## Alternative ways to simulate a detector

Mark M. Ito

Jefferson Lab
The 4th Electron Ion Collider Workshop

May 21, 2008

# Alternative to what? Monte Carlo and the detector design problem

Let us assume we are charged with the design of a large, multi-component, collider-scale detector.

- Can I do the physics? Overlapping issues:
  - Are my statistics sufficient?
  - Is the data rate tractable?
  - 3 Is my resolution adequate?
  - Is my acceptance/efficiency large enough?
- Only complete answer for (3) & (4): complete Full-Blown GEANT-Style Monte Carlo (FBMC)

# What's involved in writing and using a FBMC?

### Tasks:

- detailed geometry
- hit generation
- digitization
- reconstruction
- event format and content issues
- computationally intensive
  - manage multiple jobs
  - multiple files

### Comments:

- a lot of work
- especially difficult for charged particle tracking
- desire: have this become part of permanent code base

Must all be done eventually: no substitute for full-blown Monte Carlo

## What if you want try out new ideas?

- detector technology choice
- optimizations
  - material budget
  - detector placement
  - resolution assumptions
- FBMC not practical or not possible (no infrastructure yet)
- Would be better if infrastructure to do the studies is cheap/disposable
- Sacrifice fidelity for speed (implementation and execution)

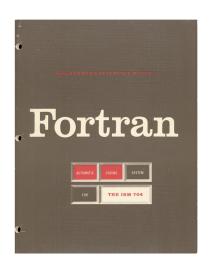
### Look at two examples:

- REZEST (resolution estimator)
- MCFast (Monte Carlo, fast)

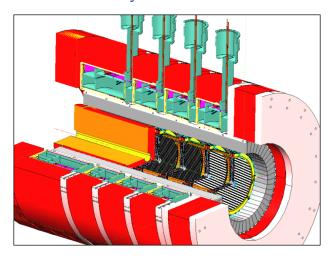
### What is REZEST?

### The back-of-the-envelope, coded up

- A set of FORTRAN routines
- Charged track rezolution estimation in transverse momentum and direction for the GlueX geometry
- Use results as input to smearing routines
- Parameters can be varied to quickly obtain estimates for new configurations
- No Monte Carlo is used; results are returned immediately



## GlueX Detector Geometry



CDC: Central Drift Chamber, straw tubes, axial and stereo

FDC : Forward Drift Chamber, planar chambers,  $\perp$  to beamline

Magnet: Superconducting solenoid

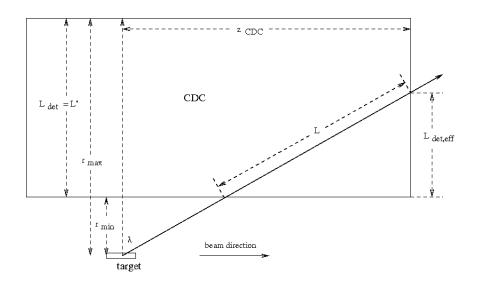
## **Approximations**

The following assumptions are made:

- The magnetic field is uniform everywhere.
- Particles travel in straight lines, independent of momentum.
- All position measurements within a detector (FDC or CDC) are statistically independent of one another.
- All positions measurements within a detector are made at locations uniformly spaced along the trajectory.
- All positions measurements within a detector have the same resolution.

Relative variation of resolution when a particular parameters are varied should give a good feeling for the effect of parameter change.

## Geometry of the CDC



8 / 28

# CDC Geometry, 2

Other parameters, not shown are:

 $r_{
m min,stereo}$  minimum radius of the CDC stereo layers

 $r_{
m max, stereo}$  maximum radius of the CDC stereo layers

 $n_{
m RL,CDC}$  number of radiation lengths measured transverse to the tracking layers  $(n_{
m rl}=x/X_0)$ 

 $n_{
m RL,front}$  number of radiation lengths in the material inside the CDC

 $n_{
m RL,endplate}$  number of radiation lengths in the downstream CDC endplate

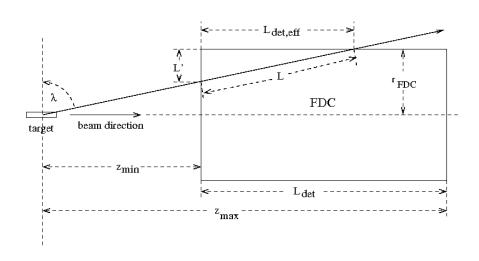
 $n_{
m m,CDC}$  number of position measurements, total

 $n_{
m m,stereo}$  number of position measurements in stereo layers

| Parameter            | Value     |
|----------------------|-----------|
| $r_{\min}$           | 0.10960 m |
| $r_{ m max}$         | 0.56534 m |
| $z_{ m CDC}$         | 1.02 m    |
| $r_{\rm min,stereo}$ | 0.16304 m |
| $r_{ m max, stereo}$ | 0.39473 m |
| $n_{ m RL,CDC}$      | 0.03437   |
| $n_{ m RL,front}$    | 0.01437   |
| $n_{ m RL,endplate}$ | 0.02810   |
| $n_{ m m,CDC}$       | 25        |
| $n_{ m m,stereo}$    | 8         |

9 / 28

# Geometry of the FDC



# Geometry of the FDC (2)

### Other parameters are:

 $n_{
m RL,FDC}$  number of radiation lengths measured transverse to the tracking layers  $(n_{
m rl}=x/X_0)$ 

 $n_{
m m,FDC}$  number of one-dimensional position measurements for a track which passes through all layers of the FDC

| Parameter       | Value     |
|-----------------|-----------|
| $z_{\min}$      | 1.25 m    |
| $z_{ m max}$    | 2.92 m    |
| $r_{ m FDC}$    | 0.56534 m |
| $n_{ m RL,FDC}$ | 0.028258  |
| $n_{ m m,FDC}$  | 24        |

## Transverse Momentum Resolution

The formulae used to estimate transverse are taken from the Particle Data Group's Review of Particle Physics. For a particle with charge q of momentum p in a uniform magnetic field B with a pitch angle  $\lambda$ 

$$p_t \equiv p \cos \lambda = (0.3)qBR \tag{1}$$

where R is the radius of curvature in the projection of the trajectory onto the bend plane, p is in GeV/c, B is in Tesla, and R is in meters. The curvature  $k = \frac{1}{R}$ . The variance of k has two contributions,

$$(\delta k)^2 = (\delta k_{\rm res})^2 + (\delta k_{\rm ms})^2.$$
 (2)

$$\delta k_{\rm res} = \frac{\epsilon}{L^{\prime 2}} \sqrt{\frac{720}{N+4}} \tag{3}$$

where  $\epsilon$  is the position resolution in meters, L' is the projected length of the track onto the bending plane in meters and N is the number of measurements.

$$\delta k_{\rm ms} = \frac{(0.016 \text{ GeV}/c)z}{Lp\beta\cos^2\lambda} \sqrt{n_{\rm RL}}$$
 (4)

where  $n_{\rm RL}$  is the number of radiation lengths in the detector and L is the total track length in the detector. For the momentum estimate, the amount of material in front of the detector is ignored.

## Error on Slope and y-intercept of a Straight-Line Fit

To estimate the error due to position resolution on the direction of a fitted track, we use the error on the slope of a straight line fitted to the same number of measurements.

$$\chi^2 = \sum \left[ \frac{1}{\sigma_i^2} (y_i - a - bx_i)^2 \right] \tag{5}$$

The variance of b is

$$\sigma_b^2 \approx \frac{n\sigma^2}{\Delta'}$$
 where  $\Delta' = n\sum x_i^2 - \left(\sum x_i\right)^2$  (6)

For n equally spaced measurements spanning the interval [0, L],

$$x_i = \frac{L(i-1)}{n-1} \tag{7}$$

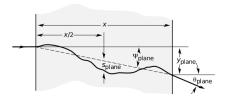
we get

$$\sigma_b^2 = \frac{12\sigma^2(n-1)}{L^2n(n+1)} \tag{8}$$

We need to translate an error in slope to an error in angle.  $\theta = \tan^{-1} b$  so

$$\delta\theta = \left| \frac{d\theta}{db} \right| \delta b = \frac{\delta b}{\sec^2 \theta}. \tag{9}$$

## Angular Error Due to Multiple Coulomb Scattering



The central angular distribution is approximately Gaussian with a width given by

$$\theta_0 = \frac{(13.6 \text{ MeV})}{\beta cp} z \sqrt{x/X_0} \left[ 1 + 0.038 \ln(x/X_0) \right]. \tag{10}$$

The angle  $\Psi_{\rm plane}$  is used as an approximation to the contribution of multiple scattering to both the azimuthal and polar angles.

$$\Psi_{\text{plane}}^{\text{rms}} = \frac{1}{\sqrt{3}}\theta_0. \tag{11}$$

The material in front of a particular detector ("fronting material") is included as an addition to the number of radiation lengths in the detector itself.

# Contribution to Azimuthal Angle Resolution from Curvature Resolution

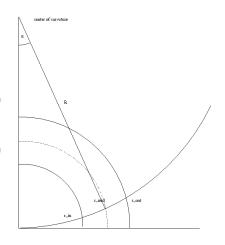
To infer the azimuthal angle  $\phi$  at the vertex, track must be swum backward through angle  $\alpha$ .

$$\sin\frac{\alpha}{2} = \frac{r_{\text{mid}}}{2R} = \frac{r_{\text{mid}}k}{2} \qquad (12)$$

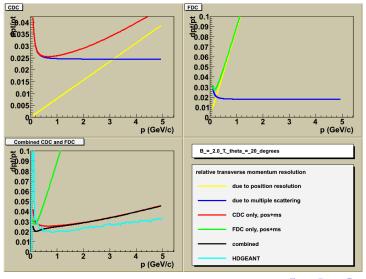
SO

$$\delta \alpha = r_{\rm mid} \delta k \sec \frac{\alpha}{2} \tag{13}$$

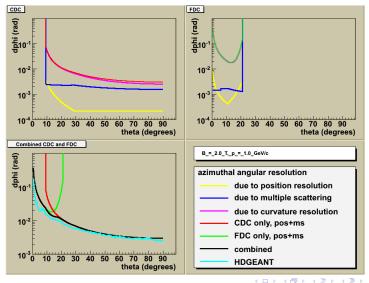
where  $\alpha = 2 \sin^{-1}(r_{\rm mid}/2R)$ . As an approximation, we take  $r_{\rm mid} = (r_{\rm in} + r_{\rm out})/2$ .



# Resolution in relative transverse momentum as a function of total momentum at $20^{\circ}$ for B=2.0 T.



Resolution in azimuthal angle as a function of polar angle at p = 1.0 GeV/c for B = 2.0 T.



### Conclusions on REZEST

- The plots show reasonable agreement with the HDGEANT (the GlueX FBMC) results. Agreement is generally at the 20% level, in some places better, in others as poor as a factor of 2.
- Rather detailed features of resolution variation are exhibited faithfully.
- One area where the simple model can break down is in the straight-line approximation for the trajectories for particles with very low transverse momentum.
- Some acceptance information available by excluding poor resolution regions.
- The most profitable use in predicting relative changes in resolution as detector parameters are changed.

## What is MCFast?

## physics features:

- charged particle tracking
  - position resolution
  - multiple scattering
  - energy loss
- calorimetry
  - em
  - hadronic
  - parametrized showers

### technical features:

- built-in interface to common event generators (pythia, qq)
- creates event stream: true Monte Carlo
- detector geometry specified in an ascii file
- hooks for user intervention and event examination

## History of MCFast

- developed for B-TeV design studies at FNAL
- 1994, v1.4, wrapper around SLAC TRACKERR program
- 1995, v2.1, complete rewrite
- ca. 2001, v5.2, recommended version
- significant manpower investment...
- ...but "not supported" anymore
- 2001 GlueX/Hall-D effort, important for initial design studies

## MCFast Geometry Specification



R-plane model right circular cylinders or polygonal shells, centered on z-axis, with defined radius, z center and z length

Z-plane model planes perpendicular to z axis, rectangular or circular outer boundary, may have beam hole

Conical model cones centered on z axis

Special cases planes perpendicular to x or y for magnet yokes, calorimeters (not for tracking volumes)

All volumes have material composition specified.



## MCFast charged particle tracing and "fitting"

### definitions

tracing: stepping particle through material and magnetic fields "fitting": obtaining track parameters and covariance matrix

## **Tracing**

### Events recorded:

- radial plane encountered
- z plane encountered
- conical surface encountered
- production point
- decay in flight
- pair production
- absorption
- E & M shower starts
- hadron shower starts
- dummy point (for display purposes)

## Treatment of magnetic fields:

- define regions of constant magnetic field
- non-uniform fields must be approximated by discrete regions of constant field

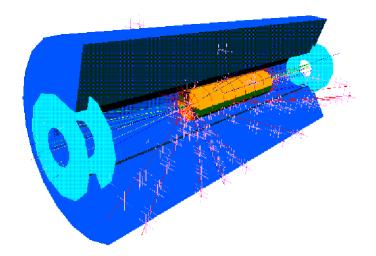
Energy loss and multiple scattering can be enabled separately (or together).

## "Fitting"

- no pattern recognition
- use hits from the tracing
- minimum hit requirement simulates detector acceptance
- two approaches:
  - pseudo fitting
    - ★ with or without energy loss, MCS
    - calculates covariance matrix (CM) among track parameters
    - ★ uses CM to smear track parameters
    - ★ no  $\chi^2$  computed
  - Kalman filter
    - ★ full Kalman filter algorithm
    - energy loss and/or multiple scattering accounted for (if turned on in tracing)
    - ★ CM calculated
    - smeared track can be generated
    - ★  $\chi^2$  generated



## MCFast Visualization



MCFast model of D0 tracking upgrade

## Why is MCFast different than FBMC?

- simplified geometry specification
- simplified magnetic field map
- no pattern recognition
- no event serialization
- pseudo fit much faster than a full fit

### Conclusions on MCFast

- Within the limits of the simple geometry specification, it gives a highly realistic rendering of detector response.
- ② It represents a not insignificant implementation effort.
- 3 Lack of current support is a concern.

## General conclusions

- In the early stages of the design cycle, a quick parameter-based estimation of detector performance is important.
- Two examples have been discussed: REZEST and MCFast.
- Usefulness of tools like this will likely extend beyond design phase.
   (What if's always seem to come up.)
- It is worthwhile spending some time developing these types of facilities.

Acknowledgements: Paul Eugenio (Florida State), Lynn Garren and Patricia McBride (Fermilab)

#### References:

- REZEST: http://argus.phys.uregina.ca/cgi-bin/public/DocDB/ShowDocument?docid=1015
- MCFast: http://cepa.fnal.gov/psm/simulation/mcfast/

