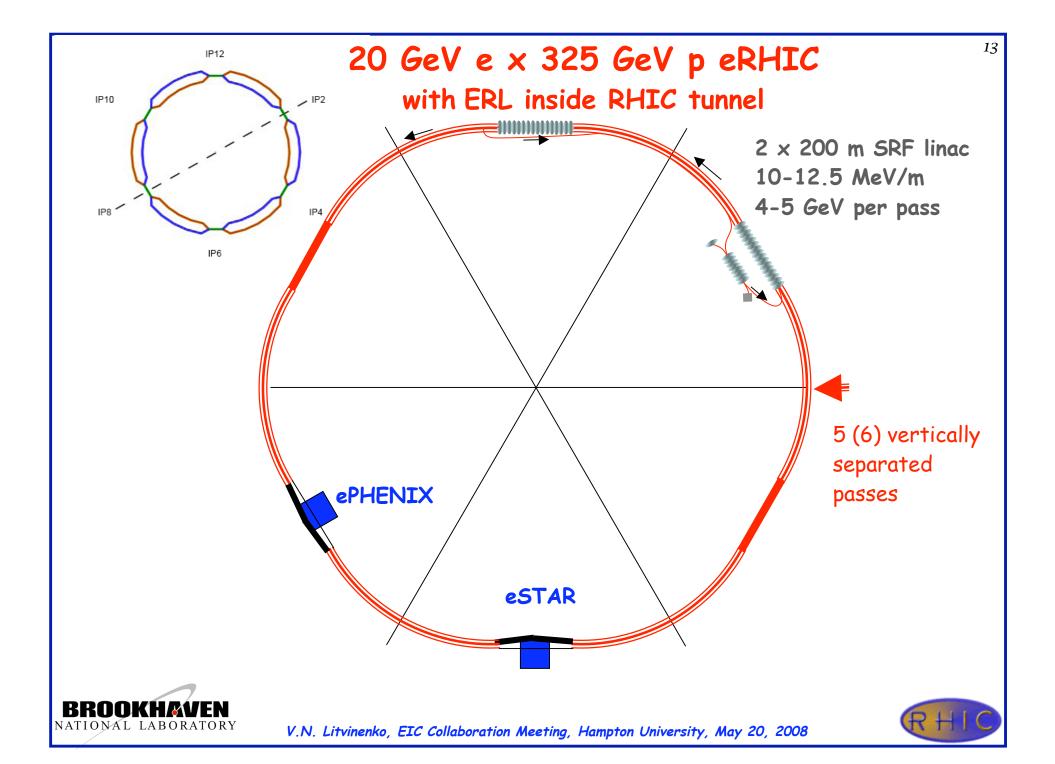
Cost, Re-use, Beams and Energetics

- MEIC: Medium Energy Electron-Ion Collider
 - Cost estimate \$150M (in 2007 \$)
 - 90% of ERL hardware will be use in the phase I (and will reduce cost of eRHIC)
 - Possible use of the detector components for eRHIC detectors
- · eRHIC phase I
 - Based on present RHIC beam intensities
 - With coherent electron cooling requirements on the electron beam current is 25 mA
 - 20 GeV, 25 mA electron beam losses 1.92 MW total for synchrotron radiation*.
 - 30 GeV, 5 mA electron beam loses 1.98 MW for synchrotron radiation
 - Power density is 1 kW/meter and is well within B-factory limits (8 kW/m)
- · eRHIC phase II
 - Requires crab cavities, new injections, Cu-coating of RHIC vacuum chambers, new level of intensities in RHIC
 - Polarized electron source current of 400 mA
 - 10 GeV, 400 mA electron beam losses 1.96 MW total for synchrotron radiation, power density is 1 kW/meter

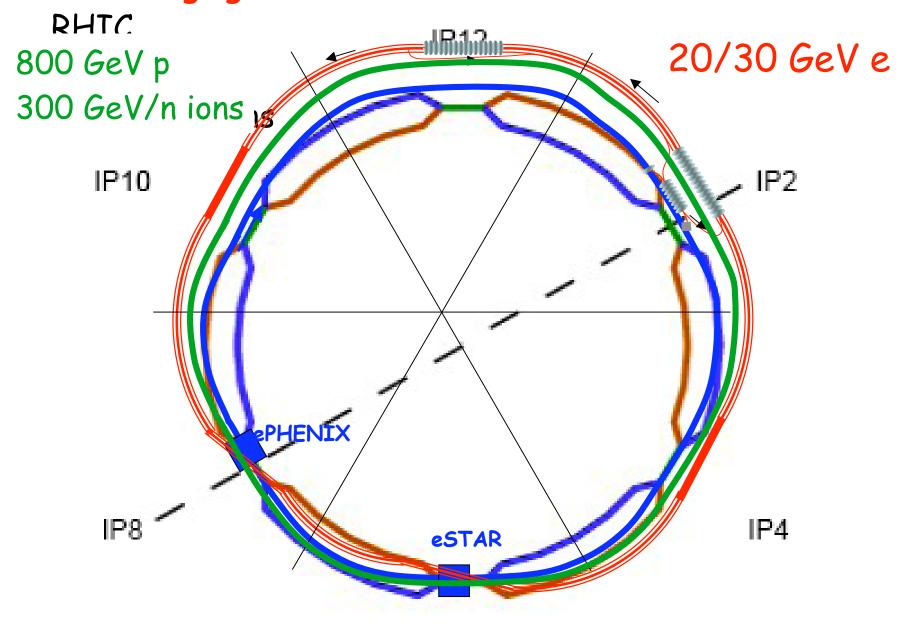
*Compare it with 15 MW power loos for 10 GeV electrons in ELIC!

More detail during discussion on staged eRHIC, today 5:25 p.m.

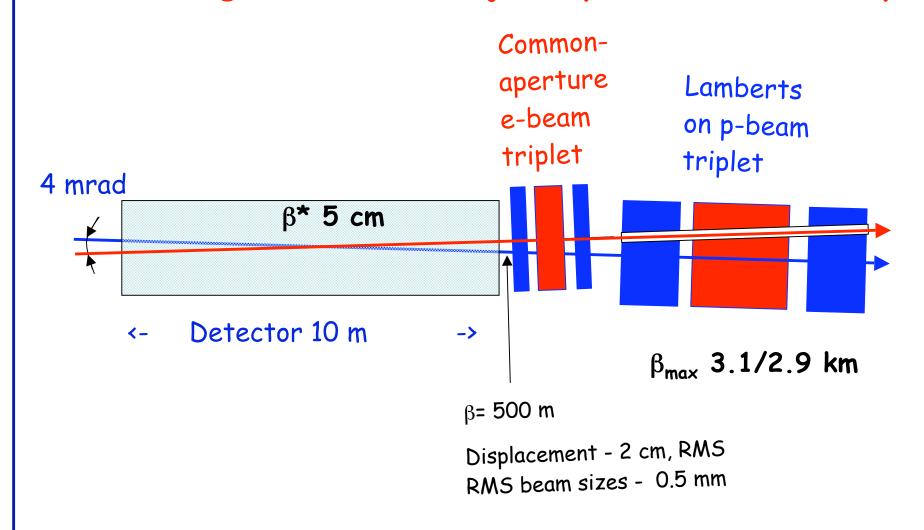



Possible future up-grade - eRHIC II c.m. Energy of HERA with 100x Luminosity

- eRHIC II: replacing RHIC-ring magnets by 8 T
 - proton energy in RHIC to ~ 800 GeV
 - will require more snakes for polarized proton operation
 - heavy ions with ~300 GeV/n
- eRHIC II Full energy, nominal luminosity
 - inside RHIC tunnel
 - Polarized 20 GeV $e^- \times 800$ GeV p (~300 GeV c.m), L ~ 10^{34} cm⁻² sec ⁻¹
 - 30 GeV e \times 300 GeV/n Au (~200 GeV c.m.), L ~ 10^{32} cm⁻² sec ⁻¹



Staging of eRHIC with ERL inside RHIC tunnel



Borrowing ideas: B-factory, KEK, JLab's ELIC and LHeC

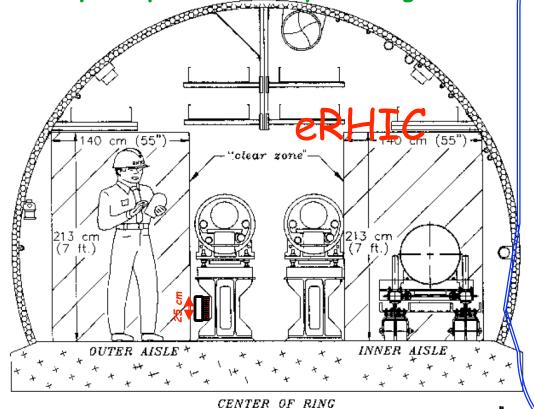
- We are considering possibility of IP's with crossing angle and crab cavities
 - MAIN REASON There will be no synchrotron radiation background problem in the detector and we can afford 10 m + of element-free IR for the detectors
 - β^* 5 cm for both protons and electrons
 - Hadron bunch length < 5 cm
 - Emittance ~ 0.8 nm (normalized ~0.2 μ m for protons and 30 μ m for electrons)
 - RMS angular spread 0.1 mrad
 - Crossing angle ~ 2 mrad (per beam 40 RMS sizes of hadron beam) angle mostly required for separating beams in triplets
- We are considering possibility of using rather small-aperture Lambertson-quads for such a scheme
 - At 5 m, electron and proton beam will be separated ~ 2 cm and beamsizes will be only 0.5 mm RMS

Straw-man IR lay out

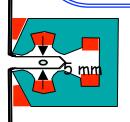
no bending of electron trajectory in IR -> no X-rays

Can eRHIC deliver luminosity ~10³⁵ cm⁻² sec⁻¹?

- The answer is Yes. With coherent electron cooling eRHIC it can reach luminosity of $0.2*10^{35}$ cm⁻² sec⁻¹ with $\beta*$ = 5 cm with presently designed proton intensities
 - The question is what will be compromises?
 - Another question is what additional modification of RHIC it will require
- · Compromises
 - Lower electron beam energy (~10 GeV) to keep power bill (for loss of synchrotron radiation
 - 5-10 times higher collision rate (~100 MHz)
- Additional developments
 - New injection system supporting higher rep-rate
 - Coating RHIC arc's vacuum chamber
 - Crossing angle and crab cavity






eRHIC loop magnets

Small gap provides for low current

Very low power consumption magnets

C-Quad

8 GeV

e-beam

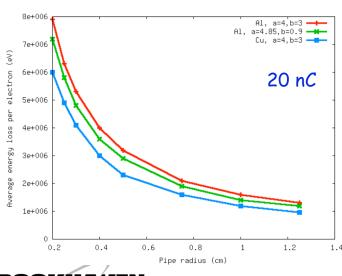
16 GeV e-beam

Common vacuum chamber

NATIONAL LABORATORY

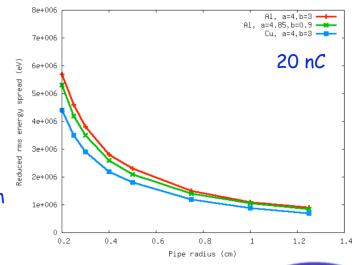
V.N. Litvinenko, EIC Collaboration Meeting, Hampton University, May 20, 2008

Limitations on the aperture for electron beam

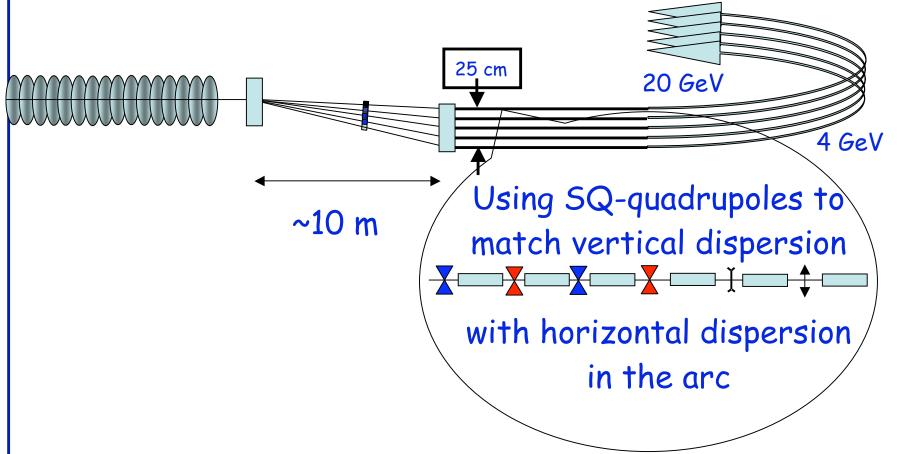

- Magnetic field quality Alignment accuracy e-beam loss

(based on β =50m) @V.Ptitsyn 1.E+08 1.E+07 1.E+06 1.E+05 1.E+04 1.E+03 With CeC 1.E+02 .2 µm 1 F+00 Aperture, mm

GS – Gaussian


Power loss and magnet aperture

resistive-wall induced energy spread and energy loss


©E.Pozdeyev $N_a = 20 \text{ nC/bunch/e}$ Loss ~1MW with 5 mm aperture

With CeC - $N_a \rightarrow 2 nC/bunch/e$ Loss ~10kW with 5 mm aperture

BC - Beer-Can

Compact spreaders/combiners

This concept allows to use most of the RHIC straight sections for SF linacs and to use part of the arcs for matching

Conclusions

- High energy, high luminosity ERL-based electron-ion and polarized electron-proton collider is the most promising approach for eRHIC
- Presently there is no show-stoppers and a significant amount of R&D
- There is a clear possibility for eRHIC staging (will be discussed later today)

Back-up slides

Advantages & Challenges of ERL based eRHIC

$$L = \left(\frac{4\pi\gamma_{i}\gamma_{e}}{r_{i}r_{e}}\right)(\xi_{i}\xi_{e})(\sigma_{i}'\sigma_{e}')f$$

$$L = \gamma_{i}f N_{i} \frac{\xi_{i}Z_{i}}{\beta_{i}^{*}r_{i}}$$

- · This scheme takes full advantage of cooling of the hadron beams
- · Allows use of RHIC tunnel for the return passes and thus allow much higher energy of electrons compared with the storage ring.
- High luminosity up to 10^{34} 10^{34} cm⁻² sec⁻¹
- · Allows multiple IPs
- Allows higher range of CM-energies with high luminosities
- Full spin transparency at all energies
- No machine elements inside detector(s)
- No significant limitation on the lengths of detectors
- Energy of ERL is simply upgradeable
- Relatively novel technology
- Needs R&D on polarized gun
- Needs completion of e-cooling R&D (CeC and conventional)

In eRHIC luminosity is determined by the hadron beam!

$$L = f_c \frac{N_e N_h}{4\pi \beta_h^* \varepsilon_h} \cdot h \left(\frac{\sigma_s}{\beta_h^*} \right)$$

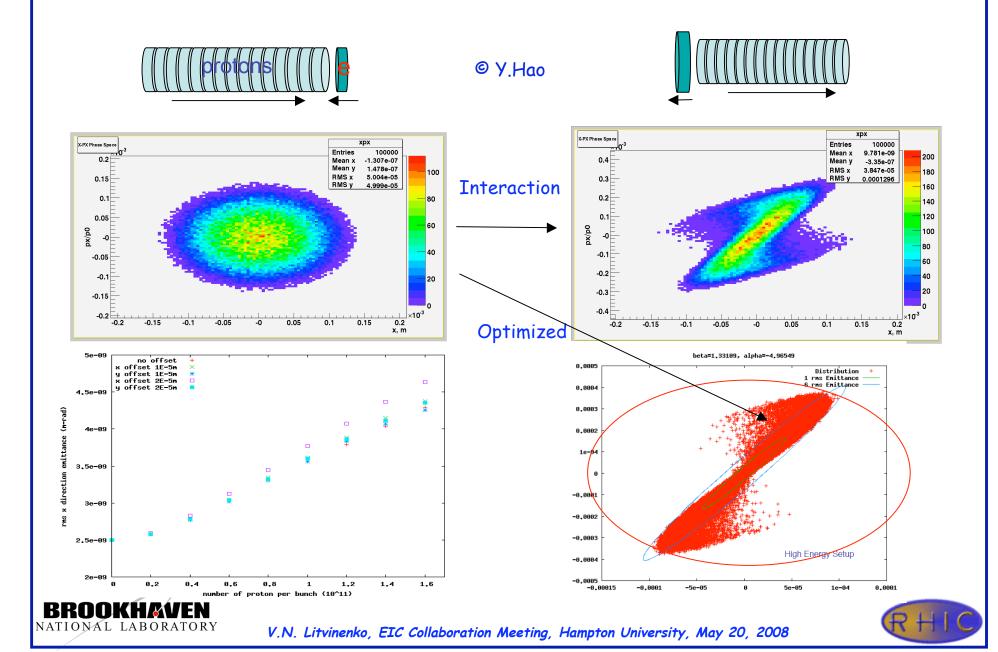
$$\beta_e^* \varepsilon_e = \beta_h^* \varepsilon_h$$

Round beams
$$\mathcal{B}_{e}^{*}\varepsilon_{e} = \mathcal{B}_{h}^{*}\varepsilon_{h}$$

$$L = \gamma_{h} \cdot (f_{c} \cdot N_{h}) \cdot \frac{\xi_{h} \cdot Z_{h}}{\mathcal{B}_{h}^{*} \cdot r_{h}} \cdot h \left(\frac{\sigma_{s}}{\mathcal{B}_{h}^{*}}\right)$$

$$\xi_h = \frac{N_e}{\gamma_h} \frac{r_h}{4\pi Z \varepsilon_h}$$

$$\xi_h \rightarrow 0.02 \quad \Leftrightarrow \quad L_{pe} \rightarrow 0.3 \cdot 10^{34}$$


Thus, reducing (cooling) emittance of hadron beam, ε_h , allows to proportionally reduce electron beam current (Ne $\sim \varepsilon_h$). This in return reduces strain on photocathode, loss on synchrotron radiation -> means higher energy!, X-ray back-ground in detectors.... In combination with reduction of the bunch length, this also allows reduction of β^* and an increase of the luminosity.

Thus, strong cooling makes eRHIC a perfect EIC!

Beam mismatch - e-lens or ferrite lens for compensation

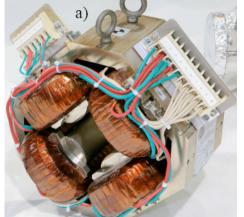
Main advantages of ERL + cooling (cont..)

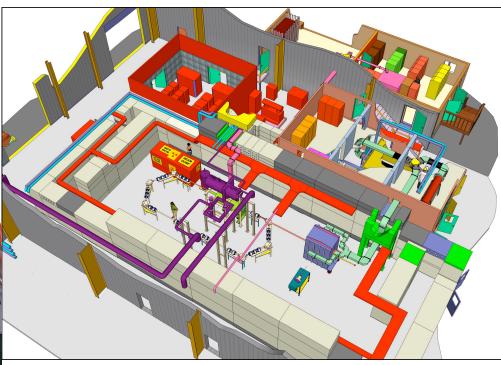
Where is the limit?

$$D = \frac{Z_h N_h r_e}{\gamma_e \beta_h^* \varepsilon_h} \sigma_{sh}$$

 Electron beam disruption (which better describes affect on electron beam in linac case) can cause emittance growth and kink instability of the hadron beam

$$\Lambda = D \cdot \xi_h / Q_{sh}$$




R&D ERL

Commissioning start 2/09

PoP of coherent electron cooling

- Use existing R&D ERL
- Design & simulations 2008-2010
- RHIC modification for PoP 2011
- Moving R&D ERL and installing it at RHIC 2012
 - ? should we speed it up to be ahead of NP LRP?
- Total budget \$9M-\$10M

Topics of active research for eRHIC

- High charge / high average current, normal and polarized e guns
- High current ERLs
- High energy electron cooling of protons/ions
 - Electron cooling requires SRF-ERL technology
- Integration of interaction region design with detector geometry
- Detailed studies of disruption of the electron beam and kink instability
- Study possibility of shortening hadron bunches in RHIC or of suppressing kink instability by feedback

Major R&D issues

Ring-ring:

• The accommodation of synchrotron radiation power load on vacuum chamber. (To go beyond 5.e32 cm⁻²s⁻¹ luminosity).

Linac-ring:

- High current polarized electron source
- Energy recovery technology for high energy and high current beams

Ion ring:

- Beam cooling techniques development (electron, stochastic).
- Increasing total current (ions per bunch and number of bunches).
- Polarized He³ production (EBIS) and acceleration

parameters

RHIC	main case
Ring circumference [m]	3834
Number of bunches	360
Beam rep-rate [MHz]	28.15
Protons: number of bunches	180
Beam energy [GeV]	26 - 250
Protons per bunch (max)	$2.0 \cdot 10^{11}$
Normalized 96% emittance [µm]	14.5
$eta^{f \star}$ [m]	0.26
RMS Bunch length [m]	0.2
Beam-beam tune shift in eRHIC	0.005
Synchrotron tune, Qs	0.0028
Gold ions: number of bunches	180
Beam energy [GeV/u]	50 - 100
Ions per bunch (max)	2.0 · 10 ⁹
Normalized 96% emittance [µm]	6
$eta^{f \star}$ [m]	0.25
RMS Bunch length [m]	0.2
Beam-beam tune shift	0.005
Synchrotron tune, Qs	0.0026
Electrons:	
Beam rep-rate [MHz]	14
Beam energy [GeV]	2 - 20
RMS normalized emittance [µm]	5-50 for $N_e = 10^{10} / 10^{11} e^{-}$ per bunch
$eta^{m{\star}}$	~ 1m, to fit beam-size of hadron beam
RMS Bunch length [m]	0.01
Electrons per bunch	$0.1 - 1.0 \cdot 10^{11}$
Charge per bunch [nC]	1.6 - 16
Average e-beam current [A]	0.045 - 0.22

