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Abstract 
 To what degree the brain still processes sounds during sleep even though they do 

not reach conscious awareness remains unclear.  Unlike the visual system, which has the 

eyelids, the auditory system possesses no external physical mechanism to block incoming 

signals during sleep.  Yet, our intuition is that our auditory experience is very different, if 

not non-existent during sleep.  We chose to explore this problem at the neural level in a 

non-human primate (common marmoset) hoping to derive direct insights into the 

perceptual consequences of sleep on hearing that we as humans experience every night. 

 We found that neurons in primary auditory cortex are responsive to sounds almost 

as strongly during sleep as when the animal is awake.  Moreover, downstream neurons in 

secondary auditory cortex also had acoustically driven responses.  We estimate that 

responses only drop 10% on average during slow-wave sleep (SWS) and rapid eye 

movement sleep (REM). 

 Although we did not observe a dramatic reduction in activity during sleep, we 

found evidence that this activity could not support the same processing performed in 

awake.  Neurons during SWS had limited responses to quiet sounds, but for loud sounds, 

SWS responses could actually exceed those during wakefulness.  These observations 

suggested a model with reduced excitation and inhibition in SWS.  The conclusion we 

reach is that the dynamic range (excitation+inhibition) of processing is limited even if 

extracellular activity (excitation-inhibition) is preserved in SWS.  REM proved to have 

more awake-like levels of dynamic range. 
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 Finally, we asked how sleep affects the population activities of neurons.  Nearby 

neurons were modulated randomly, but the same pattern of modulation reappeared in 

subsequent sleep cycles.  In other words, the network can reach at least three different 

stationary states, awake, SWS, and REM.  Stronger joint firing was present in SWS 

locally between neurons and globally with field potentials, so network activities are more 

correlated in deep sleep than in awake or REM.  The findings described herein provide a 

valuable neural basis for future investigations into the mechanistic and perceptual effects 

of sleep and for an eventual understanding of how the brain operates in this mysterious 

but essential state. 
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Chapter 1: Introduction 
 

‘The psyche isolates itself during sleep (…) nevertheless we are not always awakened by 

the mere sensory force of the impression, but by the psychic relation of the same; an 

indifferent word does not arouse the sleeper, but if called by name he awakens…The 

mother awakens to the faintest sound from her child…hence the psyche differentiates 

sensations during sleep…we may be awakened by the lack of a sensory stimulus if it 

relates to the presentation of an important thing…the miller wakes when the mill stops.’ 

   -K. F. Burdach (1830) (excerpted from Oswald et al., 1960) 

 

 Most of what happens in sleep is outside of an individual’s conscious access or 

control, making sleep mysterious even to the individual himself.  This may be what fuels 

human curiosity to learn more about sleep.  Unfortunately, our scientific understanding of 

sleep is still quite limited.  Only a few basics are known, that sleep is essential and that 

the brain is critically involved.  These are reasons enough to explore what happens during 

sleep.  Especially interesting is what happens to sounds once they reach the brain.  It is 

difficult to ask someone who is sleeping what they hear, but neurophysiological studies 

can probe neurons directly to extract out the representation of sounds in the sleeping 

brain. 
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1.1 Basics of sleep 

 

1.1.1 Physiology of sleep 

 From an evolutionary perspective, sleep seems to have diverged early on before 

the split between mammals and birds, so birds, cats, rodents, primates, and humans all 

share similar sleep patterns (Siegel, 2005).  Fruit flies can even show signatures of 

mammalian sleep (Hendricks et al., 2000; Shaw et al., 2000).  Cross-species similarity is 

important from a comparative perspective if one is to use experimental animals.  

Typically, sleep is divided into five stages (Carskadon and Rechtschaffen, 2000).  The 

most important of these states are light and deep slow-wave sleep (SWS) (stage 3 and 

stage 4 sleep) and rapid eye-movement sleep (REM) (stage 5).  SWS is considered the 

deepest stage of sleep when subjects are least easily aroused.  REM sleep is associated 

with dreaming (Siegel, 2001), and all mammals and birds go through REM (Siegel, 

2005).  So even animals can dream in the physiological sense.  Stage 1 and stage 2 sleep 

are the earliest and lightest stages of sleep.  Although stage 2 occupies the largest fraction 

of the sleep cycle (~50%) and manifests with signature sleep spindles, it is not as 

commonly studied as SWS and REM. 

 A human sleep cycle averages 90 minutes.  In the beginning of the night, sleep 

cycles are short (60 minutes) and get longer as the night progresses.  An episode of SWS 

always precedes an episode of REM.  The duration of SWS and REM periods trade off 

over the course of a night.  Initially, episodes of SWS are very long and slow-waves very 

large in amplitude while REM is very brief.  But by the early morning, REM episodes 
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become very prolonged and dominate the sleep cycle.  SWS is then minimal.  Another 

point to make is that at the end of every cycle the sleeping subject wakes up, no matter 

how briefly, before returning to sleep.  A small fraction (5-10%) of every sleep cycle is 

spent awake (Carskadon and Rechtschaffen, 2000). 

 Most animals used in prior sleep physiology experiments have been nocturnal 

such as rats, cats, and guinea pigs.  The convenience of doing experiments during the 

day, low cost, and ready availability of nocturnal animals has made them the dominant 

animal model.  However, if strides are to be made in understanding the phenomenology 

of human sleep, nonhuman primate models have to be more widely adapted in 

experiments.  The common marmoset (Callithrix jacchus), which was used in the 

experiments of this thesis, has very similar patterns of sleep to humans except that the 

marmoset sleep cycle is slightly shorter (~60 minutes) (Crofts et al., 2001).  Importantly, 

marmosets are diurnal, so they sleep during the dark hours of the day. 

 

1.1.2 Theories of sleep 

 What purpose sleep serves has long been a subject of speculation.  Certainly, 

sleep serves restorative functions for the body (Siegel, 2005) but what about for the 

brain?  Original ideas from the likes of Pavlov and Sherrington held that sleep serves no 

role in the brain, that the brain has no activity during sleep (Hobson, 2005).  The 

discovery of EEG rhythms and regular alterations in brain activity along with the fact that 

brain metabolism only reduces by 20% during sleep overturned notions that the brain 

shuts down during sleep (Hobson, 2005).  This realization may have created a problem of 

plenty as now a variety of equally plausible but unproven theories exist about the 



4 

function of sleep in the brain.  One theory is that sleep is important for the learning and 

consolidation of the waking day’s events (Stickgold, 2005).  Alternatively, it has been 

argued on at least a couple occasions that sleep serves a housecleaning role, taking out 

the unwanted information experienced during the day (Crick and Mitchison, 1983; 

Tononi and Cirelli, 2006).  One of these theories holds that long-term potentiation (LTP) 

of synapses during wakefulness upregulates cortical activity and that only through strong 

long-term depression (LTD) during SWS can synaptic homeostasis be achieved (Tononi 

and Cirelli, 2006).  Some experimental evidence has been found in support of this theory 

(Vyazovskiy et al., 2008).  Crick and Mitchison (1983) argued that the illogical nature of 

most dreams during REM sleep is for the purpose of removing spurious associations in 

the network.  The difficulty with assessing these theories is how does one determine 

which correlations are functionally unnecessary and need to be removed.  Most sleep 

theories tend to make high level claims that are conceptually and technically difficult to 

assess in an experimental setting.  Perhaps the most exciting evidence of brain activities 

during sleep is the appearance of bursts of neuronal replay of sequences from awake 

experience (Wilson and McNaughton, 1994).  But it is difficult to bridge this 

circumstantial evidence to a true understanding of sleep.  The replay may confer a direct 

advantage to the network in a manner that would support learning or memory 

consolidation or it may be too sparse to link to any functional changes.  It could be an 

epiphenomenon related to spurious correlations in the network  (Tononi and Cirelli, 

2006).  This last possibility is seeming more and more unlikely given different patterns of 

replay such as forward replay that are related to specific events (Foster and Wilson, 
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2006).  Nonetheless, since the days of Sherrington, it is not much clearer how sleep 

works, just that it does. 

 

1.1.3 Functional role of sleep in the brain 

 Research on sleep’s role in learning and memory has seen a revived interest 

recently (Hobson, 2005; Vertes, 2004).  A major finding has been that if subjects trained 

on a given task experience a night of sleep their performance improves the next day 

(Karni et al., 1994).  No enhancement is seen if the subjects simply stay awake for the 

same amount of time.  This finding has been replicated in a number of task settings 

whether in declarative (semantic) or non-declarative (procedural) tasks and across 

modalities, auditory, visual, and motor (Mandai et al., 1989; Walker et al., 2002; Walker 

et al., 2003; Fischer et al., 2003).  Some hold that the data are not conclusive because of 

the confounding drawbacks of sleep deprivation.  Benefits in the experimental sleep 

group may not be the benefits of sleep per se but of the adverse physiological effects of 

sleep deprivation in the control group (Vertes, 2004).  Such issues have been mostly 

addressed (Stickgold, 2005). 

 A second line of evidence for a functional role of sleep has come from studies in 

the primary visual cortex (V1).  Taking advantage of the robust phenomenon of critical 

period ocular dominance plasticity after monocular deprivation, Frank and colleagues 

have shown that sleep is critical to shifts in ocular dominance from the deprived eye to 

the nondeprived eye (Frank et al., 2001).  They used the technique of intrinsic imaging to 

visualize patterns of activity on the cortical surface related to each eye.  Normally, if one 

eye is shut, the maps shift so that the other eye becomes dominant.  Sleep deprivation, 
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however, freezes any plastic processes.  Going one step further they silenced activity in 

V1 during sleep with lidocaine.  They found that ocular dominance plasticity did not take 

place even though the animals slept normally (Jha et al., 2005).  In an independent and 

nearly simultaneous study, this time using tetrodotoxin to silence activity, Krahe et al. 

also found that neural activity in V1 during sleep is necessary for plasticity (Krahe et al., 

2005).  These results are among the first to establish a causal relationship between 

activity in sleep and post-sleep functional effects.  Interestingly, Krahe et al. (2005) found 

that mRNA translation, an indicator of protein synthesis, did not seem to be involved.  

This observation suggests that plastic processes specifically depend on neural activity not 

protein synthesis during sleep.  Patterned neural activity may lead to later changes in 

gene expression or protein synthesis as some have suggested (Ribeiro et al., 2004). 

 

1.2 Hearing during sleep 

 

1.2.1 Auditory performance during sleep 

 The ideas and experiments mentioned to this point have been concerned with 

internal activations of the brain.  The focus of this thesis, however, is how the brain is 

activated by external events, namely sounds, during sleep.  This may seem like a futile 

cause.  After all, a hallmark of deep sleep is general behavioral unresponsiveness to 

events in the environment (Bonnet, 1982).  Before the adaptation of the EEG, SWS was 

characterized by elevated acoustic arousal thresholds (Carskadon and Rechtschaffen, 
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2000).  Other behavioral work, though, suggests that sounds can enter the brain during 

sleep, albeit subliminally (Oswald et al., 1960). 

 The studies that have measured arousal thresholds in humans have found that 

sounds are blocked quite impressively during sleep.  In stage 2, REM, and SWS, 70, 83, 

and 92 dB SPL sounds, respectively, are required to awaken a subject (Bonnet et al., 

1978).  Arousal thresholds are usually highest in SWS (Bonnet, 1982).  In some cases 

REM thresholds are considered to be near those of SWS and in others lower than even 

stage 2.  Regardless, thresholds in SWS and REM are much higher than sound levels of 

conversational listening (50 dB) and border on those of a jackhammer or traffic from a 

major road driving through your bedroom. 

 Although most sounds seem to be ignored by a sleeping subject, a well-known 

fact is that subjects will selectively awaken to their own name.  The study by Oswald, 

Taylor, and Treisman (1960) was the first to show this.  They played 65 different names 

to sleeping subjects.  One of the names was the subject’s own.  The authors found a 

tendency for subjects to react to their own name and not to others.  Reaction was 

measured by the galvanic skin potential on the finger.  Subjects could also awaken or 

squeeze the hand of the experimenter.  In a control, forward names but not names played 

in reverse were found to elicit a skin potential (Oswald et al., 1960; Langford et al., 

1974).  This experiment helps prove that it is the semantic quality of the sound and not 

low-level differences in loudness or other acoustic properties that causes the subjects to 

respond.  Somehow sleeping subjects are able to perform high-level discrimination of the 

sounds even though they are not aware of them.  Other studies have replicated this 

finding by measuring blood flow to the finger or changes in heart rate when a sleeping 
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subject’s name is played (Beh and Barrat, 1965; Langford et al. 1974; McDonald et al., 

1975; Voss and Harsh, 1998).  These findings raise the possibility that detection of 

certain, important sounds during sleep may be important for survival.  For example, 

mothers need to awaken to the cries of their babies (Formby, 1967; Poitras et al., 1973).  

One has to consider that humans generally sleep in safe quarters.  For other animals, safe 

sleep is rarely ensured (Zepelin, 2000).  Quite possibly, hearing may serve a functional 

role, to alert the vulnerable sleeper of potential threats.  A few studies have shown that 

animals will awaken to meaningful stimuli or stimuli that had gained meaning as opposed 

to insignificant stimuli (Halperin and Iorio, 1981; Rowland, 1957; Siegel & Langley, 

1965; Van Twyver and Garrett, 1972; Maho and Hennevin, 1999). 

 

1.2.2 Incorporation of sounds into dreams 

 Subjects will sometimes report hearing external sounds in their dreams (Ramsey, 

1953; Berger, 1963; Burton et al., 1988).  A common occurrence is when one sleeps 

through their alarm clock but hears the alarm clock in their dreams, feeling all the while 

that the sound is strangely familiar.  Dream reports are generally subjective limiting their 

scientific value.  Some groups have indirectly probed the effects of external stimuli 

during REM by associating the sound with an unrelated task (Hars et al., 1985; Hennevin 

et al., 1995).  In a second order conditioning paradigm, sound (conditioned stimulus) is 

paired with a shock (unconditioned stimulus) by playing the sound along with a prior 

conditioned tactile stimulus during sleep.  In other words, the animal learns to associate a 

tactile stimulus with foot shock during the day.  Then at night, a sound is paired with the 

tactile stimulus.  The next day, the animal starts avoiding foot shock upon hearing the 
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auditory stimulus even though that sound had not been heard before by the animal when 

awake.  Other studies in humans have shown that auditory stimulation during REM 

improves memory task performance (Guerrien et al., 1989) and logic task performance 

(Smith and Weeden, 1990).  All of these studies have depended on associating the 

sensory stimulus with a behavioral meaning, so effects of nighttime stimulation are 

indirectly causing measurable changes through non-sensory pathways.  The idea still 

remains though that sounds can enter into the brain and be processed during sleep. 

 

1.3 State dependence of neural measures 

 

1.3.1 Sleep modulation of single neurons in the visual and somatosensory system: 

thalamus and cortex 

 The thalamus serves as an obligatory relay of signals from the sensory periphery 

to cortex (Guillery and Sherman, 2002).  As a relay, the thalamus may be a good place to 

gate signals from reaching cortex.  There is strong evidence that this may be the case in 

sleep.  Intracellular and extracellular studies in the somatosensory and visual thalamus 

have consistently found that responses to external stimuli are depressed (Mukhametov 

and Rizzolatti, 1970; Coenen and Vendrik, 1972; Hirsch et al., 1983; Livingstone and 

Hubel, 1981; Mariotti et al., 1989; Edeline et al., 2000).  During stage 2 sleep, 7-14Hz 

spindles inhibit thalamic neurons (Steriade, 2003).  The transfer ratio in somatosensory 

thalamus (ouput/input) reduces to 0.5 not because of the lowering of input but because of 

a baseline shift making the input less effective (Coenen and Vendrik, 1972).  An onset 
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response can be seen in somatosensory thalamus, but later portions of the response are 

quickly and strongly suppressed (Mariotti et al., 1989).  In the visual thalamus, a baseline 

polarization of membrane potential is also seen during SWS (Hirsch et al., 1983), and 

extracellular recordings found weakened visually-evoked responses in 14 neurons during 

sleep (Livingstone and Hubel 1981). 

 When recordings are made downstream in primary sensory cortex, depressed 

responses are seen.  Gucer (1979) found a 64% reduction in SWS responses in primary 

somatosensory cortex while Hubel and Livingstone (1981) found over one-third of the 

130 cells recorded decreased their response in sleep and none increased their response.  A 

peculiar observation, however, was that even nearby V1 cells showed very different 

effects of sleep.  Hubel and Livingstone (1981) noted that this differed from their 

recordings of the thalamus where cells showed consistent behavior.  Although no V1 

cells increased firing in sleep, they seemed more active than those in thalamus which was 

counterintuitive.  In the Gucer (1979) study, a puzzling observation was that responses 

were nearly abolished (9% of their awake strength) in REM sleep.  Such a dramatic 

reduction in REM in addition to the reduction in SWS is difficult to explain since SWS is 

usually considered the deepest sleep.  Regardless, the emergent theme from studies of 

sleep in the visual and somatosensory systems is that neural responses to external stimuli 

during sleep are strongly gated by the thalamus before they reach cortex.  Based on these 

data, one would predict that a similar reduction of responses should occur in auditory 

cortex.  The shutting down of the senses is interpreted as serving a “sleep-protecting” role 

(Hennevin et al. 2007).  Blocking out sensory inputs as early as stage 1 sleep allows 

subjects to more easily enter deep sleep (Czich et al., 2002). 
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1.3.2 Imaging studies 

 Imaging studies can provide a valuable bird’s-eye view of activity during sleep.  

Since they are non-invasive, human subjects can be used.  In a landmark PET imaging 

study of auditory responsiveness during sleep, Portas et al. (2000) made two interesting 

observations.  The first was that activation in the temporal lobe was similar in non-REM 

(NREM, includes SWS) and awake whether insignificant (tones) or significant (subject’s 

name) stimuli are used.  This occurred despite lowered activation in thalamus and 

prefrontal cortex during NREM.  Second, there was a large difference signal (name 

minus tone) in prefrontal cortex during sleep as if an alarm was triggered.  Their study 

suggests that auditory cortical areas can be activated during sleep and that activity in 

higher areas during sleep depends on the complexity and/or significance of the stimulus. 

 In later fMRI work, Czich et al. (2002 and 2004) found a different result.  They 

found that the BOLD signal response to sounds in the temporal lobe is weakened during 

sleep.  Unfortunately, intersubject variability prevented Czich et al. from measuring the 

effect of sleep on thalamic responses.  It is possible that thalamus is even more depressed 

than cortex which would then agree with Portas et al.’s (2000) findings of a more active 

auditory cortex.  Another detail is that Czich et al. found the strongest depressive effects 

in stage 2 sleep not in SWS.  Negative effects have been found as early as stage 1 

(Tanaka et al., 2003).  Finally, and most importantly, Czich et al. admit that scanner noise 

made interpretation of responses in primary auditory cortex difficult to interpret.  For one 

thing, no positive BOLD signal was seen possibly because the background noise washed 

out effects of stimulation.  Also, when the subjects went into stage 2 sleep, a BOLD 
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signal decrease (BSD) was seen.  Negative BOLD signals have been seen in the primary 

visual cortex in response to acoustic stimulation during REM (Czich et al., 2002).  Why 

the signal should decrease during stimulation is unclear (Harel et al., 2002).  These 

caveats underscore the limits of functional imaging especially in interpreting results.  If 

sleep has complex effects on neural responses, functional imaging may be too gross of a 

measure to capture changes in the network.  Single-neuron physiology can be a valuable 

complement as spatial and temporal resolution are much finer.  Imaging signals tend to 

correspond with the inputs to an area (Logothetis et al., 2001; Viswanathan and Freeman, 

2007) since those require the most energy.  Little can be said by imaging studies about 

the outputs which are carried in the spiking responses of neurons and represent the 

information that is sent forth. 

 Two other partly relevant imaging studies should be mentioned at least in passing.  

One study tested auditory responses in vegetative patients in hopes of better diagnosing 

the vegetative state (Laureys et al., 2000).  They found that auditory activation in these 

patients was as strong as controls.  Only in higher association areas was a difference 

apparent.  In another study, this time in mildly sedated patients, it was again found that 

auditory areas in the human temporal lobe were weakly affected by sedation (Davis et al., 

2007).  Rather, activation to complex sounds (words as opposed to matched noise) was 

diminished in the frontal lobe.  The biggest difference between awake and sedated 

conditions was found in the difference signal for high versus low ambiguity sentences.  

This signal was present in the frontal lobe only in awake subjects suggesting that a higher 

processing capacity was lost upon sedation.  What this study (Davis et al., 2007) and the 

study of vegetative patients (Laureys et al., 2000) share with sleep studies is that they 
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involve subjects who are not consciously aware of the sounds being played.  Caution 

should temper any direct comparisons between vegetative, sedated, and sleep states, but a 

consistent theme in all three is that higher faculties such as processing of complex sounds 

and corresponding responses in higher areas are affected more than primary auditory 

areas of the temporal lobe. 

 

1.3.3 Evoked potential studies 

 Much like functional imaging studies, evoked potential studies are a non-invasive 

means of recording correlates of neural activity in humans.  The evoked potential is a 

grand-average waveform recorded from the scalp.  Because it is heavily averaged, it 

contains components arising from multiple sources.  The early component (<15ms) is 

thought to reflect low-level sensory activation while the late component (>50ms) reflects 

the higher processing of cortex such as assigning personal affect to the stimulus or 

determining its semantic consistency (Bastuji et al., 2002; Hennevin et al., 2002).  

Components can be as late as 300 or 400ms after the stimulus (called the P300 and P400 

respectively).  Three basic experiments have been used to assess how well sounds are 

processed in sleep: an oddball paradigm, own name versus others, and semantic 

congruency. 

 In an oddball paradigm, a stimulus is repeated, establishing an expectation that the 

stimulus will be played again.  Then a novel, unexpected stimulus is played and a strong 

negative component called the mismatch negativity (MMN) is seen in the evoked 

potential.  The MMN presumably arises in cortex and represents some additional quality 

of surprise assigned to the stimulus beyond its physical properties.  Subjects in REM 
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sleep still manifest a weak MMN suggesting that the brain is keeping track of stimulus 

probabilities during this stage of sleep (Loewy et al., 1996; Nashida et al., 2000; Atienza 

et al., 2000).  The MMN is not present in SWS (Sabri et al., 2003; Sabri and Campbell, 

2005).  A variation has been observed (Nielsen-Bohlman et al., 1991) but may be 

confounded by K-complexes (Sallinen et al., 1994; Cote, 2002). 

 The late P300 signal for own name presented in the context of other names is 

found in SWS and REM, albeit with different response latency and strength (Berlad and 

Pratt, 1995; Pratt et al., 1999).  In one study, names were not presented with equal 

probability possibly confounding name recognition effects with MMN effects.  A later 

study controlled for presentation probability and found specificity for the subject’s name 

in REM sleep but did not test SWS (Perrin et al., 1999).  The difficulty with using names 

to test for semantic processing is that they also have affective significance so that any 

specialized processing over non-names may not be semantic per se.  When semantically 

congruent or incongruent pairs of words are used, an evoked potential signal can still be 

found in stage 2 and REM sleep (Brualla, 1998).  However, when a third condition is 

added, that of non-words which are composed of syllables sharing the acoustic properties 

of words but having no meaning, a separate signal was elicited in waking, but no 

differential signal was found in stage 2 sleep or REM (Perrin et al., 2002).  SWS was not 

tested.  This result suggests that not all semantic processing may be possible during sleep.  

But the glass can be viewed as half-full rather than half-empty.  The imaging and evoked 

potential studies discussed so far tend to find evidence that much of basic sensory 

processing is possible in sleep.  This is a very different picture than single-neuron studies 

suggesting stimuli are blocked by the thalamus during sleep. 
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1.3.4 Anesthetic effects in the auditory system 

 Before discussing the effects of sleep on auditory neurons, it is important to note 

the more well-studied effects of anesthetics.  Although anesthetics represent an artificial 

state and sleep a natural state, the effects of anesthetics have received a disproportionate 

amount of attention in auditory physiology studies.  This is because anesthetics are 

central to the experimental preparations of many labs.  Unfortunately for audition, 

anesthetics seem to have large effects on responses even early in the auditory pathway.  

In the dorsal cochlear nucleus, experiments using anesthetics essentially missed the 

critical type IV cell type (Evans and Nelson, 1973; Young and Brownell, 1976).  Further 

downstream, studies have repeatedly shown the effects of anesthetics (Ter-Mikaelian et 

al., 2007; Moshitch et al., 2006).  For example, in anesthetized auditory cortex, sustained 

responses to acoustic stimuli are rarely observed (Phillips, 1985; DeWeese et al., 2003).  

Most neurons respond with an onset to sound and then go silent.  Awake preparations 

commonly encounter sustained responses and rarely find onset responses (Brugge and 

Merzenich, 1973; Wang et al., 2005; Hromadka et al., 2008).  Recently, a push has been 

made to use different types of anesthetics that have milder effects on neural responses.  

Various gas anesthetics or ketamine have been used with some success (Moshitch et al., 

2006). 

 Like sleep, the anesthetized state involves a lack of conscious awareness.  A 

synchronized UP-state with low frequency oscillations exists under anesthesia (Worgotter 

et al., 1998).  Such an EEG pattern is similar to that in SWS.  The non-synchronized 

DOWN-state under anesthesia involves higher frequency β much like the awake state 

(Lydic and Baghdoyan, 2005).  Despite these similarities, the argument has been made 
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that sleep should not be compared with anesthesia (Hennevin et al., 2007).  Studies 

directly comparing responses during sleep and anesthesia have not found similarity 

between the two (Kishikawa et al., 1995; Torterolo et al., 2002; Cotillon-Williams and 

Edeline 2003).  Another simple fact that immediately discounts comparison between 

sleep and anesthesia is that REM is a unique state with no anesthetic equivalent. 

 

1.3.5 Attentional modulation of neural responses: visual and somatosensory system 

 The attentional state may be more comparable to sleep.  Sleep could be viewed as 

the withdrawal of attention.  If this is the case, then we would expect the exact opposite 

effects of attention during sleep.  This hypothesis may be too simple as it assumes sleep 

is nothing but a gradual loss of arousal and assumes that the same top-down circuits 

attentions uses are also involved in sleep.  In reality, sleep may involve more states, local 

circuits, and different neuromodulatory influences than attention. 

 A rich literature exists on the effects of attention in the visual system.  Attention 

affects neural responses throughout the visual pathway from V1 to MT and IT (Ito and 

Gilbert, 1999; McAdams and Maunsell, 1999; Reynolds et al., 2000).  The visual 

thalamus (LGN) can be modulated by attention (O’Connor et al., 2002) although it is 

unclear whether this is the result of feedback from V1.  Attention effects are greater in 

higher visual areas like V4 than they are in V1 (Pessoa et al., 2003).  Effects tend to be in 

one direction, that is enhancing, changing responses in a majority of cells (>50% up to 

80%) (McAdams and Maunsell, 1999).  A simple model for attention is a multiplicative 

gain change rather than a simple additive boost.  However, the finding that attention 

effects manifest more strongly at low stimulus contrasts has modified this model to 
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include saturation.  And this has led some to propose that attention is more like an 

enhancement of stimulus contrast (Reynolds and Chelazzi, 2004). 

 Another recurring idea in the attention literature is that attention is meant to 

operate in challenging situations where there are multiple stimuli or in binding of features 

across space (Desimone and Duncan, 1995).  The idea of an attentional bottleneck posits 

that only a few stimuli can be attended to, perceived, and thus acted on.  Studies in V2 

and V4 have shown how this may operate at the neural level (Reynolds et al., 1999).  

When two stimuli are in a cell’s receptive field, attention plays a role in biasing the 

competition toward the attended stimulus and filtering out competing interactions of a 

second stimulus.  In work by Gilbert and colleagues, it was shown that although attention 

effects in V1 are weaker than in higher areas, attention strongly modulates contextual 

influences outside the classical receptive field (Ito and Gilbert, 1999).  Attention seems to 

aid the difficult integration required in collinear interactions of disparate line elements.  

Integrating such elements is necessary for grouping and for forming contours which later 

go on to be an important part of visual form processing. 

 Some insights can be drawn from the large body of attention literature.  For one 

thing, an emphasis should be placed on the notion of processing.  Attention is not simply 

a volume knob on activity.  Attention aids processing for near threshold image contrasts 

(Reynolds et al., 2000), for multiple competing objects (Desimone and Duncan, 1995; 

Reynolds et al., 1999), and for forming complex feature combinations (Ito and Gilbert, 

1999; Motter, 1994).  In studying auditory processing during sleep, it will be important to 

consider that processing beyond simple changes in activity may be affected.  Also, the 

attention work seems to suggest that higher areas are more affected and that the effect 
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trickles down to lower areas.  The closer an area is to top-down feedback the more 

immediate and strong the impact is.  This theme has been repeated in the somatosensory 

system (Hsiao et al., 1993) and in studies exploring perceptual learning effects on 

neurons (Yang and Maunsell, 2004).  For sleep, if a top-down effect is at play then it will 

be important to examine higher areas and compare responses to lower areas. 

 

1.3.6 Sleep modulation in the auditory system: brainstem 

 The auditory signal passes through an extensive subcortical pathway before 

reaching cortex.  The signal could be attenuated at the cochlear nucleus, olivary complex, 

or the inferior colliculus.  The middle ear muscles could also attenuate the sound even 

before it is transduced in the cochlea.  However, it appears that the middle ear muscles do 

not operate in this capacity during sleep (Baust et al., 1964; Dewson et al., 1965).  In the 

cochlear nucleus, responses during both SWS and REM are somewhat greater than those 

in awake (Pena et al., 1992).  Downstream neurons in the lateral superior olive vary with 

some increasing and some decreasing their response (Pedemonte et al., 1994).  Finally, in 

the inferior colliculus, the requisite last station before the auditory thalamus, responses 

are as strong in SWS and REM as in awake (Torterolo et al., 2002).  All indications are 

that neurons in the auditory brainstem are active during sleep, and the influence of sleep 

probably arises at the level of thalamus or beyond. 

 

1.3.7 Sleep modulation in the auditory system: thalamus and cortex 

 One might expect that sounds reach the auditory part of the thalamus where they 

would get blocked and go no further.  This appears to be the case for the visual and 
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somatosensory systems based on physiology data.  But given the imaging and evoked 

potential data in the auditory system, one might expect some sounds to reach auditory 

cortex.  Murata and Kameda (1963) provided the first report of the effects of sleep on 

neural responses in auditory cortex.  In the 20 neurons that they studied in unanesthetized 

cats, they observed 11 whose responses decreased in SWS and none whose responses 

increased.  Brugge and Merzenich (1973) in unanesthetized primates mentioned in 

passing having observed cells decrease their responses when the animal fell asleep.  The 

exact number of cells is not reported.  Over 20 years elapsed before a more complete 

study was performed by Pena et al. (1999) in the guinea pig.  Their results were the first 

surprise in neural studies of sensory processing during sleep.  They found that most 

neurons did not change their responses in SWS or REM, and the ones that did could 

either increase or decrease their responses.  This led them to conclude that activity at the 

neural level was mostly preserved in sleep.  Following this study, Edeline and colleagues 

reported their results from the auditory thalamus and cortex of guinea pigs.  The thalamus 

data showed clear suppression of responses.  70% of cells in SWS and 68% in REM were 

significantly suppressed (Edeline et al., 2000).  Average evoked activity in awake was 

15.6 spikes s-1 and dropped to nearly half in sleep (SWS=7.5 and REM=8.8 spikes s-1).  

When the authors measured responses in A1, they found that cells were usually depressed 

in their responses.  But, to the authors’ surprise, their cortical population of cells showed 

statistically more activity than the thalamic cells that they recorded (Edeline et al., 2001).  

Mean evoked activity in SWS (12 spikes s-1) was not much lower than mean activity in 

awake (15 spikes s-1).  Furthermore, there was more diversity in modulation so that some 
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cells actually increased their response in SWS.  This study also found that receptive field 

size as measured by frequency tuning width did not change in SWS. 

 

1.4 Outline 

 

1.4.1 Hypotheses 

 Having summarized the literature, it may be important to list the hypotheses that 

have emerged in this review.  These hypotheses are by no means mutually exclusive, and 

no one study could decide between them.  But taken together they represent the ideas 

entertained in the remainder of this thesis. 

 Attention Hypothesis.  Sleep is a withdrawal of attention.  Specific predictions: 

(1) Neurons will show a gradual reduction of activity as sleep becomes deeper and 

deeper.  (2) Little difference should exist between responses in SWS and REM since both 

are states of inattention. (3) Neurons strongly modulated in an attention task when the 

animal is awake should have a tendency to be the most modulated neurons when the 

animal falls asleep.  (4) Effects of sleep should be strongest at quiet sound levels such 

that responses to quiet sounds are most suppressed during sleep; effects at louder levels 

should not be as strongly suppressed.  (5) Secondary cortical areas should be more 

suppressed than primary areas.  (6) Multiplicative as opposed to additive changes in 

firing rate should be observed. (7) Neurons should be uniformly depressed but may 

display local variations similar to those observed in attention studies; rarely should 

enhanced responses in sleep be observed. 
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 Thalamic Gate Hypothesis.  Thalamus prevents sensory signals from reaching 

cortex.  Specific predictions: (1) Responses in cortex should be suppressed as much or 

more than those in thalamus.  (2)  Because of common inputs from thalamus, nearby cells 

should behave very similarly when the animal falls asleep.  (3) Latency of sleep effects 

should be immediate and not depend on later cortical processing (i.e. observable in early 

and late components of response).  (4) Responses in secondary cortical areas should not 

differ much from those in primary areas since thalamus is the bottleneck. 

 Mentation Hypothesis.  Internal activations during sleep control responses to 

external stimuli. Specific predictions: (1) Cortex should be quite active during sleep 

whether in internal activity or responses to external sounds. (2) Responses to sounds in 

cortex should correlate with the presence of different brain rhythms in the EEG.  (3) 

Responses should vary on the same timescale that internal activities vary.  This could be 

in the switch from SWS to REM or could be over the course of the night from one cycle 

to the next or from one night to the next.  (4) High spontaneous activity may predict 

periods of high stimulus-driven activity.  (5) Local patterns may be observed such that 

nearby cells are activated or deactivated together.  (6) Overall activity during sleep 

should be similar in primary and secondary areas.  (7) Effects should be independent of 

the type of stimulus used. 

 Vigilance Hypothesis.  Hearing operates during sleep as an alerting mechanism.  

Specific predictions: (1) Some auditory processing capacity and its associated pathway 

should be preserved or even enhanced during sleep.  (2) Specific sounds should be more 

effectively processed than others.  (3) Animal vocalizations may activate the network 

more efficiently than artificial sounds such as pure tones.  (4) Responses in higher areas 
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may become increasingly sparse so that information about a select few sounds is passed 

further downstream.  (5)  Selectivity or tuning along certain dimensions and not others 

should be modified to meet the functional goal of the system.  (6) Responses should be 

stable from one cycle to the next and one night to the next.  In other words, a certain set 

of neurons performs the alerting function.  (7) The signal may be processed up through 

the decision making areas of the frontal lobe.  Rather than conserve energy by attenuating 

the signal early, the auditory system under this hypothesis derives maximal information 

about acoustic events in the environment for the sleeper’s protection. 

 

1.4.2 Specific aims 

 The work in this thesis divides into 3 parts.  The first part simply measures how 

responsive neurons in auditory cortex are during sleep.  The second part delves into the 

tuning properties of these neurons during sleep.  And the third part examines network 

behaviors of neurons in sleep. 

 Aim 1.  Only a handful of studies have examined sensory processing during sleep.  

In fact, almost 30 years have elapsed since the last neurophysiology study in primates.  

From the literature described above, even the most basic facts are unclear.  Do cortical 

neurons respond to sounds during sleep?  We decided to thoroughly explore this question 

in this aim by extending on previous studies in three ways.  First, we recorded in a non-

primary cortical area.  To our knowledge, no other study to date has quantitatively 

measured sensory responses outside of a primary cortical area during sleep.  Second, we 

attempted to measure awake responses under different levels of arousal.  One confound 

of all sleep studies is that the ‘awake’ condition is taken simply as the period when 
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animals passively awaken between sleep cycles.  This may not constitute sufficient 

arousal, confounding estimates of how much stronger awake responses really are.  

Finally, we performed a quantitative characterization of temporal discharge patterns in 

sleep.  Prior studies have mainly focused on changes in discharge rate; however, the 

temporal code could change in sleep without affecting firing rates. 

 Aim 2.  In aim 2, we ask more specific questions about sensory processing.  What 

processing are neurons capable of in sleep?  Only one study to date has attempted to 

approach this question by measuring frequency tuning in awake and sleep states finding 

little difference.  Here, we extend on previous work in three ways.  First, we measured 

the effects of sleep on driven and suppressed responses in order to characterize the 

balance of excitation and inhibition in the network.  Second, we measured the effects of 

sleep at different sound levels from very quiet to very loud.  By varying sound level, we 

could engage a spectrum of excitatory and inhibitory processing and determine sleep’s 

effects.  Third, we measured temporal processing in neurons during sleep through 

modulation tuning and phase-locking for modulated stimuli. 

 Aim 3.  Most studies of sensory processing during sleep have focused on single 

neurons, but sleep presumably changes network-level properties.  We made two basic 

measurements to gain insight into the organization of the network during sleep.  First, we 

measured activity from local pairs of neurons (<200μ apart), often recorded 

simultaneously.  We examined whether any organization of sleep modulation exists at 

this fine scale.  We measured rate correlations between neurons in awake, SWS, and 

REM to see if functional connectivity breaks down or is enhanced in sleep.  Second, we 

measured the stimulus-driven local field potential (LFP) during sleep.  The LFP measures 



24 

locally organized synaptic activity and may be a window to coordinated changes among 

neurons.  We measured the effects of sleep on the LFP alone and on the correlation 

between the LFP and single neurons across different LFP frequency bands. 
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Chapter 2: General Methods 
 

2.1 Animal preparation 

 

 Naïve marmosets were adapted to sit quietly in a primate restraint chair over a 

period of two weeks.  A surgery was then performed under sterile conditions to implant 

two stainless steel headposts held by dental acrylic to the skull.  Details of this standard 

implant surgery can be found elsewhere (Lu et al., 2001).  Post-surgery, a two-week 

recovery period ensued.  During the first week, animals were put on a cautionary 

antibiotic regime to prevent risk of infection.  The animal’s wounds were dressed on a 

daily basis and monitored for signs of healing, and the animal’s diet was supplemented 

until appetite returned.  Approximately one month after surgery, animals were fully 

recovered. 

 Neural recordings were performed during the daytime in the first month of 

experiments.  Animals quickly adapted to this daily routine and sat quietly in the chair for 

a period of up to 6 hours.  A flat-tipped 1mm stainless steel screw was implanted into the 

caudal aspect of the temporal lobe near the junction of the temporal, parietal, and 

occipital lobes for measuring the electroencephalogram (EEG).  This placement is 

optimized for detecting delta (.7-4.2 Hz) and alpha (7-12 Hz) activity but not for sleep 

spindles.  The signal was referenced to a ground screw located in frontal cortex 

(implanted during surgery).  The EEG screw was implanted by performing a 1 mm 
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diameter craniotomy and accurately lowering the screw so that it just impinges on the 

dural surface, providing good signal contact. 

 We then switched recordings to the night hours (8pm to 4am).  This was done 

because we had little success with marmosets falling asleep during daytime sessions.  

Although animals would close their eyes, they only became drowsy during the day.  

Signatures of SWS or REM rarely would appear, only the alpha rhythms of relaxed 

inattentiveness.  Taking after Gucer (1979), who performed sleep experiments with 

macaque monkeys from 6pm to 6am, we found that marmosets slept much more naturally 

at night.  Sleep was deeper, more consistent, and had continuity during night recordings.  

Animals slept in the chair while sounds were played, passing through 5-10 sleep cycles in 

a predictable rhythmic fashion.  Much like Gucer (1979), we found that animals adapted 

to sleeping in the chair within a few sessions (< 1 week). 

 

2.2 Physiological recordings 

 

2.2.1 Neural recordings 

 Extracellular action potentials were recorded using 2-5 MΩ tungsten 

microelectrodes (A-M Systems).  An online spike-sorting algorithm used template-

matching to sort spikes into single units (MSD, Alpha-Omega Engineering) (Worgotter et 

al., 1986).  Sorted single-units were generally well-isolated.  In practice, signal-to-noise 

ratios (20*log10(Vpeak-to-peak/σnoise) where units could be comfortably sorted online were 

>10dB.  However, the majority of units had SNRs >20dB since this made them much 
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easier to work with especially over the long periods of time that sleep recordings required 

(Fig. 2.1A).  An oil-based hydraulic microdrive (Trent-Wells) was used to advance the 

electrode slowly forward stopping every 50 microns for at least a few minutes.  Units 

were searched for solely based on their spontaneous firing so as not to bias our sample of 

neurons toward those that are only driven in sleep (animals were asleep during a majority 

of the time that we recorded).  Since we did not pass up on any units encountered, most 

recordings are likely from the supragranular layers, but, using our methods, we cannot be 

certain of laminar location. 

 Units used in our data set were held for an average of 90 minutes (median=76 

minutes) (Fig. 2.1B).  The lack of movement when animals were sleeping contributed to 

our stable recordings.  The period during which many units were lost was right after 

REM when the animal awakened and regained muscle tone.  Because our testing required 

that we wait for the animal to cycle through different sleep stages, many units could not 

be held long enough.  In fact, we recorded 1218 total units from 5 hemispheres of 4 

animals but could use data from only 493 units.  Of the remainder, some could not be 

driven, but most were simply not held long enough (Fig. 2.1B). 

 

2.2.2 EEG and LFP recordings 

 This study was the first in our lab to combine electroencephalogram (EEG) and 

local field potential (LFP) recordings with neural recordings.  The EEG was measured 

from the EEG screw and was filtered from 1-500Hz and notch filtered at 60Hz using an 

A-M Systems model 1800 differential amplifier.  The LFP was simply the low frequency 

components taken from the microelectrode signal.  It was filtered from 1-300Hz using a 
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programmable filter.  Both the EEG and LFP were amplified 10,000x and digitized at 

1kHz sampling rate.  The EEG was recorded in all four animals (2p, 41o, 43q, and 16s), 

but the LFP was only adopted for the last two animals used (43q and 16s).  The EEG is 

usually considered in four frequency bands: delta (.7-4.2 Hz), theta (4.2-7.5 Hz), alpha 

(7.5-12 Hz), and beta (12-20 Hz).  The EEG was monitored on a digital oscilloscope with 

grid spacing along the abscissa (time) of 500ms and grid spacing of 1V on the ordinate 

(amplitude).  Grids were roughly 1 cm tall and wide so that we were monitoring 2 

cycles/cm.  Standard EEG paper uses 1 cycle/cm.  In general, EEG amplitude was 

contained within two boxes (2V peak-to-peak).  During SWS, amplitude would increase 

beyond two boxes and up to four (2-4V peak-to-peak, generally 3V).  Later, we found 

that recording the EEG on a separate screw may not be necessary as the EEG in the 

electrode signal was sufficiently similar to the EEG measured from the screw.  The EEG 

screw did provide a better solution though for our specialized needs since it was stable 

from day to day and was less noisy than the EEG measured using our high-impedance 

microelectrodes. 

 

2.3 Behavioral assessment 

 

2.3.1 Video monitoring 

 In lieu of an electromyogram (EMG), we used video monitoring of the animals to 

assess their movements.  Low-light CCD cameras fitted with high magnification zoom 

lenses and sensitive in the infrared range were used to monitor details of the face and tail.  
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By closely monitoring the face, we could monitor eye openings, twitches of face muscles, 

and smooth movements of face muscles.  The tail camera was only used in the last two 

monkeys after we realized that the tail uncurls and drops when muscle tone is lost in 

REM (marmosets will curl their tail in the sleeping position).  Originally, we had planned 

on measuring the EMG to monitor muscle tone, but information from the face and tail 

cameras in combination with the EEG was sufficient to accurately classify different 

behavioral states. 

 

2.3.2 Behavioral measures 

 A number of behavioral measures were manually noted according to the 

following code on each repetition of a stimulus set: 

0 – ignore (trial to be ignored because the unit was suddenly lost, transient noise entered 

the signal, or quality of recording compromised in some way) 

1 - awake eo (animal is awake with eyes open) 

2 - awake ec (animal is awake but eyes are closed) 

3 - light SWS 

4 – SWS 

5 - REM 

6 - A to SWS (transition from awake to SWS, later replaced by 21) 

7 - A to REM (animal woke up before completing REM and is going back into REM) 

8 - SWS to REM (period when animal comes out of deep sleep passing through stage 2 

and stage 1 before entering REM) 

9 - SWS to awake (animal starts moving in SWS or shows signs of interrupted sleep) 
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10 – transition (period during which difficult to tell what state animal is in or is going to) 

11 - opened door (experimenter opened the door to arouse animal before a repetition) 

12 - opened door + loud sound (experimenter opened the door and made loud sounds, 

generally by clapping or jingling keys) 

13 - entered chamber (experimenter enters chamber and walks in front of animal so that 

animal sees experimenter) 

14 - entered chamber + loud sound (experimenter goes in chamber in front of animal 

and makes loud sounds to get the animal’s full attention) 

15 – airpuff (an airpuff is delivered to the face through a plastic tube running into the 

chamber; this form of arousal was not often used) 

16 – lights (lights turned on to arouse the animal) 

17 - touched tail (experiment goes in chamber and touches the animal’s tail which 

usually elicits a quick withdrawal response) 

18 – fed (experimenter goes in chamber and feeds animal liquid reward) 

19 - loud sound (experimenter plays a sound louder than normally heard through the 

speaker) 

20 - not monitoring (in some cases, the experimenter could not monitor the animal or 

was not scoring the animal’s state for that session) 

21 - stage 1 sleep 

22 - stage 2 sleep 

23 - awake transition (animals would often awaken briefly and then become relaxed and 

inattentive; this code was used to describe this passively awake condition which was later 

combined with codes 1 and 2 as part of the awake state) 



31 

31 - large theta (not used, was supposed to denote presence of large amplitude theta 

activity) 

32 – spindles (not used, was supposed to denote the seconds long 7-14Hz spindles that 

occur during stage 2 sleep) 

33 - K-complex (not used, was supposed to denote the negative K-complexes observed 

during stage 2-4 sleep) 

34 – motion/motion artifact (animal movements that were detected on the video 

cameras or that generated myogenic potentials on the EEG trace were noted using this 

code; these included lifting of the brow, chewing, sticking out the tongue, movements of 

the ear, and scrunching/stretching of the face) 

35 - face/tail twitch (twitches of the face and tail characteristic of REM) 

36 - eye/eyelid twitch (twitches of the eyelid or underlying eye presumably from rapid 

eye movements) 

37 - tail drop (uncurling and dropping of the tail during onset of REM) 

38 - tail up (picking up of tail back off the platform at REM offset when the animal 

wakes up, often followed by face movements) 

39 - tail lowered (tail slowly lowering as muscle tone is gradually lost across multiple 

trials before entering REM) 

41 - interrupted sleep (usually we allowed animals to awaken on their own; in rare 

instances, often as a control, we would awaken the animal in the middle of a sleep cycle) 

51-60 - awake episodes #’s 1-10 

61-70 - stage1/2 episode #’s 1-10 

71-80 - SWS episode #’s 1-10 
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81-90 - REM episode #’s 1-10 

 

2.3.3 Sleep scoring 

 Both EEG and video monitoring were used to assess an animal’s behavioral state.  

In modern day sleep research, automated methods are increasingly adopted.  We 

considered automating our sleep scoring process and started with a semi-automated 

process that could be verified offline.  Eventually we found that classification of the 

sequence of SWS and REM was relatively straightforward using visual monitoring.  So 

all scoring was done manually online.  Three major behavioral states were readily 

identified using standard human sleep scoring techniques (Carskadon and Rechtschaffen, 

2000):  Awake - eye openings, myogenic potentials in the EEG during facial movements, 

and energy in all EEG frequency bands including the ß band; SWS - large amplitude, low 

frequency activity in the δ range, and no energy in ß band; and REM - low amplitude, 

almost sinusoidal, high frequency (α and ß) EEG, and twitching of face muscles but no 

myogenic potentials on EEG trace.  In two of the animals, upon loss of muscle tone at 

REM onset the tail uncurled and dropped, and REM offset coincided with lifting of the 

tail back into a tucked position, presumably from recovery of muscle tone.  For forced 

awakenings, we actively awakened the animal by playing loud sounds, turning the lights 

on, and entering the chamber to increase awake arousal.  As a note, we found that REM 

was salient and easy to classify although we had initially not planned on studying REM 

since it occupies such a brief part of sleep.  Technically, the REM EEG is similar to that 

in awake and should not be used to distinguish REM from awake according to standard 

practice.  But we found that one could appreciate the difference with some experience.  
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The EEG in REM was devoid of muscle artifacts, not as low frequency in nature, and 

occasionally reached periods where the waveform became low amplitude and was 

sinusoidal because of its clean narrowband frequency content.  The REM EEG was not 

always reliable, but combined with observable face twitches and tail drops and the 

sudden onsets and offsets typical of REM, REM was most clearly defined unlike SWS 

which has smoother transitions or awake which involves an unclear mixture of arousal 

and drowsiness. 

 

2.4 Event Windowing Algorithm 

 

 A novel methodological contribution of this thesis is the development of an 

automated algorithm that detects events in the spike record.  This algorithm is widely 

applicable to any spiking data, and its simplicity and ease-of-use make it adoptable by 

others.  The reason I decided to develop the algorithm was that choosing a time window 

for calculating mean discharge rate should not be arbitrary.  During experiments, I found 

myself constantly dragging the analysis window around to capture driven neural firing.  

Sometimes the neuron had an onset response and then sometimes an offset.  The only 

solution was to use a window wide enough to capture all responses, onsets, sustained, 

offset, and persistent, but how long is long enough and what if there is intervening 

inhibition or you average out any significant firing by making the window too long?  

How do you compare across stimuli that elicit different response types?  On the 

conceptual side, I was also interested in what a ‘good’ cortical response is.  Certainly, it 
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is nice to achieve a sustained response, but these can be weak and scattered compared to 

tight response bursts.  Given the rapid temporal nature of auditory processing, sharp but 

strong responses can be useful.  Using a standard window size does not allow separation 

of these response types and penalizes short events by averaging over a long window. 

 It seemed to me from visual inspection that a simple algorithm should be able to 

capture the multifarious events in the record from short to long, strong to weak.  The 

events seemed discrete, and it might be important to capture them since they might arise 

from different sources or for different mechanistic reasons.  It was harder than it 

appeared.  Before presenting the method that worked, I present some sketches of ideas 

that I tried. 

 

2.4.1 Algorithms attempted 

 Edge detection.  In vision, a bounded object is defined by its edges.  This is no 

different for 1-D PSTH’s.  In principle, an event lies between a high positive slope 

followed by a high negative slope.  In practice, edge detection is hard because it is a 

multiscale problem and is susceptible to noise (derivatives are highpass and magnify 

noise which tends to contain high frequencies).  I ran into typical problems edge 

detection algorithms face when processing images.  How do you distinguish rapid, high 

frequency noise from an edge?  How do you tell extended, slow rising contours of a 

histogram using only local derivatives? 

 Triangle (Geometric) Method.  I thought rather than use the edges I could use 

the peaks.  The rise and fall of an event should be centered about a peak.  This could be 

captured using triangles.  The idea was to draw triangle from every peak (values crossing 
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a pre-determined threshold) down to the nearest time when baseline was reached.  After 

all such triangles were found, I would choose from them in an intelligent way to know 

where the events were.  If triangles overlapped, this was the result of the same event or 

local maxima, and they were combined.  This method makes the most sense but ran into 

two problems.  The first was how you determine the peaks.  A peak is best determined in 

the context of slopes, and throwing that information away made peak detection arbitrary.  

The second problem was in determining baseline points.  If two events are slightly 

merged, then firing need not return to zero.  Still, these were practical not theoretical 

obstacles.  Where to set the peak and baseline thresholds could be empirically 

determined.  The triangle method was closest in spirit to the method that was finally 

adopted which used a more iterative approach. 

 Wavelet.  If there are discrete events in the spike record, and they are local in 

time then a wavelet transform may be the appropriate way to find independent events.  A 

Fourier transform would extract components of different frequencies but most events are 

finite in time and have edges that lead to a broad splatter of frequency.  The problem with 

wavelet methods was really in choosing the appropriate scale.  There is a scale by number 

trade-off.  At a long time scale, two events are treated as one.  Certainly, two events 

would also be returned at a shorter timescale, but then arbitrary criteria would have to be 

used to prune the tree and determine what was the appropriate number and scale of 

events.  By being a complete basis agnostic to these issues, the wavelet was returning 

everything but missing something. 

 Window growing.  In edge detection methods, the window is determined from 

the outside-in (find edges then fill in interior).  The opposite is to build inside-out (find 
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the center and then build out until no more mass accumulates).  In this method, a 

significant bin is found then pieces are added to the left or right until the overall window 

stops being strongly significant.  This method is simple but powerful.  In this recursive 

method, the important timescales emerge on their own.  As an event builds, if it is a long 

event, it will keep accumulating small pieces.  If it is a fast strong event, then it will end 

quickly after the seed window.  Evidence accumulates in favor of one type of window or 

another.  By taking care of time scale, the number of windows that need to be detected 

falls out since all windows are individually found and are considered non-overlapping. 

 Re-inventing the wheel.  As with many things in science, somebody has 

probably already done it before.  The algorithm I settled on was basically a modification 

of the one developed by Legendy and Salcman (1985) and used by others (Hanes et al., 

1995; Sheinberg and Logothetis, 2001).  The only difference was that they applied their 

algorithm to single trial responses whereas mine applied to responses averaged from 

multiple trials.  The advantage is that with multiple trials events are more statistically 

significant.  Legendy and Salcman were trying to detect bursts in single trials, so they 

used Poisson statistics for spike counts.  We used Gaussian statistics since we could not 

only derive a spike count but derive the standard deviation about the mean count (Poisson 

assumes that the standard deviation always equals the mean).  Considering individual 

trials in this way is more statistically powerful since the estimate of mean rate improves 

as n .  Simply summing spike counts across all the trials and assuming a Poisson 

process would not allow for improving estimation accuracy with the number of trials.  

Later, we adapted our algorithm to detect suppression in the spike record.  This is a novel 
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extension of the methods of Legendy and Salcman and proved to be a difficult problem in 

and of itself.  The main difficulty with suppression is that cortical spontaneous rates are 

low.  Statistical distributions of firing rates near spontaneous are highly non-Gaussian in 

that they have long tails (more Poisson-like) and many trials falling in the 0 spikes bin 

(all-or-nothing nature of spiking non-linearity is binary-like).  We found that it was 

necessary to return to a Poisson assumption of spike counts, to lengthen our windows to 

include more possible spikes, and to perform permutation tests to supplement the Poisson 

assumption.  In general, the algorithm would not detect windows unless spontaneous 

rates were high enough to reach significant values of suppression.  This biases the 

algorithm in favor of higher spontaneous rate neurons.  Overall, the excitatory and 

inhibitory algorithms were successful, working under a variety of conditions, for neurons 

with low or high driven and background firing rates, for small or large numbers of trials, 

and for long-lasting or brief events.  Some example windows detected by the algorithm 

are shown in Figure 2.2, and the specific algorithm is given below. 

 

2.4.2 Algorithm: driven responses 

 The algorithm starts with a seed window of 30ms that grows in either the left or 

right direction in 30ms segments.  To determine when to stop expanding the window, the 

algorithm uses thresholding with hysteresis.  Window segments are added as long as they 

meet a soft criterion (psoft<0.1) and the whole window meets a hard criterion (phard<0.01, 

3*sem above spontaneous rate).  Gaussian statistics are assumed for estimates of mean 

firing rate in a particular analysis window.  The mean and standard error of the mean are 

computed and compared to spontaneous firing to determine a p-value for a given 
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window.  The windows turned up by the algorithm were only used as guides in data 

analysis.  For the final excitatory window firing rate is required to be 4*sem above 

spontaneous rate (p<10-4). 

 

2.4.3 Algorithm: suppressed responses 

 For detecting inhibitory windows, we required spontaneous firing to be >1.5 

spikes s-1 and used: seed window=100ms, chunk size=50ms, psoft=.02, and phard=.00005.  

Like in the excitatory algorithm, chunks were added to the inhibitory window as long as 

psoft and phard were met, or, as was often the case since p-values rarely started below the 

hard criterion, we allowed the algorithm to continue as long as the p-value decreased 

toward the hard criterion.  We assumed Poisson statistics to compute p-values from spike 

counts since low firing rates resulted in non-Gaussian distributions.  Even so, responses 

often deviated from our Poisson assumption because of an unusual number of 0 spike 

trials, so we performed a post-hoc permutation test for the means at the p<.01 level (Rice, 

1995).  Although the excitatory and inhibitory algorithms were run independently, they 

usually yielded non-overlapping events, which is critical to the assumption that these 

events represent different processes. 
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Figure 2.1.  Single-unit SNR and hold time statistics.

(a) Signal-to-noise ratios (SNR=20*log10(Vpp/s)) for units (n=636) where spike waveform was 

digitized and stored.  One concern may be that isolation quality decreased with time since units 

were often held for long periods of time.  SNRs of the last 100 spikes recorded from a unit (gray) 

compared favorably to the SNRs when units were first encountered (black) (median first 100 

spikes=22dB, last 100 spikes=20dB).

(b) Hold times in all recorded units.  In general, hold times for units used in the sleep analyses 

(gray) were much longer than hold times for other units that were not used (black) (median 

sleep=76 minutes, other=15 minutes).
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Figure 2.2.  Example driven and suppressed events detected by windowing algorithm.

(a) Well-defined periods of excitation (red) and inhibition (blue) were detected among a 

background of high spontaneous firing.  No false windows were detected in the 9 second long 

spontaneous period following the stimulus.

(b) The varying durations of excitatory responses are well captured by the algorithm.  At higher 

sound levels, excitation is shorter in duration and is followed by inhibition.  In some cases, an 

inhibitory window was detected by the algorithm but then thrown out (dark gray) because it did 

not pass a post-hoc permutation test for the means when compared to spontaneous firing.

(c) An example where inhibition precedes excitation at high sound levels.  Note that windows are 

non-overlapping even though excitatory and inhibitory algorithms were run independently.

40
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Chapter 3: Responses Properties of Single Neurons 
 

3.1 Summary 

 Most sensory stimuli do not reach conscious awareness during sleep.  It has been 

thought that the thalamus prevents the relay of stimuli to cortex.  In order to test this 

hypothesis, we recorded two cortical areas downstream of the thalamus in naturally 

sleeping marmoset monkeys.  Surprisingly, in primary auditory cortex (A1), responses to 

sounds during sleep were quite strong.  We supposed that responses would be more 

depressed in a higher sensory area.  However, in lateral belt (LB), responses were far 

from diminished.  We estimate that stimulus-driven responses dropped ~10% in A1 and 

LB during sleep.  This estimate was consistent across recovery and arousal controls.  

When we closely examined the temporal pattern of responses, we found little difference 

between awake and SWS responses.  Sustained responses, which are rare in anesthetized 

preparations, were commonly encountered in sleep.  Finally, we found that REM behaved 

differently than SWS providing evidence for at least two functional states during sleep.  

Our results suggest that sounds are not exclusively gated by the thalamus and can reach 

up to secondary sensory cortex.  They contradict prevailing notions of depressed sensory 

responses, leaving open the possibility of sensory processing during sleep. 

 

3.2 Introduction 

 The effects of arousal, attention, and anesthetics have been well-documented in a 

variety of sensory brain areas and animal species (Hubel et al., 1959; Desimone and 
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Duncan, 1995; Ter-Mikaelian et al., 2007).  However, the role of sleep in sensory 

processing has not received much interest even though this natural behavioral state is 

critical to an animal’s survival.  Only a handful of studies in the somatosensory, auditory, 

and visual system have documented sleep effects on neural responses to external stimuli 

(see Hennevin et al., 2007 for review). Perhaps this is because many assume the brain is 

shut off from the external world during sleep (Steriade, 2003).  Studies in the thalamus 

have supported this notion (Mukhametov and Rizzolatti, 1970; Coenen and Vendrik 

1972; Hirsch et al., 1983; Livingstone and Hubel, 1981; Mariotti et al., 1989; Edeline et 

al., 2000), leading some to propose that the thalamus serves as a sensory gate.  In line 

with this hypothesis, studies in primary visual cortex (Evarts, 1963, Livingstone and 

Hubel 1981), primary somatosensory cortex (Gucer, 1979), and primary auditory cortex 

(Murata and Kameda, 1963; Brugge and Merzenich 1973) found that most cortical cells 

respond more weakly in sleep and found almost no cells that responded more strongly. 

 But two recent studies in auditory cortex found some neurons that responded 

more strongly in sleep (Pena et al., 1999; Edeline et al., 2001).  Complementing the 

physiology studies, a PET imaging study in humans found that auditory cortex was 

identically activated in sleep and awake for both simple (tone) and complex (subject’s 

name) sounds (Portas et al., 2000).  On the other hand, fMRI studies have found that 

activation in the auditory regions of the temporal lobe decreases during sleep (Czich et 

al., 2002; Czich et al., 2004). 

  Given the conflicting imaging and physiology results, it remains unclear whether 

cortex is responsive to sounds during sleep.  The prevailing model of a disconnected 

auditory cortex may be too simplified.  Sleeping subjects can still tell difference between 
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their name and those of others (Oswald et al., 1960), and evoked potential studies have 

suggested that the signal is processed to the point of deriving semantic meaning (Bastuji 

et al., 2002).  It may be just as important to process some stimuli as it is to suppress them.  

Furthermore, to our knowledge no physiology study has tested higher sensory areas to 

determine whether responses there are strongly depressed as would be predicted in the 

simple model. 

 Here, we recorded in primary auditory cortex (A1) and then secondary auditory 

cortex, lateral belt (LB).  We measured general response properties such as spontaneous 

and driven rates much as earlier studies had done.  We controlled for the arousal of the 

animal and tested the repeatability of sleep effects.  We also examined temporal 

discharge patterns in sleep to see if they retained the character of awake responses. What 

we found is that primary and secondary auditory cortex are quite active during sleep, 

preserving many of the response properties of wakefulness. 

 

3.3 Results 

 

 Data were collected in a total of 1218 units of which 493 units, 399 units in 

primary auditory cortex (A1) of 3 animals and 94 units in lateral belt (LB) of 2 animals, 

are reported here.  These units were held for an average of 1.5 hours so that responses 

could be measured across at least one marmoset sleep cycle (~1 hour).  Two unique 

stages of sleep, slow-wave sleep (SWS) and rapid eye movement sleep (REM), were 

differentiated in addition to the awake state (see Chapter 2: General Methods).  77% of 
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A1 units (645/838) and 65% of LB units (160/245) were driven by at least one stimulus 

(>4*sem above spontaneous rate).  Median spontaneous rate in A1 was 1.0 spikes s-1 and 

was 1.4 spikes s-1 in LB.  In each A1 unit, awake responses were compared to SWS 

responses for 7.7 stimuli on average and to REM responses for 6.4 stimuli on average.  

LB units were tested with an average of 3.9 stimuli in SWS and 3.9 stimuli in REM. 

 

3.3.1 Example units 

 The three example units from A1 illustrate the range of effects observed in sleep 

(Fig. 3.1).  The unit in Figure 3.1A responded with high driven rates during awake trials 

(dark gray) when EEG amplitude (dark bars) was low.  When EEG amplitude went up 

during SWS (light gray), firing rate dropped to almost zero (GainSWS=-96%).  In other 

cases, we were surprised to find the opposite scenario, that firing often increased during 

sleep (Fig. 3.1B, GainSWS=83%).  Finally, the unit in Figure 3.1C had a nearly identical 

response in awake, SWS, and REM (orange) (GainSWS=-10%, GainREM=-1%).  In all 3 

units, similar response modulations were recovered in later sleep episodes spanning the 

course of hours.  Units were well-isolated throughout the recordings.  The signal-to-noise 

ratios of the spike waveforms at the beginning and end of the sessions were >20dB (see 

spike waveform insets in Fig. 3.1).  The stable spike waveforms combined with 

consistent recovery of responses suggest that modulation of responses during sleep for 

these 3 cells cannot be accounted for by non-specific factors like adaptation to the 

stimulus over the course of the session, declining cell health, poor unit isolation, or 

unreliable classification of behavioral state. 
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3.3.2 SWS modulation (A1) 

 Similar to these example units, strong but variable modulations were encountered 

across the population of A1 units tested (n=340).  Units were modulated an average 

magnitude of 38% in both directions.  Although 44% of units decreased their response 

significantly when the animal fell asleep (>3*sem difference between awake and SWS 

firing rates), 34% of units increased their response significantly when the animal fell 

asleep.  As a result of the offsetting bidirectional effects of sleep, overall activity dropped 

by only 5% (mean gain of all units) over the A1 population (n=340 units) (Fig. 3.2A).  If 

we examined gains for each stimulus tested instead of averaging the stimulus gains for 

each unit, similar results were found.  Mean stimulus gain was -6%, and the magnitude of 

modulation averaged 46% for individual stimuli (n=2378) (Fig. 3.2B).  Distributions of 

best driven rates (Fig. 3.2C) and spontaneous rates (Fig. 3.2D) were not significantly 

different between awake and SWS (pbest=.17, pspont=.75, Wilcoxon rank sum, n=384). The 

mixed effects in SWS are unlike those of attention and anesthetics which tend to be more 

systematic and unidirectional (Reynolds and Chelazzi, 2004). 

 Modulation of responses in sleep may differ depending on where in the cell’s 

operating regime measurements are made (near response threshold vs. optimally driven).  

For example, at high firing rates, responses may saturate leaving little room for 

modulation (Reynolds and Chelazzi, 2004).  In general, gain did not depend on firing rate 

(r2=3*10-6, p=.94, n=2378); gains only became more variable (more extreme in 

magnitude) at low rates (Fig. 3.2E).  This could be the result of operating closer to a 

unit’s firing threshold where small effects on membrane potential can lead to large 

changes in firing rate.  Alternatively, this may be the result of increasingly variable 
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estimates of firing at low driven rates where only a few spikes are elicited.  Gain also did 

not depend strongly on spontaneous rate (r2=.01, p=2*10-8, n=2378) (Fig. 3.2F).  

Regardless of the spontaneous activity of a neuron or how strongly it was driven, mean 

gain remained near -5% for the population. 

 

3.3.3 SWS modulation (LB) 

 Given the prevalence of activity in A1, we reasoned that higher cortical areas may 

be more influenced by a change in behavioral state and possible loss of top-down 

processing.  After physiologically defining the primary area A1, we recorded from lateral 

belt (LB), a secondary sensory area (Kaas and Hackett, 2000).  Recordings were made far 

lateral of A1 so as to avoid the A1/belt border where areal identity is ambiguous (see 

Methods).  Minimal tonotopic tuning was seen in these recordings (Fig. 3.3A). Unlike A1 

units, units in LB were hard to drive with simple stimuli and were weakly driven in 

general (Fig. 3.3B).  Whereas A1 responses tapered off at high sound levels, population 

LB responses continued to grow (Fig. 3.3C).  These physiological properties gave us 

confidence that our recordings were outside of the core areas. 

 Figure 3.4A shows the effects of SWS on 84 LB units.  The distribution is not 

significantly different than the gain distribution in A1 (p=.93, Wilcoxon rank sum, 

nA1=340, nLB=84).  Over the population, mean spiking rate dropped little in LB (mean=-

6%), and a majority (63%) of units were active at least as strongly in SWS as in awake 

(36% up, 37% down, and 27% no change in SWS) so that the effects of sleep were again 

bidirectional.  Units were modulated by a magnitude of 37% in either direction on 

average. 
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 One concern may be that LB units were not driven as strongly as A1 units 

(median driven rate A1=16.2 and LB=8.8 spikes s-1, p=2.6*10-8, Wilcoxon rank sum, 

nA1=340, nLB=84) (see Fig. 3.3B).  Hence, they may have been tested in a different firing 

regime or with non-preferred stimuli during sleep.  As mentioned earlier, gains in A1 did 

not depend on firing rate.  To illustrate this, we plotted the gain distributions in A1 for 

different firing rate ranges.  The ranges 0-5, 5-20, and >20 spikes s-1 roughly divide the 

data into the bottom quartile, middle half, and top quartile respectively.  The gain 

distribution is tightest for high firing rates and very broad at low firing rates, but the 

mean of the distribution does not vary (Fig. 3.4B).  When the LB gain distribution is 

overlaid, it falls on the gain distribution for intermediate (5-20 Hz firing rate) firing rates 

in A1 (Fig. 3.4B).  This is consistent with 93% of LB driven rates falling below 20 Hz.  

Therefore, the fact that LB units were driven to different rates than A1 units should not 

affect the conclusion that the mean gain in LB is similar to A1 during SWS. 

 

3.3.4 REM modulation 

 Responses were also measured in REM for 332 units in A1 and 74 units in LB 

(Fig. 3.4, C and D).  Similar to SWS, units in REM underwent both positive and negative 

modulations.  33% of A1 units increased and 39% decreased their driven response in 

REM.  The magnitude of REM modulation averaged 37%, but mean gain in A1 during 

REM was only -6%, representing a small drop of driven activity compared to awake 

responses (Fig. 3.4C).  One key difference between SWS and REM is that spontaneous 

firing rates were often elevated when the animal entered REM (mean awake=4.0, 

REM=5.4 spikes s-1).  This difference did not reach significance (p=.29, Wilcoxon rank 
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sum, n=332) possibly because of the number of units without appreciable spontaneous 

rates but is apparent when spontaneous rates are plotted on a logarithmic axis (Fig. 3.4, E 

and F). 

 A possibly interesting feature is that mean modulation was -12% in LB responses 

during REM, the result of many LB units that shut down in REM (Fig. 3.4D).  On second 

look, the SWS distribution in LB displays a similar pattern, extreme negative 

modulations offset by a high number of weak positive modulations (Fig. 3.4A).  But our 

sample was too small to establish a pattern.  REM distributions in A1 and LB did not 

significantly differ (p=.33, Wilcoxon rank sum) (compare Fig. 3.4C and 3.4D), and the 

REM distribution in LB did not significantly differ from that in SWS (p=.52, Wilcoxon 

rank sum) (compare Fig. 3.4A and 3.4D).  We caution that LB units were driven at lower 

firing rates than in A1.  Earlier we showed that at low driven rates, extreme gains are 

encountered more often, even in A1 (Fig. 3.4B).  It will be interesting to see in future 

studies if in a higher area more cells are completely shut down in sleep, but our data do 

not allow us to speculate further. 

 

3.3.5 Correlation between SWS and REM 

 A general process such as a loss in arousal would have predicted that all responses 

would be depressed and does not seem to explain the bidirectional effects of sleep.  

Further negating the idea of a simple loss of arousal, we found that modulation of 

responses in REM was independent of SWS.  For example, the unit in Figure 3.5A had a 

weak response in SWS (Gain=-69%) but a strong response in REM, as strong as in awake 

(Gain=+8%).  On a unit-by-unit basis, gains in SWS were poor predictors of gains in 
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REM:  out of 382 units tested in all 3 states, roughly one-third (n=135) showed opposite 

changes in SWS and REM.  This is the fraction expected if SWS and REM are 

uncorrelated (see Methods).  In fact, there was a slight tendency for REM and SWS firing 

rates to differ more from each other than from awake rates (median |SWS-REM| = 4.6 

and |awake-(SWS+REM)/2| = 3.8 spikes s-1, p=.005, Wilcoxon rank sum, n=382) (Fig. 

3.5B).  The differing SWS and REM modulations appear to be the result of independent 

ongoing sleep processes.  If so, changes in ongoing spontaneous activity may be an 

indicator of changing excitability.  We observed little such correlation between 

modulation of spontaneous and stimulus-driven firing (r2=.009, p=.18, n=195) in units 

having appreciably different awake and SWS spontaneous rates (>2*sem difference) 

(Fig. 3.5C).  This suggests the need to test driven responses directly in order to assess 

neural excitability with respect to feedforward sensory input which may very well differ 

from the mixture of internal activity. 

 

3.3.6 Arousal controls 

 A key difficulty is that animals may have never reached full awake arousal during 

the night.  Awake firing rates could have been underestimated.  To address this issue, we 

tested two awake conditions, one in which the animal naturally awakens in a darkened 

chamber and falls back asleep within minutes as in a typical experiment and another 

condition in which the experimenter turns the lights on and actively keeps the animal 

awake (see Methods).  The sleep gains between the two conditions were similar (mean 

natural awakening=-22% vs. forced awakening=-22%, p=.95, Wilcoxon rank sum, n=20) 

(Fig. 3.6A).  Another possibility is that awake arousal was highly variable, sometimes 
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reaching full arousal and sometimes only reaching drowsy levels.  We used the eyes 

being open as an indicator of full arousal or drowsiness.  Eyes open trials gave a 9% 

improvement in gain compared to eyes closed trials (mean eyes closed=-5% vs. eyes 

open=-14%) suggesting some additional arousal effect although not reaching significance 

(p=.15, Wilcoxon rank sum, n=84) (Fig. 3.6A).  Finally, we compared the activity in the 

first five trials to the remaining trials the animal was awake.  Activity immediately upon 

arousal, though, was no greater than in the remaining awake period before the animal fell 

back asleep (p=.69, Wilcoxon rank sum, n=298) (Fig. 3.6B).  In summary, although 

animals spent very little time awake, these controls suggest that a sufficient and stable 

awake arousal was reached for measuring firing rates without underestimating them. 

 

3.3.7 Multiple sleep cycles 

 It is highly possible that responses are dynamic, varying from one sleep cycle to 

the next.  As a control, we tested the repeatability of SWS and REM modulation by re-

testing approximately half of the units in a later sleep cycle (Fig. 3.7, A and B).  Gains 

computed in later episodes of SWS correlated with gains measured in previous cycles 

(r2=.74, p=1*10-38, n=127) (Fig. 3.7A).  This was also the case for REM modulations 

measured in two separate episodes (r2=.57, p=1*10-22, n=116) (Fig. 3.7B).  These 

recovery controls suggest that the effects of sleep can be repeated each cycle and were 

not dominated by non-specific factors (noise in our measurements or non-stationarity of a 

neuron’s response). 

 We also tested whether the activity of the population changed over the course of 

the night from the evening to the early morning.  Activity could conceivably change 
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because the amplitude of slow-waves increases as animals sleep more deeply in the 

middle of the night and because at the end of the night REM periods become more 

dominant.  Also, awake levels may progressively decrease during the night.  No trend, 

however, was present in awake or SWS firing rates with sleep episode (Fig. 3.7C, gray 

curves).  The relative closeness of SWS and awake responses (small gain) was 

consistently present throughout the night.  The distributions of maximum unit driven 

rates early in the night (cycles 1-2) did not differ from those late in the night (cycles 7-10, 

~5 hours later) whether in the awake state (p=.67, Wilcoxon rank sum, n=34) or SWS 

(p=.56, Wilcoxon rank sum, n=34).  Correspondingly, mean gain in the early night (-3%) 

was similar to mean gain at the end of the night (-9%) (p=.93, Wilcoxon rank sum, 

n=34).  Responses in REM displayed similar consistency (Fig. 3.7D).  Combined with the 

reliable recovery of responses within units (Fig. 3.7, A and B), these data suggest that 

sensory responses were state-specific but otherwise stationary in the population across 

the night. 

 

3.3.8 Temporal discharge patterns in SWS and REM 

 Units in A1 and LB during the awake state often demonstrate sustained firing in 

addition to an initial onset response (Brugge and Merzenich, 1973).  Some anesthetics are 

known to diminish the later, sustained component (Phillips, 1985).  This was not the case 

in sleep though.  In units whose response started within 60ms of stimulus onset, sustained 

responses (response after 100ms) were only somewhat more diminished than onset 

responses in SWS (mean gain sustained=-12% vs. onset=-5%, p=.07, Wilcoxon rank 

sum, n=348) (Fig. 3.8A) or in REM (mean gain sustained=-16% vs. onset=-8%, p=.05, 
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Wilcoxon rank sum, n=311) (Fig. 3.8B), and sustained responses were still the dominant 

form of response (Fig. 3.8C); onsets and offsets were a minority even in REM.  The 

tendency for slightly stronger sustained responses in awake led to longer average 

response windows detected by our algorithm (mean awake=118, SWS=104, REM=102 

ms, n=3516 stimuli).  This difference is reflected in the population response histogram 

(Fig. 3.8D).  The onset is similar in all states, but the awake response diverges slightly in 

the sustained portion.  Nonetheless, responses are long-lasting in awake, SWS, and REM. 

 Interestingly, the pattern flips in the offset portion of the population response (Fig. 

3.8D, right side).  SWS responses persist longer than awake and REM responses 

especially in the late portion of the offset (>100ms post-stimulus).  In general, sustained 

responses gave negative gains (awake > sleep) while onsets and offsets gave near zero or 

slightly positive gains (sleep > awake) (Fig. 3.8, E and F).  There was a negative 

correlation between the duration of the response and sleep modulation with gain 

plateauing at -10% for responses lasting longer than 150ms (thick black curves in Fig. 

3.8, E and F).  For short responses such as onsets and offsets and short sustained, effects 

were above 0% (red and blue colored triangles in Fig. 3.8, E and F). 

 Breaking down responses by duration and whether they are onset, offset, or 

sustained is a crude measure of temporal properties.  To confirm that responses retained 

their temporal character in SWS and REM, we computed a vector similarity with awake 

PSTH patterns.  Median correlation was 0.78 (n=1068) between awake and SWS 

responses (Fig. 3.9A) and 0.79 (n=709) between awake and REM responses (Fig. 3.9B).  

Correlation rarely went below 0.5.  These correlation values are noteworthy given that 

estimated within-state similarity (see Methods) was only slightly better (median=0.85 for 
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awake/SWS and median=.87 for awake/REM data used in between-state comparisons).  

So correlations of PSTHs between awake and asleep (~.78) approached the limit of 

similarity possible given noise in PSTH estimates (~.85).  This high similarity suggests 

that in principle SWS and REM response patterns could support the same temporal code 

awake patterns can. 

 

3.3.9 Bursting 

 Averaged PSTHs can be identical but have different underlying spiking statistics.  

An important property of SWS responses reported in the literature is their bursting 

pattern (Edeline et al., 2000; Edeline et al., 2001).  Using a simple measure (fraction of 

spikes occurring within 5ms of each other), we found that SWS responses were burstier 

than awake responses (mean burst fraction in awake=.09 vs. SWS=.11, p=3*10-9, 

Wilcoxon rank sum, n=1848), and SWS responses were burstier than REM responses 

(mean REM=.09 vs. SWS=.11, p=3*10-8, Wilcoxon rank sum, n=1848) with no 

difference between REM and awake (p=.8, Wilcoxon rank sum, n=1848).  This pattern 

was true regardless of which minimum ISI criteria (4, 5, 8, 10ms) was used to identify 

bursts (Fig. 3.9C). 

 

3.4 Discussion 

 

 In this chapter, we measured general response properties of neurons in auditory 

cortex during sleep.  Our measurements reveal that sleep depresses stimulus-driven 
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activity by only ~10%.  This was the case in both A1 and LB.  Given that this is the first 

study to explore responses in a non-primary area, it will be interesting to see results from 

future studies especially imaging studies which are beginning to distinguish more and 

more auditory cortical fields (Petkov et al., 2006). 

 

3.4.1 Comparison to previous studies 

 Our results appear to differ markedly from most previous sleep studies in cortex.  

In the visual, somatosensory, and auditory systems, neurons were found to be less 

responsive during sleep (Evarts, 1963; Gucer, 1979; Livingstone and Hubel, 1981; 

Murata and Kameda, 1963; Brugge and Merzenich, 1973).  One possible difference is 

that our recordings tended to be in the upper lamina while other studies may have tended 

toward middle lamina (granular layers).  Layer 4 cells receive direct thalamic input, and 

thalamic responses are already known to be depressed (Edeline et al., 2000).  Recurrent 

intracortical connections between upper layer neurons or feedback connections from 

other areas may re-amplify the response received from input layers (Liu et al., 2007).  A 

species difference may also explain the departure in our results.  We recorded from a 

New World primate, the common marmoset, which is diurnal.  Most previous studies 

were done in nocturnal animals and not primates.  However, we point out that from an 

evolutionary perspective, sleep seems to have diverged early on before the split between 

mammals and birds (Siegel, 2005), and all of the above studies used mammals which 

display common sleep patterns. 

 Some observations from earlier studies are consistent with our findings.  Previous 

data did seem to suggest that neurons could be more active in cortex than subcortically.  
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In a study comparing neurons in thalamus and V1, the authors noted that cortical neurons 

displayed more mixed effects of sleep than those in thalamus (Livingstone and Hubel 

1981).  A second group studying auditory thalamus and A1 also observed that cortical 

neurons (Edeline et al. 2001) were modulated much more heterogeneously compared to 

thalamic neurons (Edeline et al. 2000).  Another study in A1 found that sleep most often 

(>50% of neurons) did not affect firing rates (Pena et al., 1999). 

 Human imaging studies in sleeping and lightly sedated patients found activation 

to external sounds in the temporal lobe (Portas et al., 2000; Davis et al., 2007).  However, 

a second group found a contradictory result (Czich et al., 2002; Czich et al., 2004).  This 

ambiguity may be because the BOLD signal measures synaptic activity (Logothetis et al., 

2001) which could be a mixture of the depressed thalamic input and enhanced cortical 

processing.  Spiking activity, corresponding to the output of an area, is not directly 

reflected in imaging signals (Viswanathan and Freeman, 2007) making comparison to 

extracellular physiology difficult. 

 A possibility that one hopes to avoid is having confounded data.  But with the 

mixed results in the literature, the question arises as to whether everyone is right.  Here, 

we took great care to ensure that our measurements were accurate and as unconfounded 

as possible.  We showed that responses were stable from cycle to cycle and over the 

course of the night.  Also, this study attempted to quantitatively assess the animal’s level 

of awake arousal.  Arousal controls were performed to determine whether awake firing 

rates were underestimated.  We determined that arousal only affects our estimates by 

<10%.  Our controls were simple (forcing full arousal, comparing eyes open to eyes 

closed, comparing early versus late night, and looking at the first 5 trials immediately 
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after waking).  Future studies using more powerful techniques could elaborate on our 

findings.  For one thing, a comparison of firing rates when the animal is awake during the 

day versus during the night would help control for circadian influences.  Furthermore, 

engaging the animal in a task upon waking may give best results.  However, it would be 

very difficult to engage the animal without upsetting the smooth rhythms of their sleep 

cycle. 

 No study exists for comparing effects of sleep on response patterns.  The large 

variety of stimuli we used elicited a range of firing patterns.  We found that temporal 

patterns were very stable across behavioral states.  An interesting observation was that 

onsets and offsets were less affected.  In fact, long duration offsets were enhanced not 

depressed in SWS.  We currently lack an explanation for this puzzling result.  In line with 

previous work, we found an increase in burstiness strictly during SWS.  The 2-5% 

increase we observed (depending on max ISI allowed) is similar to that observed by 

Edeline et al. (2001) in guinea pig auditory cortex.  Bursting could improve information 

transfer to the next stage of cortical processing or may reflect burstier thalamic inputs 

(Edeline et al., 2000). 

 The observed effects of sleep should be distinguished from those of attention and 

anesthetics.  Attention effects are usually unidirectional unlike the mixture of up and 

down modulations of responses observed in sleep (Reynolds and Chelazzi, 2004).  

Anesthetics may induce cortical oscillations and behavioral unresponsiveness similar to 

SWS (Lydic and Baghdoyan, 2005), but unlike neural firing under anesthesia (Phillips, 

1985), SWS firing patterns were mainly sustained responses.  Many neurons actually 

improved their response in SWS.  These findings and the fact that REM behaved 



57 

independently from SWS suggest that the sleep state is different than the anesthetized 

state at the neural level as has been shown by others (Torterolo et al., 2002; Cotillon-

Williams et al., 2003; Kishikawa et al., 1995; see review by Hennevin et al., 2007). 

 

3.4.2 Functional significance 

 Our findings are consistent with studies of auditory performance during sleep.  

Although acoustic arousal thresholds are much higher in both SWS and REM (Bonnet, 

1982), an interesting finding has been that sleeping subjects retain the capability to 

differentially respond to their own name over others and to discriminate forward from 

reversed names (Oswald et al., 1960).  Activity in higher auditory areas such as LB may 

be necessary for such detection to take place.  From an ecological standpoint, sleep is a 

vulnerable but necessary period (Zepelin, 2000).  As the only distance sense remaining, 

hearing may be important for detecting sounds at night to help protect the animal from 

predators or awaken a mother to its baby’s cries.  It is notable that studies in the auditory 

modality have tended to show the most activity in sleep (Pena et al., 1999; Edeline et al., 

2001; Portas et al., 2000).  Studies in vision (Livingstone and Hubel, 1981) and 

somatosensation (Gucer, 1979) have not seen strong responses in cortex.  A comparison 

of two or modalities in the same experimental animal and setting could help determine 

the generality of sleep effects. 

 

3.4.3 A revised view of hearing during sleep 

 Original theories of sleep had assumed that the brain shuts off to the external 

world (Steriade, 2003), but our results oppose such notions and are in line with current 
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hypotheses that cortex is quite active during sleep.  While this activity is usually assumed 

to relate to internal processes involved in learning and memory consolidation (Jha et al., 

2005; Siegel, 2001; Stickgold, 2005), cortex appears to be capable of external activation.  

A simple effect like a drop in arousal level cannot account for the bidirectional 

modulations within SWS and between SWS and REM.  Feedforward thalamic input, 

local inhibitory circuits, recurrent connections, and top-down modulations may play a 

role in setting a neuron’s response.  Sleep likely modifies all of these leading to complex 

patterns of modulation.  The idea of a simple thalamic gate that shuts down responses 

seems unlikely.  We found no evidence for such a gate even at a secondary cortical 

station.  Although many other auditory fields (Kaas and Hackett, 2000) cannot be ruled 

out because they were not tested, the gate may lie even higher up in association areas 

involved in integrating sensory percepts or frontal areas involved in decision making as 

suggested by limited evidence from imaging studies in sleeping, vegetative, and lightly 

sedated subjects (Portas et al., 2000; Laureys et all, 2000; Davis et al., 2007).   For now, 

the results presented here establish the validity of our preparation for studying sensory 

processing during sleep.  In the next chapter, we go beyond general properties and ask 

how auditory processing changes at the neural level during sleep. 

 

3.5 Methods 

 

 For details of physiological recordings, sleep scoring, event detection algorithm, 

and stimuli used, see Chapter 2: General Methods.  We note here that for forced 
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awakenings animals were actively awakened by playing loud sounds, turning the lights 

on, and entering the chamber to increase and maintain awake arousal.  In the first two 

animals (M2p and M41o), we did not keep track of absolute sleep episode number only 

relative sleep cycle, so their data were not used in the early versus late night comparison 

of activity (Fig. 3.7, C and D) but could be used in the recovery controls comparing one 

cycle to the next (Fig. 3.7, A and B).  In M16s and M43q, we kept accurate track of the 

absolute episode number of each cycle starting from when the animal first fell asleep. 

 

3.5.1 Identification of A1 and LB 

 Primary auditory cortex was identified based on its proximity to the lateral sulcus 

(LS) marked during surgery, responsiveness to pure tones, and presence of a clear rostral-

to-caudal (low-to-high) tonotopic gradient (Fig. 3.3A).  After identifying A1, we 

recorded from LB by moving further lateral (~4mm away from the LS) (Kaas and 

Hackett, 2000) in two animals (M43q and M16s).  LB neurons often responded to noise 

stimuli, were not very responsive to tones, and were poorly frequency tuned if at all 

(Rauschecker et al., 1995).  We caution here that although our recordings are from medial 

lateral belt (as opposed to anterio- or caudo- lateral belt), no effort was made to 

distinguish LB from parabelt as no physiological criteria currently exist to differentiate 

these two fields.  Recordings may well have encroached on parabelt judging by distance 

from sulcus, the increasing presence of visual responses, and post-mortem histology in 

one animal (the other animal is still in use). 
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3.5.2 Data analysis 

 For the results reported here, we do not distinguish between different stimulus 

types.  We used the data for any stimulus that elicited a significant driven response (>4 

sem above spontaneous rate) in at least one of the behavioral conditions (awake, SWS, or 

REM).  Mean discharge rate r was determined using the analysis windows found by our 

algorithm.  The algorithm returned multiple windows per response corresponding to 

different components (onset, offset, sustained).  For general analyses, an overall window 

starting at the earliest detected window and ending with the latest detected window was 

used.  For specific analyses, individual windows were used.  A window was classified as 

onset if it started and ended within 100ms of the stimulus being turned on.  A window 

was considered a sustained response if it started at least 30ms before the stimulus was 

turned off and continued beyond the first 100ms of stimulation.  An offset window 

started and ended after the stimulus was turned off. 

 We computed percent modulation in sleep by comparing stimulus driven firing 

rates in two different states according to the formulas: 
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 The overall gain for a unit was the mean of all the individual stimulus gains.  A 

unit was considered significantly modulated if sleep firing rate differed by 3*sem from 

awake firing rate for any stimulus (p<.01).  We did not correct for multiple comparisons 

since the number of stimuli tested for each unit was not large (mean=7), and we were 

already using a strict significance criterion.  Usually, the number of stimuli traded off 
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with the number of trials that could be run so that there was a reduced advantage to 

performing multiple comparisons across stimuli, but the effect of multiple comparisons 

did persist (80% of units reached significance but only 47% of stimuli). 

 For correlating PSTH’s, we first subtracted spontaneous rate, smoothed PSTH’s 

by a 20 ms moving average filter, subtracted out the mean, and performed a dot product 

according to: 
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 To estimate an upper bound on the similarity that is possible given the noise in 

PSTH measurements, two new PSTHs were simulated from Gaussian draws using the 

mean and standard deviation of each 1 ms bin of the PSTH in a given state.  Similarity 

between these two PSTHs from the same state was compared to correlation obtained 

between PSTHs from different states. 

 For bursting analysis, inter-spike intervals (ISI) were computed during stimulus 

presentation for all repetitions.  Percent bursting was the number of ISI’s < x (where x=4, 

5, 8, or 10 ms) divided by the total number of ISI’s. 

 Correlation between SWS and REM.  To perform an unbiased, non-parametric 

3-way comparison between Awake (A), SWS (S), REM (R), we ordered firing rates in 

the three states for each unit.  We then counted the frequency of certain patterns.  If REM 

and SWS are correlated, then the pattern XXA or AXX (where X = REM or SWS) should 
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occur more often than chance, and the pattern XAX should occur less often than chance 

(chance levels: pXAX=1/3, pXXA|AXX=2/3). 



63 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.1.  Example units modulated during sleep. 

 
(a) Spiking activity and EEG during different time points while the animal slept (data was not 
collected continuously).  This unit’s response consistently went down when the unit was tested in 
sleep (gain=-96% in SWS) (dark gray=awake, light gray=SWS, and orange=REM).  The spike 
raster (oriented vertically, each column represents a single trial) shows a clear loss of spiking 
upon entering into SWS in episode 2, a recovery of response upon awakening in episode 3, and 
a loss of response in SWS of episode 4.  Far right, the PSTH averages the activity across all trials 
for each state and is plotted on its side.  The clear response in awake is absent in SWS and 
REM.  Gray shaded strip is the analysis window determined by our windowing algorithm.  Dashed 
lines demarcate stimulus playing.  Bottom, the normalized EEG amplitude for each epoch tested 
is shown (breaks between EEG bars denote non-continuous measurements).  When driven 
spiking is high in awake periods, EEG amplitude is low.  In SWS periods, high EEG amplitude 
accompanies diminished firing.  Inset, first 50 (black) and last 50 (gray) spike waveforms 
collected during the 2.5 hour long session.  Horizontal offset is for display purposes only. 
 
(b) Same format as (a).  This unit’s response went up in sleep (gain=83% in SWS).  Firing rate 
increased when EEG amplitude (SWS) increased.  Also, despite the large drop in awake and 
REM firing rates, they retained similar response profiles to SWS as seen in the PSTHs.  Session 
spanned 2 hours. 
 
(c) Same format as (a).  Unit’s response was similar in awake, SWS, and REM (gain=-10% in 
SWS).  Regardless of multiple changes in EEG amplitude and behavioral state over the 3 hour 
long session, the unit remained consistently well-driven by the stimulus, and the PSTH retained 
its distinct onset and offset pattern in all 3 states. 
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Figure 3.2.  Stimulus-driven and spontaneous activity in A1 during awake and SWS. 

 
(a) Histogram of %Gain(SWS-A) for cells recorded in A1 (n=340).  Negative gains are units 
whose responses went down in SWS.  Positive gains represent units whose responses went up 
in SWS.  Lightly shaded portions of bars represent responses that did not significantly differ 
between awake and SWS (<3*sem difference).  Mean gain = -5% (vertical dotted line). 
 
(b) Histogram of %Gain(SWS-A) for all stimuli tested in A1 (n=2378).  Same format as (a).  Mean 
gain = -6%. 
 
(c) Scatter plot of stimulus-evoked firing rates in awake and SWS for the best stimulus of a unit.  
Maximum driven rates did not significantly differ (p=.17, Wilcoxon rank sum, n=340). 
 
 (d) Scatter plot of unit spontaneous firing rates in awake and SWS.  Spontaneous rates did not 
significantly differ (p=.75, Wilcoxon rank sum, n=340). 
 
(e) %Gain as a function of driven rate for all stimuli tested in A1.  No trend is present with driven 
rate (r2=3*10-6, p=.94, n=2378). 
 
(f) %Gain as a function of spontaneous rate for all stimuli tested in A1.  A weak trend is present 
with driven rate (r2=.01, p=2*10-8, n=2378). 
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Figure 3.3.  Location and properties of lateral belt recordings.

(a)  Tonotopic maps in the 2 animals where LB recordings were obtained. Before recording in LB, 

A1 was mapped out. The tonotopic progression can be seen in the maps of both animals. In 

M16s (top), A1 was bounded rostrally by R (rostral field). In M43q (bottom), A1 was bounded 

caudally by CM (caudomedial field). In both cases a clear frequency reversal is seen at the 

borders (red dashed lines).  Colored dots indicate units whose center frequencies were 

determined.  The dots are slightly dispersed for display purposes. Black dots represent track 

locations where center frequencies were not determined because units were unresponsive to 

tones or narrowband noise. Belt recordings (blue circles) were made far from the lateral sulcus 

(diagonal black line). These regions had weak overall responses and poor tonotopic gradients as 

evidenced by the lack of colored dots. Both maps are from the right hemispheres of the animals.

(b) Units in LB were not driven as strongly as units in A1 (median best response LB=8.8 vs. 

A1=16.2 spikes s-1, p=3*10-8, Wilcoxon rank sum, nLB=86, nA1=340).  Vertical dashed lines 

represent medians.

(c) Population rate-levels in A1 (n=341) and LB (n=54). Curves from either awake or SWS were 

normalized by peak response then summed. Activity in LB is more monotonic (grows with sound 

level) than in A1.  Shaded regions represent +.5*sem.
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Figure 3.4.  Stimulus-driven and spontaneous activity in LB during SWS and REM. 

 
(a) Histogram of %Gain(SWS-A) for cells recorded in LB (n=84).  Same format as Figure 3.2a.  
Mean gain = -6% (vertical dotted line). 
 
(b) Control for effects of firing rate in comparing A1 and LB.  Dividing the A1 data into low (0-5 
Hz), middle (5-20 Hz), and high (>20 Hz) firing rates, yields three gain distributions of near 
identical medians (-6%, -13%, and -3% respectively) (inverted triangles) but increasing variance 
(standard deviation=80%, 55%, 43%). The gain distribution is tightest for high firing rates. The 
distribution for LB (black) falls on the A1 distribution for intermediate firing rates (5-20Hz) 
consistent with LB rates averaging 8 Hz + 7Hz. 
 
(c-d) Gain histograms in REM for A1 (c) and LB (d).  Same format as (a).  Mean gain=-6% (A1) 
and -12% (LB) (vertical dashed lines). 
 
(e-f) Scatter plots of spontaneous firing rates in A1 (e) and LB (f).  Although a trend toward higher 
REM spontaneous rates appears to be present, spontaneous rates were not significantly different 
from those in awake whether in A1 or LB (pA1=.29, pLB=.31, Wilcoxon rank sum, nA1=332, 
nLB=74). 
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Figure 3.5.  Lack of similarity between SWS and REM responses.

(a) Example unit that responds strongly in REM (gain=+8%) but not in SWS (gain=-69%).  Same 

format as Figure 3.2.  The cell's response in REM is similar to awake, but in three different 

occurrences of SWS, the response is much weaker.  Windowing algorithm captures the 

significant 250 ms portion of the response which extends well beyond stimulus offset (gray 

shaded region).  Unit was well-isolated at beginning and end of the ~4 hour long recording (see 

inset spike waveforms).

(b) Difference between SWS and REM firing rate plotted against the difference from awake firing 

rate.  Firing rates in SWS and REM are no closer to each other (median difference=4.6 spikes s-1) 

than they are to awake (median difference=3.8 spikes s-1) (p=.005, Wilcoxon rank sum, n=382).

(c)  In units having spontaneous rates that were >2 Hz and significantly modulated in sleep, gain 

of stimulus-driven responses (spontaneous rate subtracted) did not positively correlate with the 

modulations of spontaneous rate whether in SWS (r2=.01, p=.18, n=195) or REM (r2=.01, p=.26, 

n=202).
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Figure 3.6.  Arousal controls.

(a) %Gain(SWS-A) recomputed under different arousal conditions.  Far left bar represents 

mean+sem of SWS gain distribution for all awake conditions.  Middle bars compare gain for 

passive versus active (experimenter induced) awakenings in units tested in both conditions 

(n=20).  Right bars compare gain for eyes open versus eyes closed trials in units where at least 4 

trials were collected in both conditions (n=84).

(b) Comparison of awake firing rates for the first 5 trials after awakening and the remaining trials 

the animal was awake before falling back asleep.  One might expect that firing would be strongest 

immediately when the animal awakens, but firing rates did not significantly differ from those 

before the animal became drowsy again (p=.69, Wilcoxon rank sum, n=298).
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Figure 3.7.  Stability of responses from cycle to cycle and throughout the night.

(a) In some units, a recovery control was performed.  Modulation of firing was re-tested in a later 

sleep cycle.  Order of testing was either Awake-SWS-Awake (ASA) or SWS-Awake-SWS (SAS).  

There was a high correlation between pre-gains and post-gains suggesting similar modulation of 

a neuron in two separate sleep cycles (r2=.73, p=7*10-78, n=272).

(b) Recovery controls for REM.  Order of testing was either Awake-REM-Awake (ARA) or REM-

Awake-REM (RAR).  There was a high correlation between pre-gains and post-gains suggesting 

similar modulation of a neuron in two separate sleep cycles (r2=.69, p=4*10-65, n=252).

 

(c) Trend in population activity over the course of the night (error bars represent +sem).  

Recordings were performed throughout the night starting from when the animal first fell asleep 

until the early morning.  No clear trend in either awake or SWS responses is present, and the two 

curves follow each other, representing the idiosyncrasies specific to the population of neurons 

sampled during that episode.

(d) Same format as in (c) except for REM responses in comparison to awake responses.
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Figure 3.8.  Onset, offset, and sustained firing patterns observed in awake and asleep. 

 
(a) Comparison of unit gains in SWS for onset (first 100ms of stimulus) and sustained portions of 
response (remainder of stimulus).  SWS gains are similar for both portions of the response with a 
slight tendency toward more depressed sustained responses (mean onset =-5% vs. sustained 
gain=-12%, p=.07, Wilcoxon rank sum, n=348). 
 
(b) Same as (a) except for REM.  A tendency toward more depressed sustained responses was 
present (mean onset=-8% vs. sustained gain=-16%, p=.05, Wilcoxon rank sum, n=311). 
 
(c) Windows detected by our algorithm (see Chapter 2: General Methods) were classified as 
onset, offset, or sustained.  The number of sustained responses dropped slightly in sleep (SWS 
or REM) as reflected in the shorter average duration of detected responses (inset).  Windows 
detected in LB (blue) are plotted for comparison.  Even in LB sustained responses were 
prominent. 
 
(d) Population response profiles for all stimuli tested in awake, SWS, and REM.  Population 
PSTH was obtained by summing, without normalizing, all responses (spontaneous rate 
subtracted) during their respective driven windows.  Responses were long-lasting in all 3 states.  
Offset portion (after stimulus ends) of responses is indicated by the break on the abscissa.  SWS 
responses demonstrated a strong late offset component. 
 
(e) %Gain in SWS as a function of the length of the response for different response types.  Long 
offsets (blue) were stronger in SWS than awake.  Sustained responses (green), however, were 
stronger in awake (negative gains).  The sampled points represent the 0-5th, 5-10th, 10-20th, 20-
40th, 40-60th, 60-80th, and 80-100th percentiles of all window durations.  Colored triangles on right 
hand side represent medians for each response type.  Error bars represent +sem and are only 
shown for the curve that uses all windows (black). 
 
(f) %Gain in REM as a function of the length of the response.  Same format as (e).  Like SWS, 
REM onset and offset gains are more positive than sustained response gains.  For longer 
windows, gain tends to become more negative. 
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Figure 3.9.  Measure of PSTH similarity and burst fraction.

(a) The distribution of similarity values (Pearson's product-moment correlation coefficient) 

between PSTH profiles in awake and SWS.  Response patterns were highly correlated 

(median=0.78, vertical dashed line).

(b) The distribution of similarity values between PSTH profiles in awake and REM.  Response 

patterns were highly correlated (median=0.79, vertical dashed line).

(c) Neurons tended to be burstier (fraction of inter-spike intervals < maximum ISI) in SWS.  

Awake and REM spike trains had similar burst fractions.  Asterisks represent significance at the 

p<.001 level in comparison of SWS to awake (or REM) (Wilcoxon rank sum, n=1848 stimuli).
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Chapter 4: Tuning Properties of Single Neurons 
 

4.1 Summary 

 During sleep, hearing is dulled.  Yet our results and those of others using both 

single-neuron physiology and functional imaging reveal strong activation to sounds in 

auditory cortex.  Here, we asked how hearing can be diminished in sleep despite the 

presence of sound-evoked activity in cortex.  By closely examining neural responses 

across a wide range of stimuli, we found that the systematic loss of both excitation and 

inhibition reduced the dynamic range of SWS responses.  Importantly, this occurs 

without changing overall activity since the loss of excitation appears to be compensated 

by less inhibition.  This phenomenon was observable in both A1 and LB and resulted in 

weak but predictable modifications of sound level threshold, intensity tuning, frequency 

tuning, and phase-locking.  In REM, dynamic range was not as strongly weakened as in 

SWS.  A simple model was able to capture these phenomena.  We conclude by 

suggesting that the availability of dynamic range in wakefulness may be important for 

coding the dynamics of sounds or for matching responses to the statistics of the 

environment.  This novel perspective may provide a neural basis for the perceptual 

consequences of SWS. 

 

4.2 Introduction 

 Humans in deep sleep only awaken to the loudest sounds (Bonnet, 1982).  But 

they are still capable of discriminating between their own name and those of others 
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during sleep (Oswald et al., 1960).  The brain seems to still process sounds during sleep 

even though they do not reach conscious awareness (Bastuji et al., 2002).  It is important 

to study how this processing during sleep differs from awake processing.  In the previous 

chapter we demonstrated that processing can occur because of the presence of neural 

activity in primary and secondary auditory cortex.  The question of how auditory 

information is processed is the topic of this chapter.  One limitation of previous studies is 

that they relied on measurements of gross activity which belie possibly complex 

modifications during sleep.  The seemingly random effects of sleep on single neurons 

(Livingstone and Hubel, 1981; Pena et al., 1999; Edeline et al., 2001) suggest that peak 

responses are a poor indicator of underlying neural mechanisms.  Here, we tested neural 

responses across the dynamic range of sound intensities using a variety of sounds and 

found a systematic pattern of effects in sleep. 

 

4.3 Results 

 

4.3.1 Driven responses in SWS 

 As detailed in Chapter 3, we recorded from 340 neurons in the primary auditory 

cortex (A1) of naturally sleeping marmoset monkeys during at least one episode of slow-

wave sleep (SWS) and one episode of wakefulness.  Similar to recent studies finding 

little depression in SWS (Pena et al., 1999; Edeline et al., 2001), the average gain change 

of all sampled neurons was only -6% in SWS (Fig. 4.1 and see Chapter 3).  However, it is 

important to point out that the modulations individual neurons underwent for a given 
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stimulus averaged 46% (average of the magnitude of gain in Fig. 4.1 ignoring sign) 

suggesting that some aspects of auditory processing are changed during SWS. 

 

4.3.2 Dependence of SWS modulation on sound level 

 To test for the presence of more selective changes across the range of hearing, we 

divided the data according to sound level.  The effects of SWS are illustrated in the 

example neuron in Figure 4.2.  The neuron’s response to quiet sounds (20-30dB) 

disappears in SWS (Fig. 4.2 middle plot, black arrows) even though the response to loud 

sounds is preserved.  Out of the 159 neurons where we obtained intensity tuning curves, 

we observed 64 neurons in A1 like the example unit of Figure 4.2 that responded to both 

quiet (0-30dB) and loud (50-90dB) sounds.  These neurons showed a small mean drop in 

firing rate for loud sounds (-4%) during sleep but a large drop for quiet sounds (-22%) 

(Fig. 4.3A).  Their gain distribution for loud sounds is not significantly shifted from 0% 

modulation (p=.43, t-test, n=64) (Fig. 4.3A, black curve).  For quiet sound levels in the 

same neurons, however, the distribution is significantly shifted toward negative gains 

(p=.0003, t-test, n=64) (Fig. 4.3A, green curve).  Unlike diminishing attentional 

enhancement at high image contrasts in the visual system (Reynolds and Chelazzi, 2004), 

the effects of sleep cannot be accounted for by a saturation of firing rates since mean 

firing rates for quiet sounds were similar to those for loud sounds (quiet 16.4, loud 19.0 

spikes s-1, p=.54, Wilcoxon rank sum, n=64).  Also, as detailed in the previous chapter, 

we found that mean gain does not increase for low, near threshold driven rates (mean for 

low firing rates=-1%, for high firing rates=-2%) but the spread of the distribution 

increases (standard deviation low rates = 70%, high rates = 42%) (Fig. 4.3B).  So a shift 
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in mean gain seems to be a phenomenon specific to quiet sounds and not to low firing 

rates. 

 Across all neurons, activity in A1 was not much different between the awake and 

SWS conditions for loud sounds (Fig. 4.3C, right bars) (awake 13.9 vs. SWS 14.7 spikes 

s-1, p=.35, Wilcoxon rank sum, n=166).  In contrast, for the quietest stimuli near the 

threshold of hearing (0-20dB SPL), the average firing rate during SWS was ~30% less 

than that during awake (awake 15.2 vs. SWS 10.6 spikes s-1, p=2*10-5, Wilcoxon rank 

sum, n=147) (Fig. 4.3C, left bars). 

 We also tested whether these results generalized to a separate cortical field.  In 

lateral belt (LB), a higher stage of auditory processing (Rauschecker et al., 1995), activity 

for quiet and loud sounds showed a similar pattern to that in A1 (compare Fig. 4.3C & 

4.3D).  SWS responses to quiet sounds were 37% weaker than awake responses (Fig. 

4.3D, left bars) even though SWS activity matched awake activity at high sound levels in 

LB (Fig. 4.3D right bars).  In contrast to A1, however, not many LB neurons responded 

to both quiet and loud sounds as most LB neurons preferred loud sounds (mean preferred 

A1=49 dB, LB=71 dB, p=6*10-10, Wilcoxon rank sum, nA1=275, nLB=36) (Fig. 4.3E).  In 

the small sample of neurons responsive at both low and high sound levels (n=9), the same 

differential effect across sound level was observed as in A1.  SWS suppression at quiet 

sound levels (-34%) was greater than suppression at loud sound levels (-12%) for these 

neurons.  Thus, whether in A1 or LB, we consistently observed stronger effects of sleep 

on neural responses to quiet sounds. 
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4.3.3 Suppressed responses in SWS 

 An important property of A1 cells is that responses do not simply saturate at high 

sound levels.  They exhibit non-monotonic intensity tuning (Brugge and Merzenich, 

1973) (super-saturation, see Fig. 4.2, right panel for an example), the result of the 

increasing involvement of inhibition (Wu et al., 2006; Tan et al., 2007).  Given the 

possibly important role of inhibition in auditory processing, we sought to identify the 

effects of sleep on inhibition.  Inhibition is hard to detect extracellularly, but we used 

suppressed spiking responses as an indirect measure of inhibition.  By modifying the 

algorithm we had used previously to detect driven responses (see Chapter 2: General 

Methods), we were able to isolate a number of events where firing was suppressed below 

spontaneous levels (n=314) although these were still far fewer than the large number of 

driven events (n=2714).  Consistent with the notion that inhibition increases with level, 

these suppressed responses occurred mostly at high sound levels (75% of events at > 50 

dB) (Fig. 4.4A).  Figure 4.4B shows inhibited responses in awake and SWS for an 

example neuron.  The inhibitory response in SWS is 24% weaker and does not last as 

long as in awake.  Over the population in SWS, the strength of suppression decreased by 

an average of 23% (Fig. 4.4C).  This drop was significant (p<10-5, t-test, n=314) and 

notably stronger than the -6% gain shift seen for driven events (p=4*10-4, Wilcoxon rank 

sum, ndriven=2714, nsuppressed=314) (compare Fig. 4.1 & 4.4C).  

 

4.3.4 Dependence of suppressed responses on spontaneous rates 

 We note a couple difficulties, however, with estimating inhibitory strength.  For 

one thing, levels of spontaneous activity may limit how much inhibition is observed 
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extracellularly.  A higher spontaneous rate allows more suppression to be measured.  

There was a high correlation between spontaneous and suppressed rates in our data 

(r2=.43, p=4*10-79, n=628) (Fig. 4.5A).  Because of this dependence on spontaneous rate, 

changes in suppression during SWS tended to be highly correlated with changes in 

spontaneous rate (r2=.27, p=3*10-23, n=314) (Fig. 4.5B).  Instead of measuring absolute 

changes in firing rate, we normalized each response by the spontaneous rate to measure 

relative inhibition.  This removed a large part of the trend of suppression with 

spontaneous rate (r2=.002, p=.29, n=628) (Fig. 4.5C).  It also reduced a large part of the 

dependence of change in SWS suppression on changes in spontaneous rate (compare 5B 

to 5D).  However, gains for our normalized measure were still correlated with gain of 

spontaneous rate (r2=.20, p=5*10-17, n=314) (Fig. 4.5D).  This nonlinearity may be 

related to the fact that at very low spontaneous rates, a neuron is much closer to the flat 

part of its input-output (membrane potential-to-spiking) function.  Strong modulation of 

firing rates during a suppressive event may only occur at high spontaneous rates.  

Fortunately, the neurons included in Figure 4.4C generally had high spontaneous firing 

rates that were similar between the awake and SWS states (mean spontaneous rates: 

awake 11.7, SWS 10.9 spikes s-1, p=0.22, Wilcoxon rank sum).  A differential in 

spontaneous rates was more of a concern in the comparison of awake and REM data (see 

below).  In our sample, spontaneous rates rarely saturated (<5% of responses reached 0 

spikes s-1), and using relative changes in firing rates proved unnecessary as absolute 

changes in spiking gave similar results (mean GainSWS=-24%). 
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4.3.5 Dynamic range of responses in SWS 

 When plotted against sound level, the effects of sleep on driven and suppressed 

responses became apparent.  The loss of driven responses to quiet sounds and of 

suppressed responses to loud sounds combined to give a loss of ~40% (Fig. 4.6A).  This 

limits the range of possible responses in sleep at any given sound level, and dynamic 

range is narrower across the duration of the response as shown in the population PSTH 

(Fig. 4.6B).  This implies that from moment to moment neurons cannot respond as 

dynamically in SWS as in awake at any given intensity. 

 The sound-level specificity of the losses observed should not be overlooked.  

Driven (excitatory) responses are only weaker at quiet sound levels, and suppressed 

responses (inhibitory) are reduced at loud sound levels in a complementary fashion (Fig. 

4.6A).  This pattern suggests that two independent processes contribute to the dynamic 

range of responses.  Suppressive events are not simply the result of a withdrawal of 

excitation as no opposing change in driven (excitatory) strength was observed at high 

sound levels.  Presumably, by being careful to only select extreme events (highly driven 

or highly suppressed), we isolated events dominated by only one process (excitation or 

inhibition). 

 

4.3.6 Simple model 

 The possibility of two processes prompted us to think of a simple model for 

generating driven and suppressed responses.  With two processes, we could possibly 

account for the range of sleep effects we had encountered: 1-no change in driven 

responses to louder sounds, 2-decrease of driven response to quiet sounds, and 3-decrease 
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of suppression.  As mentioned, a simple model involving saturation could not account for 

the differences between loud and quiet sounds since in auditory cortex similar firing rates 

are elicited across sound levels (in visual cortex, responses are invariably stronger at high 

than low contrasts; Henrie and Shapley, 2005).  The effects of inhibition probably 

contributed to super-saturation of rates at high sound levels, the same inhibition observed 

in suppressed responses.  We reasoned that incorporating inhibition would provide the 

flexibility of responses that was needed. 

 Based on results from recent intracellular studies (Wehr and Zador, 2003; Wu et 

al., 2006; Tan et al., 2007), we modeled excitation as a quadratic, increasing to a 

preferred sound level and falling off at loud sound levels (Fig. 4.7A, red curve).  We 

modeled inhibition as a linear function that rose with sound level (Fig. 4.7A, blue curve).  

These two underlying inputs gave rise to the nonmonotonic spiking output observed in 

rate-level curves (Fig. 4.7A, black curve).  If SWS reduces the strength of both inputs as 

inferred from our data, then little change is seen in firing rate since the drop in excitation 

is offset by the loss of inhibition.  Excitation and inhibition, however, are not perfectly 

balanced.  At low sound levels where excitation is dominant, the reduction of excitation 

in SWS leads to a reduction in driven activity.  While at high sound levels where 

inhibition is prominent, a reduction in inhibition actually leads to stronger activity in 

SWS than awake.  This was the first surprising prediction made by the model, that 

responses in SWS should not saturate as much as awake.  We then extended the model to 

frequency tuning by assuming the canonical form of a difference of two Gaussians 

(Mexican hat) (Rodieck, 1965) (Fig. 4.7B).  Broadly tuned inhibition leads to inhibitory 

sidebands.  If we apply the same reductions to excitation and inhibition as before, then 
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two predictions are made about frequency tuning in SWS.  First, tuning bandwidth does 

not change.  Although less excitation may lead to narrower tuning, the drop in inhibition 

raises responses back above threshold.  Second, responses to frequencies far away from 

the preferred frequency should increase in SWS because these responses are normally 

suppressed by inhibition in awake.  The predictions the model makes are very specific to 

features of cortical tuning.  Note that at peak intensity (Fig. 4.7A) and peak frequencies 

(Fig. 4.7B) the model predicts little change. 

 

4.3.7 Testing model predictions 

 The frequency and intensity tuning data collected confirmed the predictions of our 

conceptual model (Fig. 4.7, C and D).  Neural thresholds in deep sleep were elevated 

(mean shift=10dB, p=.002, Wilcoxon rank sum, n=150) suggesting a lack of excitatory 

sensitivity at quiet sound levels (Fig. 4.8A).  Also, neurons tended to be more monotonic 

in SWS as measured using a non-monotonicity index (NMI= 1-rateloudest/ratepeak).  The 

change was slight (mean=5%) but significant (p=.01, sign test, n=145) (Fig. 4.8B) and is 

more clearly seen when the population intensity tuning curves are plotted (Fig. 4.7C).  

Not only does the population response not saturate in SWS, it actually exceeds the awake 

response at high sound levels.  Had we tested levels louder than 70 dB, SWS responses 

might have been even stronger (sound levels were usually limited to 70 dB SPL to avoid 

awakening the animals).  So depending on sound intensity, activity in SWS could either 

be stronger (loud sound levels) or weaker (quiet sound levels) than activity in awake.  

This dual effect of sleep was unlikely to occur by random chance (p=.0004, bootstrap, 

n=159) (see Methods) and was present individually in all 3 animals tested (p=.14, .05, 
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.002; n=37, 37, 85) (Fig. 4.9, A-C) and in LB (p=.15; n=17) (Fig. 4.9D) although not 

always reaching statistical significance. 

 Along the frequency axis, center frequencies were consistent between awake and 

SWS (Fig. 4.8C), and tuning bandwidth did not change in SWS (Fig. 4.8D).  Auditory 

filter widths were just as sharp as those in awake consistent with findings of a previous 

study (Edeline et al., 2001).  However, for non-preferred frequencies far away from the 

main excitatory peak in the population tuning data, SWS responses surprisingly exceeded 

those of awake (Fig. 4.7D). This suggests a release of these flanking frequencies from 

suppression during SWS as predicted by the model. 

 The dual effects of sleep on firing rates confirmed predictions of the model but 

present a difficulty in interpreting whether sleep is a depressed or enhanced state.  

Generally a change in behavioral state is thought to have a singular effect on responses.  

The model suggests that this difficulty can be resolved if underlying excitation and 

inhibition are considered instead.  The loss of both means dynamic range 

(excitation+inhibition) is lost in SWS, and SWS can be interpreted as a clearly depressed 

state.  Overall firing rates (excitation-inhibition) are mostly preserved. 

 

4.3.8 Dynamic range in REM 

 When we examined REM responses, we did not find clear evidence for a change 

in dynamic range.  Much like in SWS, REM driven rates were unchanged on average 

(mean=-16%, n=2046) even though neurons underwent large modulations (mean 

magnitude=44%) (Fig. 4.10A).  Activity at quiet sound levels was selectively depressed 

(mean awake=14.2, SWS=11.9 spikes s-1, p=.19, Wilcoxon rank sum, n=138) compared 
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to activity at loud levels (mean awake=16.9, SWS=16.4, p=.86, Wilcoxon rank sum, 

n=121) in A1 (Fig. 4.10B), and this was also the case in LB (Fig. 4.10C).  For the most 

part, suppressed responses were just as strong in REM as awake (mean=3%, n=241) (Fig. 

4.10D) which is a departure from what was observed in SWS (mean=-23%, n=314) (Fig. 

4.4C).  If anything, we detected a slight trend in that inhibition was strengthened in REM 

and excitation was weakened which is more easily seen when both are plotted as a 

function of sound level (Fig. 4.10E).  This can be seen in the population response 

histogram where the driven portion is stronger in awake but the suppressed portion is 

stronger in REM (Fig. 4.10F). 

 Unfortunately, the difference in the degree of suppression between awake and 

REM may be confounded by the fact that spontaneous rates were not similar for both 

states (mean awake=11.8, REM=14.3, p=.01, Wilcoxon rank sum, n=241).  REM had 

higher spontaneous rates which allows for larger absolute suppression.  The population 

PSTH in Fig. 4.10F is just such a measure of absolute spiking suppression since it is not 

normalized.  Using our normalized measure for suppression proved critical.  Otherwise, 

the mean gain for suppression would have been +17% instead of +3% as in Fig. 4.10D.  

However, 3% may still be an underestimate as we cannot be sure that suppression is not 

actually stronger in awake (negative gain) but that the nonlinear effect of high REM 

spontaneous rates is making suppression seem equal to that in awake.  From our data, we 

could only draw the limited conclusion that in either direction (slightly positive or 

negative change), suppression in REM and awake are not very different. 
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4.3.9 Model and predictions for REM 

 Setting the model parameters to reflect this lack of change in inhibition coupled 

with a small drop in excitation (Fig. 4.11, A and B) predicted the REM intensity tuning 

curve derived from the data (Fig. 4.11C).  Essentially, REM intensity tuning remains 

below the awake curve for all sound levels because of limited excitation at quiet sound 

levels followed by slightly stronger inhibition at loud sound levels.  The shape of the 

REM curve predicts higher thresholds which was confirmed by our data (mean threshold 

shift=12 dB, p=4*10-4, Wilcoxon rank sum, n=139) (Fig. 4.11D).  The model REM curve 

maintains the same non-monotonicity as the awake curve which was also confirmed by 

the data in individual units (mean shift of NMI=-2%, p=.14, sign test, n=119) (Fig. 

4.11E).  The model predicts little change in frequency tuning (Fig. 4.11B).  We could not 

test this prediction because of the limited number of complete frequency tuning curves 

collected during the brief REM episodes, but tuning bandwidths in our sample were 

highly correlated between awake and REM (Fig. 4.11F).  In summary, SWS and REM 

display similar extracellular firing rates, but we suggest that this happens for different 

reasons.  In the case of SWS, large changes in excitation and inhibition offset each other 

so that (E-I)awake=(E-I)SWS (despite Eawake>ESWS and Iawake>ISWS).  In REM, however, only 

small changes in excitation and inhibition occur so that Eawake≈EREM and Iawake≈IREM, and 

changes need not be offsetting (i.e. excitation drops and inhibition rises) since they are 

slight overall. 
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4.3.10 Effects of stimulus type 

 We now turn to the effects of sleep on different stimulus types.  As described in 

Chapter 2: General Methods, we used a battery of stimuli to test units during sleep.  

These stimuli were selected to test a variety of hypotheses.  For example, we used 

vocalizations to test whether more behaviorally relevant stimuli elicit stronger responses 

in sleep.  And we used amplitude-modulated stimuli to test temporal processing to 

determine whether stimulus following responses become more sluggish during sleep.  

With regard to spectral processing, we tested many units with noise stimuli to see if 

responses to broadband stimuli are as strong as responses to narrowband stimuli.  Any 

differential effect may give an insight into spectral integration during sleep.  The different 

stimulus types also served as a valuable test of the results from simple tone or 

narrowband noise stimuli of different sound levels.  Do the changes we found in 

excitation and inhibition during SWS and REM generalize to stimuli with more complex 

temporal or spectral character?  For example, we have suggested that the interaction of 

excitation and inhibition could be important in the temporal aspects of the response.  If 

inhibition is weaker in SWS, we might expect this to lead to poorer phase-locking while 

stronger inhibition such as in REM could lead to better phase-locking. 

 

4.3.11 Temporally modulated stimuli 

 When tested with sinusoidal amplitude modulated stimuli, units in SWS 

demonstrated similar phase-locking to those in awake.  This was the case whether 

measured by the upper limit of phase-locking (mean fmax awake=14.0, SWS=11.6 Hz, 
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p=.37, Wilcoxon rank sum, n=58) (Fig. 4.12A) or by the average vector strength (mean 

VS awake=.45, SWS=.43, p=.11, Wilcoxon rank sum, n=212) (Fig. 4.12B).  It bears 

mentioning that fmax and VS were slightly improved in awake over SWS even though the 

effect was not strong.  So this does not negate the possibility that there is less inhibition 

in SWS that leads to less precise timing of responses.   

 In REM, responses to temporally modulated stimuli were more comparable to 

those in awake.  Phase-locking in REM occurred at nearly the same maximum rates as in 

awake (mean fmax awake=12.7, REM=10.2 Hz, p=.46, Wilcoxon rank sum, n=40) (Fig. 

4.12C).  And the strength of phase-locking was well-preserved if not slightly enhanced 

(mean VS awake=.44, REM=.49, p=.07, Wilcoxon rank sum, n=147) (Fig. 4.12D). 

 Another popular measure of temporal processing is tuning of firing rate to 

modulation frequency (Krishna and Semple, 2000; Liang et al., 2002).  Preferred 

modulation frequency and bandwidth of modulation tuning were not different in awake 

and SWS (prBMF=.30 and pBW.45, Wilcoxon rank sum, n=59) (Fig. 4.13, A and B).  If 

anything, there was a slight tendency toward larger modulation tuning bandwidths in 

SWS (p=.04, sign test, n=59) (Fig. 4.13B).  The overlap of the population averaged 

modulation tuning curves in awake and SWS was consistent with the similarities of 

tuning properties at the single neuron level (Fig. 4.13C).  In REM, the center and 

bandwidth of modulation tuning were also relatively unchanged (prBMF=.73, pBW=.64, 

Wilcoxon rank sum, n=33) (Fig. 4.13, D and E) although the population modulation 

tuning curve in REM displayed less of a response at the low frequency end (Fig. 4.13F).  

Responses in REM lose the weak low-pass character of awake responses.  This 

preference for high modulation frequencies may reflect slightly increased inhibition in 
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REM.  When we followed this difference in population activity up further, we did not 

find the trend to be significant at the single-unit level.  For low modulation frequencies 

(fmod<32 Hz), firing rates in REM and awake were not different (p=.38, Wilcoxon rank 

sum, n=86).  They also did not differ at high modulation frequencies (fmod>64 Hz) 

(p=.71, Wilcoxon rank sum, n=52). 

 

4.3.12 Narrowband and broadband noise 

 Neurons were tested with broadband stimuli in two different settings.  First, 

stimuli of increasing bandwidth were presented to see how integration across frequencies 

varies for broadband sounds.  Second, we played a broadband sound as a masker of a 

narrowband sound.  Our hypothesis was that sleep responses may severely degrade in the 

presence of any competing sound.  The largest bandwidths eliciting responses in awake, 

SWS, and REM were similar suggesting that neurons are capable of responding to these 

stimuli in all three states (Fig. 4.14, A and B).  When noise stimuli of increasing 

bandwidth were tested in SWS, mean gain appeared to decrease over the population (Fig. 

4.14C); SWS responses were especially weaker for broadband stimuli.  This observation 

appears to violate our model.  If less suppression is present in sideband frequencies in 

SWS, increasing the bandwidth of the noise should give SWS responses a decided 

advantage over awake responses because more energy is placed in the flanking 

frequencies.  However, the opposite is seen.  Responses became stronger in awake 

relative to SWS except when wideband noise is used.  The main difficulty with 

interpreting this trend is the confound of sound level.  Because noise stimuli are 

normalized by their peak value in our experiments, the energy level in a frequency band 
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decreases as bandwidth is made broader.  In other words, larger bandwidths lead to 

perceptually quieter sounds using this method for normalization.  Given that awake 

responses are stronger than SWS responses at quieter sound levels in our model, it is 

possible that responses to broader bandwidth but perceptually quieter stimuli are actually 

stronger in awake not SWS.  The trend with bandwidth is not as strong in REM and 

appears to reverse in one bin (Fig. 4.14D). 

 Limited data on the effects of masking were collected in SWS and REM (only in 

one animal, 43q).  At negative masker levels (masker quieter than probe), responses were 

strongest (Fig. 4.14, E and F).  When the masker was >30dB above the probe level, 

responses dropped off.  This drop-off (masking effect) was not noticeably different in 

SWS or REM when compared to awake given our small sample. 

 

4.3.13 Sleep modulation across stimulus classes 

 Figure 4.15 summarizes the average gains for the stimulus types that were most 

often tested (tone, bandpass noise, sAM, vocalizations, environmental sounds, and 

wideband noise).  Regardless of stimulus type, mean %Gain in SWS was usually near 0% 

or slightly negative.  Only the gain distribution for environmental sounds was 

significantly different from chance (pSWS=.008, bootstrap, n=30; pREM=.03, bootstrap, 

n=20) (Fig. 4.15, A and B).  These included sounds from our marmoset colony such as 

cage clanks as well as sounds of the ocean and river.  The use of these complex sounds 

and the small sample size make it difficult to interpret why SWS and REM responses 

were different from awake responses.  For one thing, the reason we used these sounds 

was as a last resort to drive cells which did not respond to simple stimuli.  Possibly, such 
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highly selective cells are more prevalent in the awake state.  As a note, the environmental 

sound stimulus set was added toward the end of the study (coinciding with LB 

recordings) which is why the sample is small.  It is quite possible though that hearing 

during sleep is adapted to ignore background nighttime sounds.  Our earlier result that 

quiet sounds are suppressed in SWS is in line with this notion.  Other statistical properties 

of background sounds may also be used for their selective suppression. 

 Within cell comparisons were possible for a few combinations of stimulus types 

(Fig. 4.15, C and D).  Whether for modulated versus unmodulated, narrowband versus 

broadband, or meaningful (vocalizations) versus non-meaningful stimuli, no clear 

difference in gain was seen, and gains averaged near 0%.  This suggests that at the level 

of A1 and maybe LB the effects of sleep generalize across stimulus classes.  To 

demonstrate the homogeneity of the effect of sleep across stimulus type, we used the gain 

for tones to predict the gain for all other stimuli and found a good correspondence (SWS: 

r2=.22, p=4*10-6, n=88; REM: r2=.15, p=5*10-4, n=75) (Fig. 4.16, A and B).  When we 

computed the vector similarity of tuning curves between SWS and awake (see Methods) 

much as we did for PSTH profiles in Chapter 3, we found that median similarity was 

again quiet high (ρ=.62, n=352) (Fig. 4.16C) although not as high as median similarity 

between awake and SWS PSTH’s (ρ=.78, n=1068).  Essentially, a simple multiplicative 

gain change can account for a substantial (43%) (Fig. 4.16C) amount of the variance 

between awake and SWS tuning curves and between awake and REM tuning curves 

(46%) (Fig. 4.16D) across all stimuli.  These numbers are noteworthy given that the 

variance explained by using firing rates on odd trials to predict rates on even trials only 

improved values by 15% (56% for awake/SWS, n=702; 61% for awake/REM, n=636).  
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Ideally, odd trials should match even trials in firing rate and explain 100% of variance.  

The fact that values between odd and even trials fall far short highlights that variance left 

unexplained between awake and sleep firing rates is mostly the result of noise in our 

measurements (random error ≈ 40% = 100-60) and not the result of additional structure 

not captured by the model (systematic error ≈ 15% = 100-40-45).  The high error from 

noise may reflect the variability of behavioral states over time and between sleep cycles.  

The residual error that cannot be attributed to noise probably reflects some of the changes 

in sound level and frequency tuning mentioned earlier or other likewise subtle changes. 

 

4.4 Discussion 

 

 In this chapter, we found that in certain sound level regimes SWS responses could 

not be driven or suppressed as strongly as in awake.  Mean effects were around 20-40%.  

These values are stronger than any observed in the previous chapter (<10%).  The 

narrowing of response range coupled with the sound level specificity of the phenomena 

observed led us to propose a conceptual model where underlying excitation and inhibition 

are both reduced in SWS.  This is a radical departure from the idea of a simple drop of 

average activity (Steriade, 2003).  Instead, the offsetting effects of excitation and 

inhibition result in minimal changes to average activity.  A pattern emerges where awake 

responses are strong for quiet sounds, but SWS responses are stronger for loud sounds 

and non-preferred frequencies.  We termed this combined loss of excitation and 

inhibition during SWS a loss in dynamic range (excitation+inhibition). 
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 Changes in cerebral metabolism during sleep may be a parsimonious explanation 

of our findings.  Cerebral blood flow decreases by ~20% during SWS (Hobson, 2005).  

Synaptic activity is known to correlate strongly with local blood delivery (Malonek and 

Grinvald, 1996; Viswanathan and Freeman, 2007).  It is plausible that SWS can only 

support weak excitatory and inhibitory synaptic activity because of lowered cerebral 

metabolism.  In REM, cerebral blood has been found to be at or above awake levels 

(Franzini, 2000).  This correlates well with the finding of preserved dynamic range of 

activity in REM. 

 

4.4.1 Comparison to previous intracellular study 

 One intracellular study during sleep performed by Timofeev et al. (2001) is 

directly relevant to the results reported here (although they electrically stimulated the 

thalamus whereas we used external auditory stimulation).  The study reported that 

disfacilitation occurs during the low frequency oscillation (<1Hz, lower than delta band) 

in SWS.  In other words neurons become less responsive not because of increased 

inhibition but because of the loss of excitation.  However, this is followed by strongly 

excitable periods during the peak of the slow oscillation (Steriade et al., 1993).  Such 

disfacilitation may correlate with the drop of excitation we observed in SWS.  But our 

data suggests that there is also an independent change in inhibition which should actually 

enhance responses at loud enough sound levels.  The periodic nature of the slow-

oscillation phenomenon observed by Timofeev et al. (2001) is also different than the time 

averaged nature of our data collection.  Perhaps, more relevant is the finding by Timofeev 

et al. (2001) of active inhibition in the form of short, low-amplitude IPSP’s during REM 
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and awake.  This compares favourably with our finding that in REM inhibition is as 

strong or stronger than in awake and adds support to the notion that REM is an awake-

like state.  Interestingly, inhibition was strongest during the rapid eye movements in 

REM and eye movements in awake.  We did not collect data on when eye movements 

occurred in REM, but future studies could investigate whether there are specifically 

strong periods of inhibition during REM. 

 

4.4.2 Comparison to attention studies 

 Comparisons can be drawn between this study and extracellular studies of visual 

attention.  Reynolds et al. (2000) examined attentional enhancement across the range of 

possible image contrasts and found that the effects of attention were strongest at low 

image contrasts.  We observed such a change in sensitivity between awake and asleep.  

Neural thresholds were elevated by ~10dB in SWS (Fig. 4.8A) and REM (Fig. 4.11D).  

One difference between the auditory and visual systems, though, is that auditory cortical 

neurons exhibit non-monotonic behaviour at loud sound levels.  Firing rates can super-

saturate.  An additional inhibitory component was used to account for this phenomenon 

and was critical in explaining why SWS responses can overtake those in awake.  It is 

possible, however, to model the effect of SWS as an effective shift of the awake intensity 

tuning curve rightward (Fig. 4.7C) (visual attention is modelled as a shift in stimulus 

contrast).  Such a shift would not account for the decrease of saturation in SWS.  Our 

choice of including inhibition was grounded in intracellular findings in the auditory 

system and proved essential to capturing the effects of sleep on suppression. 
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4.4.3 Functional implications 

 Elevated acoustic arousal thresholds are a hallmark of deep sleep in humans 

(Bonnet, 1982).  Our finding of elevated neural thresholds in SWS provides a neural 

correlate for this reduced sensitivity to the environment.  On the other hand, REM 

responses were similar to awake responses.  This is consistent with behavioural data 

suggesting that REM is lighter sleep (Bonnet, 1982) and may be a substrate for external 

sounds penetrating into dreams (Ramsey, 1953; Berger, 1963; Burton et al., 1988). 

 In a broader sense, the loss of inhibition in SWS may have important 

consequences for gain control.  Gain control mechanisms are desirable computationally 

because they match the dynamic range of neural coding to the statistics of the 

environment (Laughlin, 1981; Schwartz and Simoncelli, 2001).  A recent study showed 

that inhibition that grew with stimulus intensity was important in setting the gain of a 

leech behavioral circuit (Baca et al., 2008), and inhibition appears to play a critical role in 

setting neural properties during attention (Mitchell et al., 2007).  We suggest that such 

adaptive mechanisms are weakened in SWS but present in awake. 

 We did not observe strong changes in frequency tuning even though inhibition is 

often implicated in sharpening tuning (Rodieck, 1965; Suga, 1995).  Our data were in line 

with the prediction of our model since the loss of excitation narrows tuning in opposition 

to the broadening of tuning from less inhibition in SWS.  A change in dynamic range 

may play a larger role in temporal processing.  Rapid modulations of excitation and 

inhibition are probably necessary for precise coding of the time-varying acoustic signal.  

Unfortunately, temporal processing is poorly understood in the auditory cortex, and no 

good means of measuring what is meant by higher-level processing of the temporal 
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aspects of the signal exists.  Measures adopted from studies in the periphery include those 

of phase-locking and modulation tuning.  Cortical responses are not strongly phase-

locked and often demonstrate non-synchronized firing (Lu, et al., 2001).  Phase-locking 

may not be a critical aspect of cortical responses.  Furthermore, modulation tuning is 

often broad and not robust to variations in stimulus parameters as early as the inferior 

colliculus (Krishna and Semple, 2000).  We did not see much difference in awake and 

SWS responses to amplitude modulation.  Any prediction that we could generate about 

responses should be tempered by the fact that we approximated long-lasting not fast 

inhibition when we measured suppressed responses.  Because inhibition is difficult to 

detect extracellularly, we were forced to use very long detection windows in our 

algorithm (> 100ms).  Measuring the strength of suppression at these long timescales 

may have little to do with inhibition at faster timescales more relevant to phase-locking 

(Markram et al., 2004).  It is likely that the extra inhibition in REM may be of the fast 

kind and therefore not comparable to that in SWS (Timofeev et al., 2001).  This 

suggestion underscores an assumption of our model.  We assumed one global inhibitory 

process that generalizes across frequency and interacts linearly with excitation.  This 

neglects ideas of shunting, fast, and slow inhibition, sideband inhibition, and interactions 

with nonlinear thresholds.  One could imagine doing away with inhibition entirely and 

giving the excitatory input a more complex shape to explain the effects we observed.  A 

number of models could account for our observations, but we tried to choose the most 

parsimonious model.  In our model, two processes are simply linearly scaled without 

changing the shapes of curves in SWS.  Future studies could test these assumptions and 

determine if a more complex model is necessary. 
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4.4.4 Comparison to extracellular sleep studies 

 Only two neural studies of sleep went beyond measuring general responses and 

directly tested tuning.  In primary visual cortex (V1), Hubel and Livingstone (1981) 

found that tuning to orientation and motion improved slightly when the animal woke up.  

In A1, Edeline et al. (2001) reported little change in frequency tuning bandwidths with a 

slight trend toward sharper tuning in awake.  This result is consistent with the lack of a 

change in frequency tuning that we observed.  If anything, we would predict slightly 

sharper tuning because of a gain of inhibition in awake consistent with what Edeline et al. 

(2001) observed.  Even so, prior studies had relied on tones or noise bursts (Brugge and 

Merzenich, 1973; Pena et al., 1999; Edeline et al., 2001).  No published neural study to 

our knowledge has used more complex stimuli such as we did. 

 

4.4.5 Multiplicative model of modulation 

 The lack of a strong effect of stimulus type in our experiments leads us to propose 

that a multiplicative gain change accounts for a large part of modulation in sleep possibly 

similar to gain changes reported in the attention literature (McAdams and Maunsell, 

1999).  A simple linear scaling could account for ~40% of the variance of sleep 

modulation across stimulus types.  This suggests to us that the assumption of the model 

of a linear scaling of excitation and inhibition rather than a change in their shape may be 

valid to some extent. 
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4.4.6 Limitations of testing different stimulus types 

 In general, we found no clear systematic effect of stimulus type.  This lack of a 

result could be taken as going against the idea of reduced dynamic range in SWS.  We 

note that a major limitation was that stimuli were not controlled tightly enough to directly 

test our model.  One key parameter, sound level, is critical to setting the balance of 

excitation and inhibition.  All our stimuli were normalized by peak amplitude leading to 

lower average power in any given frequency for non-tonal stimuli.  This means that these 

stimuli were perceptually quieter than a tone played at the same sound level.  Another 

parameter that is important is the tuning bandwidth of a neuron at a given sound level.  

Only when controlling for tuning width can effects under the peak of tuning versus those 

outside the peak in the inhibitory sidebands be truly characterized and quantified.  

Unfortunately, time did not permit us to derive specific properties of each neuron’s 

receptive field and then tailor the parameters of complex stimuli to explore further.  

Instead, we simply hand-tuned neurons for best frequency and level and then played 

standard stimulus sets.  Future studies with a more formal quantitative model to guide the 

design of stimulus sets may be able to explore the subtle changes that occur on a unit by 

unit basis. 

 

4.4.7 Comparison to imaging and evoked potential studies 

 The best comparison to our data may come from human imaging studies using 

subjects’ names and speech as stimuli in addition to tones (Portas et al., 2000; Davis et 

al., 2007).  We would predict that discrimination performance for complex stimuli should 
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be worse in SWS because of the loss of both excitation and inhibition.  Indeed, imaging 

studies in sleeping (Portas et al., 2000) or mildly sedated (Davis et al., 2007) humans 

have found a loss of activity in higher frontal areas for the discrimination of complex 

sounds despite finding strong activity in the temporal lobe (indicating that sounds are still 

detected in the brain).  Along the same lines, studies have found that the evoked 

potentials for higher discriminations such as name recognition (Pratt et al., 1999), oddball 

detection (Nashida et al., 2000; Loewy et al., 1996), and semantic discrimination (Perrin 

et al., 2002) are not preserved in the same form in SWS even though evoked potentials 

are still elicited (for review, see Bastuji et al., 2002).  REM evoked potentials tend to 

retain patterns similar to those in awake (Atienza et al., 2000).  Our data provide a neural 

basis for the results of these studies in humans by suggesting that limited dynamic range 

of processing in A1 during SWS is responsible for poor read-out in higher areas involved 

in complex discriminations. 

 Such deficits may be similar to the shortcomings of hearing aids; they deliver the 

same volume of sound but cannot match the dynamic range of normal listening leading to 

severe reductions in speech intelligibility (Moore, 1995).  In demonstrating the specific 

changes that limit the dynamic range of auditory processing in SWS, our findings put 

forward a new model where auditory cortex can still perform the general detection of 

sounds in sleep but processes the fine details of sounds only in awake.  This result 

represents a significant step toward resolving the paradox of how hearing during sleep 

can be vastly different despite similar overall cortical activity. 
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4.5 Methods 

 

 See Chapter 2: General Methods for details of electrophysiological recordings, 

sleep scoring, detection algorithm for driven responses, and detection algorithm for 

suppressed responses.  See Methods in Chapter 3 for details on identification of A1 and 

LB. 

 

4.5.1 Gain measures 

 Average discharge rate in awake and SWS was measured during the driven and 

suppressed periods detected by our algorithm and spontaneous rate subtracted.  We used 

[ ]awakeSWSMax
awakeSWSGaindriven ,

100% −
=  to compare driven responses between awake and 

SWS and ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−∗=

spontspont
pressed SWS

SWS
awake

awakeGain 100% sup  to compare suppressed 

responses (the ratios in the expression measure the fraction of spontaneous firing that was 

suppressed).  We also re-calculated gains of suppressed responses using absolute firing 

rates and the gain formula for driven responses.  Although we mainly report gains for 

individual stimuli, comparable results were obtained when we computed a single gain for 

each neuron by averaging all stimulus gains. 

 

4.5.2 Model 

 For simplicity, excitation was modelled as a quadratic and inhibition as a linear 

function: 
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2

1)( ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−=

peak

peak

i
ii

iE
,  100

)( iaiI ∗=
, where i is sound intensity. 

These forms of excitation and inhibition underlying intensity tuning are based on recent 

findings from intracellular studies (Wu et al., 2006; Tan et al., 2007).  These studies 

support a critical assumption of the model that excitation and inhibition are not balanced, 

but this has not been the case in all studies (Wehr and Zador, 2003).  For frequency 

tuning, we assume a difference of Gaussians (Rodieck, 1965): 

 ( ) ( ) 2/ −

∗= EfebfE σ
, ( ) ( ) 2/ −

∗= IfecfI σ
, where f is sound frequency. 

And resulting firing rates are: 

 IERawake −= , IgEgR IESWS −=  

 The model does not incorporate a spiking nonlinearity and assumes a linear 

relation between membrane potential and firing rate.  Peak sound level ipeak was set as 

50dB SPL.  Relative inhibitory strength a was .67 (inhibitory input reaches two-thirds the 

level of excitatory input).  The weights b and c of the inputs used to derive frequency 

tuning were chosen based on the strengths of the inputs at 50dB SPL such that b = 

E(i=50) =1.0 and c = I(i=50) =.34.  Excitatory input was set to be more sharply tuned 

than inhibitory input (σE = .5, σI = 2).  Finally, we chose excitatory modulation gE in SWS 

to be 80%, and inhibitory modulation gI to be 50%.  These values are based on our data.  

We assume that our data overestimated excitatory modulation since at quiet sound levels 

near threshold only small changes in membrane potentials are required to give large 

changes in extracellular firing rates (spiking nonlinearity).  Likewise, we may have 

underestimated modulation of inhibition since the relationship between membrane 
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potential and spiking is very flat when a neuron is suppressed far below threshold.  For 

REM, gE was set to 90% and gI to 110% (slightly lower excitation and higher inhibition 

compared to awake). 

 

4.5.3 Statistical tests 

 Wherever two distributions are statistically compared throughout the text and 

figures, a Wilcoxon rank sum test was used although occasionally a sign test was used for 

very tightly distributed data.  A Student’s t-test was used to determine if a distribution 

was significantly different from 0.  Correlation between two variables was quantified 

using the Pearson’s product-moment correlation coefficient.  All p-values are reported in 

the text and figure legends. 

 To test for the dual modulation pattern of sleep on intensity tuning curves, we 

generated random population intensity tuning curves (n=10,000 simulations) from our 

data by randomly assigning individual tuning curves for each neuron to awake or SWS 

before averaging.  We then computed the difference between SWS modulation at low 

sound levels and at high sound levels.  The strict asymmetry we observed in that SWS 

responses were only weaker for sounds below 40dB and stronger for sounds louder than 

40dB was not often observed by chance. 

 

4.5.4 Various measures derived from tuning curves 

Threshold:  quietest sound level eliciting a response > 4*sem above spontaneous rate. 
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Nonmonotonicity Index (NMI): 
peak

loudest

rate
rate

−1 , NMI=0 implies strongest response was to 

loudest sound tested, and unit was monotonic. 

Center Frequency:  The frequency eliciting the maximum response in a frequency 

tuning curve. 

Frequency Tuning Bandwidth: centroidi
i

i ffrBW −=∑ , where i
i

icentroid frf ∑=  and ri is 

the firing rate at each frequency fi tested.  This method computes the first moment of the 

tuning curve about the centroid.  It captures the central width of the tuning curve without 

making assumption about its shape. 

Vector Strength (VS): ( ) ( )
22

/2sin/2cos1
⎟
⎠

⎞
⎜
⎝

⎛
+⎟

⎠

⎞
⎜
⎝

⎛
= ∑∑

i
i

i
i TtTt

n
VS ππ , where ti is the 

time of the ith of n spikes and T is the period of the modulation equivalent to the 

interclick interval of a click train (Lu et al., 2001; Liang et al., 2002). 

Rayleigh Statistic: 2*n*VS2, RS>13.8 indicates a significantly phase locked response 

(Lu et al., 2001). 

Center of Modulation tuning: i
i

icentroid mfrmf *∑= , where mfi is the given modulation 

frequency tested.  We used this approach over simply taking the modulation yielding 

peak response because modulation tuning curves were sampled coarsely and had little 

curvature.  We found that applying a max operation to such tuning curves is noisy.  The 

centroid takes advantage of averaging to get rid of noise and locate the center of mass of 

the curve. 
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Modulation Tuning Bandwidth: centroidi
i

i mfmfrBW −=∑ .  This is the same measure 

as the one used to derive frequency tuning bandwidth. 

Tuning Similarity: ( ) ( )
SWSSWSawakeawake

SWSSWSawakeawake
awakeSWS ratesrates

ratesrates
μμ
μμρ

−−
−•−

=, , 

( ) ( )
REMREMawakeawake

REMREMawakeawake
awakeREM ratesrates

ratesrates
μμ
μμρ

−−
−•−

=, , where rates are the driven rates 

(spontaneous rate subtracted) in each state ordered by stimulus number.  This dot product 

is simply a correlation measure between firing rates and is similar to the one used to 

measure PSTH similarity in Chapter 3. 
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Figure 4.1.  Driven responses in awake and SWS.

Summary of percent change of all driven responses during SWS.  Positive gains indicate that 

responses were more strongly driven by sounds in SWS than awake.  Mean gain is -6% (vertical 

dashed line).
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Figure 4.3.  Selective loss of responses to quiet sounds in SWS. 

 
(a) For all neurons that could be driven by both quiet and loud sounds, SWS modulation of 
responses was not different from zero for 50-90dB sounds (median=-2%, black inverted triangle) 
(p=.43, t-test, n=64).  But responses were negatively modulated at the low end (0-30dB) of their 
sound level tuning curve (median=-30%, green inverted triangle) (p=.0003, t-test, n=64). 
 
(b) The negative gain for quiet sounds (green curve) cannot be explained by firing rate. Gain is 
near 0 for all firing rate ranges (gray curves).  Three firing rate ranges (0-5, 5-20, and >20 
spikes/s) were used for all stimuli tested in A1 and LB (n=2714). Rate was taken as the mean of 
awake and SWS firing for that stimulus. The ranges roughly divided the data into a lower fourth 
(n=470, dark gray), middle half (n=1594, gray), and upper fourth (n=650, light gray). No trend 
exists in median gain with rate (medians=-2%, -12%, -3%, respectively) (inverted triangles). 
Rather, a trend exists in the spread of the distributions. Distributions tighten with increasing rate 
range (standard deviation=70%, 53%, 42%). For comparison, the distribution for quiet sounds (0-
20dB) (green curve, n=164) (median=-32%, standard deviation=49%) shows a clear shift in 
median away from 0 and significantly differed from the other 3 distributions (Wilcoxson rank sum, 
p=3*10-5, 2*10-4, 2*10-8 respectively) as indicated by ***. Mean rate for quiet sounds was 19.3 
(15.2) spikes/s in awake (SWS). 
 
(c) Activity to quiet sounds across the population of A1 neurons in SWS averaged significantly 
less than activity in awake (mean awake=15.2, SWS=10.6 spikes/s, p=2*10-5, Wilcoxon rank 
sum, n=147) (error bars represent +sem). 
 
(d) Activity to quiet sounds was also reduced in the population of LB neurons (mean awake=8.3, 
SWS=5.2 spikes/s, p=.01, Wilcoxon rank sum, n=21) (error bars represent +sem). 
 
(e) Preferred sound level distributions in A1 and LB.  LB neurons often preferred loud sounds as 
evidenced by the height of the 80 dB SPL bin (light gray).  A1 units had a more even preference 
across sound level (dark gray).  This difference between A1 and LB (mean preferred A1=49 dB, 
LB=71 dB, p=6*10-10, Wilcoxon rank sum, nA1=275, nLB=36) may be partially explained by the 
more complex stimuli we sometimes had to use to drive LB neurons. 
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Figure 4.4.  Suppressed responses.

(a) Suppressed responses tended to occur at louder sound levels than driven responses (median 

driven=50 dB, suppressed=60 dB, p=.03, Wilcoxon rank sum, ndriven=2518, nsuppressed=310).

(b) An example unit whose response was suppressed during the stimulus (gray shaded region) 

and for a short time following (vertical dashed lines represent analysis window returned by our 

windowing algorithm). Inhibition was weaker and shorter-lasting in SWS (light gray) than awake 

(dark gray) (gain=-24%). Curves were generated by first subtracting spontaneous rates then 

smoothing with a 50ms moving average window. 

(c)  Percent change in SWS of responses that were suppressed below spontaneous activity.  The 

distribution is shifted toward negative gains (mean=-23%, vertical dashed line) indicating that the 

strength of suppression was weaker in SWS.

110



1 10 100
.1

1

10

100

Spontaneous rate (spikes/s)

S
u

p
p

re
ss

ed
 r

at
e 

(s
p

ik
es

/s
) Awake

SWS

<-15 -10 -5  0   5   10  >15 
-200

-100

0

100

200

Spont difference (SWS-A)

%
G

ai
n

 s
u

p
p

re
ss

ed
 r

at
es

 (
S

W
S

-A
)

<-15 -10 -5  0   5   10  >15 
<-3

-2 

-1 

0 

1 

2 

>3 

Spont difference (SWS-A)

F
I d

if
fe

re
n

ce
 (

S
W

S
-A

)

A B

C D

<-2

-1.5

-1

-0.5

0 

0.5

1

Spontaneous rate (spikes/s)

F
ra

ct
io

n
 o

f 
in

h
ib

it
io

n
 (

F
I)

1 10 100

r
2
=.43

n=628

r
2
=.002

n=628

r
2
=.20

n=314

r
2
=.27

n=314

Figure 4.5.  Comparison of two different measures of suppression.

(a) Absolute changes in spiking for suppressed events depend strongly on spontaneous rate 

(r2=.43, p=4*10-79, n=628).

(b) When suppression is compared between awake and SWS using a similar formula to that for 

driven responses (%Gain = 100*(A-SWS)/max(|SWS|,|A|)), the gain depends heavily on how 

different spontaneous rates were in the two states (r2=.27, p=3*10-23, n=314).  This is because a 

higher spontaneous rate allows a larger change in absolute spiking to be observed.

(c)  To obtain a more invariant measure of suppression, we measured relative suppression or 

fraction of inhibition (FI = (spontaneous-rate)/spontaneous) instead of absolute suppression 

(spontaneous-rate).  This removed the dependence of suppression on spontaneous rates 

(r2=.002, p=.29, n=628).

(d)  When relative suppression is compared between awake and SWS (FISWS-FIA), the gain still 

depends somewhat on the difference in spontaneous rates (r2=.20, p=5*10-17, n=314), but this 

dependence is not as severe as when absolute spiking rates are used (see (b)).
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Figure 4.6.  Loss of the range of responses (driven+suppressed) in SWS.

(a)  Changes in population averaged driven and suppressed responses as a function of sound 

level.  Suppressed responses were weakened in SWS across a wide range (negative blue bars).  

However, driven responses were weakened only at extremely quiet levels (negative red bars).  

Population averages of activity were taken by summing firing rates of all detected driven or 

suppressed responses at each sound level without normalizing and then computing a percent 

gain at each sound level to estimate the change in the population response between awake and 

SWS.

(b) Population averaged histogram of all driven (positive) and suppressed (negative) responses 

showing their time course.  Because responses are not driven or suppressed as strongly in SWS 

as in awake, the dynamic range of responses is limited (light shaded area is encompassed by 

dark area).  Population post-stimulus time histograms were obtained by averaging all detected 

driven (n=3133) and suppressed responses (n=272) during the time window in which they 

occurred.  Responses were smoothed by a 30ms moving average window.
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Figure 4.7.  Conceptual model of the pattern of effects in SWS.  

 
(a) Intensity tuning in A1 can be modelled as the combination of non-monotonic excitation (red) 
and monotonic inhibition (blue) which are summed to generate output firing rates (black) (see 
Methods).  The inputs can be measured directly using intracellular recordings (illustrated by lower 
cartoon neuron).  However, extracellular recordings such as those performed in the present study 
can only measure the signal after the inputs have been summed (upper cartoon).  If sleep 
reduces excitation and inhibition (dashed lines), the resulting SWS intensity tuning curve (gray) 
will be weakened at quiet sound levels and strengthened at loud sound levels compared to the 
awake curve (black). 
 
(b) In the frequency domain, inhibitory sidebands can be modelled using inhibition (blue) that is 
more broadly tuned than excitation (red).  The loss of inhibition in SWS (dashed lines) is 
predicted to elevate the responses to non-preferred frequencies.   
 
(c) Population intensity tuning data in awake (black) and SWS (gray) showing the pattern of 
effects predicted by the model (error bars represent +.5 sem).  Individual tuning curves for each 
neuron were first normalized by their peak value in either awake or SWS before being averaged. 
 
(d) Population frequency tuning data in awake (black) and SWS (gray) show evidence of SWS 
enhancement of responses to non-preferred frequencies (error bars represent +.5 sem).  To 
ensure that peaks in awake and SWS matched, awake and SWS curves for each neuron were 
normalized separately by the peak value in each state rather than by an overall peak value.  For 
this comparison, only neurons whose center frequencies in awake and SWS were within 0.4 
octaves of each other were selected.  Population curves were smoothed by a 6-point moving 
average filter. 
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Figure 4.8.  Intensity and frequency tuning properties.

(a) Sound level thresholds (quietest sound level eliciting a response 4*sem above spontaneous) 

were elevated in SWS (p=.002, Wilcoxon rank sum, n=150) as predicted by the model in Fig. 4.7a 

(dots are randomly jittered for display purposes; NR=no response at any sound level).

(b) The non-monotonicity index (NMI=1-rloudest/rpeak) measures how much responses fall off at 

loud levels.  NMI=1 indicates that responses completely go away at the loudest levels.  In SWS, 

neurons were slightly more monotonic than in awake (p=.24, Wilcoxon rank sum; but p=.01, sign 

test, n=145) as predicted in Fig. 4.7a.

(c) Preferred frequencies (frequency eliciting peak response) in awake and SWS were tightly 

correlated (r2=.85, p=3*10-20, n=47).

(d) Frequency tuning bandwidth (the first moment about the centroid of the tuning curve, see 

Methods) in awake and SWS were tightly correlated (r2=.82, p=1*10-18, n=47) as predicted in Fig. 

4.7b.
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Figure 4.9.  Population intensity tuning curves for A1 in 3 animals and for LB.

(a-c) SWS curves in all three animals remained below awake curves before eventually crossing 

over at high sound levels.

(d)  In LB, activity was rarely observed at quiet sound levels (< 40db) (Fig. 4.3e), but at louder 

sound levels, SWS responses were stronger than awake responses.  This pattern was present in 

A1 (a-c), but appears more pronounced here.  Unfortunately, the sample in LB was small (n=17) 

making it difficult to draw any conclusions.
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Figure 4.10.  Driven and suppressed responses in REM. 

 
(a) Summary of percent change of all driven responses during REM.  Overall mean gain is -6% 
(vertical dashed line) (compare to Fig. 4.1 for SWS). 
 
(b) Unlike in SWS, activity to quiet sounds across the population of A1 neurons in REM did not 
average much less than activity in awake (mean awake=14.2, REM=11.9 spikes/s, p=.19, 
Wilcoxon rank sum, n=138) (error bars represent +sem; compare to Fig. 4.3c for SWS). 
 
(c) Activity to quiet sounds was more clearly reduced in REM for the small sample of LB neurons 
(mean awake=9.5, REM=4.4 spikes/s, p=.01, Wilcoxon rank sum, n=16) (error bars represent 
+sem; compare to Fig. 4.3d for SWS). 
 
(d)  Percent change in REM of responses that were suppressed below spontaneous activity.  The 
distribution is near 0 (mean=+3%, vertical dashed line) indicating that the strength of suppression 
was similar in awake and REM. (compare to Fig. 4.4c for SWS) 
 
(e)  Changes in population averaged driven and suppressed responses as a function of sound 
level.  It was difficult to discern a trend in REM activity with sound level (not as clear as trends in 
SWS, Fig. 4.6a).  Driven responses appear to be attenuated 20-30% for very quiet sounds, and 
suppressed responses appear to be enhanced at some sound levels.  A clear difference between 
SWS and REM is that gains for suppressed responses in REM are not negative whereas in SWS 
there was a tendency for weak suppression (compare to Fig. 4.6a for SWS). 
 
(f) Population averaged histogram of all driven (positive) and suppressed (negative) responses 
showing their time course.  Because responses are driven less strongly and suppressed more 
strongly in REM, it is hard to say whether dynamic range changes (REM=light shaded and 
awake=dark shaded area are almost equal).  Population post-stimulus time histograms were 
obtained by averaging all detected driven (n=2746) and suppressed responses (n=267) during 
the time window in which they occurred.  Responses were smoothed by a 30ms moving average 
window (compare to Fig. 4.6b for SWS). 
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Figure 4.11.  Conceptual model and data for REM tuning. 

 
(a) REM appears to modify excitation and inhibition to smaller degrees than SWS.  Adjusting 
excitation down (dashed red line) and raising inhibition slightly (dashed blue line) in our model 
from Fig. 4.7 yields a REM intensity tuning curve (light gray curve) that remains below the awake 
curve (dark gray curve) (does not cross-over like in SWS; compare to Fig. 4.7a for SWS). 
 
(b) In the frequency domain, the subtle changes of excitation and inhibition in REM do not modify 
tuning except for causing suppression at the peak.  Tuning width and inhibitory troughs are 
similar in awake and REM (compare to Fig. 4.7b for SWS). 
 
(c) Population intensity tuning data in awake (black) and REM (gray) showing the pattern of 
effects predicted by the model (error bars represent +.5 sem) (compare to Fig. 4.7c for SWS). 
 
(d) Sound level thresholds were elevated in REM (p=4*10-4, Wilcoxon rank sum, n=139) as 
predicted in (a) (compare to Fig. 4.8a for SWS). 
 
(e) In REM, neurons were not any more non-monotonic than in awake (p=.77, Wilcoxon rank 
sum; p=.14, sign test, n=119) as predicted in (a) (compare to Fig. 4.8b for SWS). 
 
(f) Frequency tuning bandwidths in awake and REM were tightly correlated (r2=.88, p=1*10-13, 
n=28) as predicted in (b) (compare to Fig. 4.8d for SWS). 
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Figure 4.12.  Phase-locking in SWS and REM.

(a) Comparison of upper limit of phase-locking (Fmax) in awake (dark gray) and SWS (light gray).  

In general, neurons were able to follow similar repetition frequencies of periodic stimuli in both 

states (mean Fmax awake=14.0, SWS=11.6 Hz, p=.37, Wilcoxon rank sum, n=58).

(b) Vector strengths in awake and SWS were comparable.  Although there appears to be a slight 

tendency toward weaker phase-locking in SWS, it was not significant (mean VS awake=.45, 

SWS=.43, p=.11, Wilcoxon rank sum, n=212).

(c) Fmax distributions were similar in awake and REM (mean awake=12.7, REM=10.2 Hz, p=.46, 

Wilcoxon rank sum, n=40).

(d) There appears to be a slight tendency toward stronger phase-locking in REM over awake 

(mean VS awake=.44, REM=.49), but this difference did not reach significance (p=.07, Wilcoxon 

rank sum, n=147).
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Figure 4.13.  Modulation tuning in SWS and REM. 

 
(a) Preferred modulation frequency (centroid of rate modulation tuning curve, see Methods) was 
highly correlated in SWS and awake (r2=.86, p=6*10-26, n=59). 
 
(b) Modulation tuning bandwidth (first moment about the centroid, see Methods) was also highly 
correlated in SWS and awake (r2=.62, p=2*10-13, n=59). 
 
(c) Population modulation tuning curve in awake (dark gray) and SWS (light gray).  Individual 
tuning curves for each neuron were first normalized by their peak value in either awake or SWS 
before being averaged (error bars represent +.5 sem).  The two curves have a similar pattern. 
 
(d-f) Same as (a-c) except for REM instead of SWS in comparison to awake. 
 
(d) Preferred modulation frequencies were highly correlated in REM and awake (r2=.74, p=1*10-

10, n=33). 
 
(e) Modulation tuning bandwidth was also highly correlated in REM and awake (r2=.51, p=3*10-6, 
n=33). 
 
(f) The population modulation tuning curve in REM (orange) did not have the lowpass character of 
the awake curve (dark gray). 
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Figure 4.14.  Responses to broadband sounds in SWS and REM. 

 
(a) Noise stimuli of different bandwidths drove neurons in both awake and SWS (NR=no 
response to any bandwidth, WB=wideband noise).  The maximum bandwidth eliciting a response 
could vary greatly between states, but no systematic bias was present. 
 
(b) Plot of maximum noise bandwidths eliciting a response in REM versus awake. 
 
(c) Mean gain over the population seemed to drop as bandwidth increased (stronger responses in 
awake to broadband sounds), but this was followed by a near 0 gain between awake and SWS 
for wideband noise (ntotal=346 stimuli) (error bars represent +sem). 
 
(d) In REM, there was no consistent trend of gain with increasing bandwidth of the stimulus 
(ntotal=262 stimuli) (error bars represent +sem). 
 
(e) Population averaged masking curves.  Awake and SWS curves were first normalized by the 
overall peak before averaging.  In the presence of a wideband noise masker, responses to 
narrowband target sounds were degraded in a similar manner in awake and SWS (error bars 
represent +.5*sem). 
 
(f)  Broadband masker effects may be somewhat stronger in REM (orange curve drops more 
rapidly), but the sample is too small to draw any conclusions (error bars represent +.5*sem). 
 



A B

DC

FE

tone 0.25 .75 1.5 5 WB 
-50

-40

-30

-20

-10

0

10

20

Bandwidth (octaves)

M
ea

n
 %

g
ai

n
(S

W
S

-A
)

tone 0.22 .59 1.1 2.8 WB 
-50

-40

-30

-20

-10

0

10

20

Bandwidth (octaves)

M
ea

n
 %

g
ai

n
(R

E
M

-A
)

-40 -20 0 20 40 60
0

0.2

0.4

0.6

0.8

Masker level re: probe (dB)

N
o

rm
al

iz
ed

 f
ir

in
g

 r
at

e

n=26
Awake
SWS

-40 -20 0 20
0

0.2

0.4

0.6

0.8

Masker level re: probe (dB)

N
o

rm
al

iz
ed

 f
ir

in
g

 r
at

e

n=13 Awake
REM

SWS REM

0 2 4 6 WB

0

2

4

6

WB

Awake max noise bw (octaves)

S
W

S
 m

ax
 n

o
is

e 
b

w
 (

o
ct

av
es

)

n=155

NR

NR
0 2 4 6 WB

0

2

4

6

WB

Awake max noise bw (octaves)

R
E

M
 m

ax
 n

o
is

e 
b

w
 (

o
ct

av
es

)

n=156

NR

NR

125



A B

DC

-50

-40

-30

-20

-10

0

10

20

tone
n=244

bp
noise
n=100

sAM
n=83

vocs
n=88

env
sounds

n=30

wb
noise
n=61

%
G

ai
n

(S
W

S
-A

)

-50

-40

-30

-20

-10

0

10

20

tone
n=254

bp
noise
n=108

sAM
n=58

vocs
n=70

env
sounds

n=20

wb
noise
n=57

%
G

ai
n

(R
E

M
-A

)

-50

-40

-30

-20

-10

0

10

20

tone
vs.

sAM
n=58

tone
vs.

noise
n=45

vocs
vs.

other
n=51

%
G

ai
n

 (
S

W
S

-A
)

-50

-40

-30

-20

-10

0

10

20

tone
vs.

sAM
n=37

tone
vs.

noise
n=45

vocs
vs.

other
n=39

%
G

ai
n

 (
R

E
M

-A
)

SWS REM

Figure 4.15.  Sleep gains for different stimulus types.

(a) We used 6 main stimulus types to probe neural responses (tones, bandpass noise, sinusoidal 

amplitude modulated tones or noise, vocalizations, environmental sounds, and wideband noise).  

In general, gains were somewhat negative but not different from 0% except for environmental 

sounds which were significantly negative (p=.008, bootstrap, n=30).

(b) Like in SWS, gains in REM for the 6 main stimulus types were not different from 0% except for 

environmental sounds (p=.03, bootstrap, n=20).

(c) In many cases, more than one stimulus type was tested on a neuron, and direct comparisons 

could be made within a neuron.  No difference was found in SWS gain for unmodulated versus 

modulated tones (p=.68, n=58), for tones versus narrowband stimuli (p=.51, n=45), and for 

vocalizations versus non-vocalization stimuli (p=.32, n=51) (Wilcoxon rank sum).  Gain remained 

near 0% in all cases.

(d) Within unit comparisons of the effects of REM on various stimulus types did not reveal any 

difference in sleep gains for modulated (p=.54, n=37), larger bandwidth (p=.80, n=45), or 

semantically meaningful (p=.24, n=39) (Wilcoxon rank sum) stimuli.
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Figure 4.16.  Evidence for a multiplicative effect of sleep.

(a) Plot of SWS gain for tones versus gains to other stimuli for each unit tested with at least two 

stimulus types.  Tone gains are the average of gains for all tones that drove a unit.  Gains to other 

stimuli are taken as the average across those stimuli that were not tones but drove a unit.  There 

was reasonable correlation in gains (r2=.22, p=4*10-6, n=88).

(b) REM modulation of tone responses was partially predictive of modulation of responses to 

other stimuli (r2=.15, p=5*10-4, n=75).

(c)  The vector similarity between awake and SWS firing rate profiles (see Methods) across all 

stimuli was relatively high (median ρ=.62, black inverted triangle).

(d) Awake and REM firing rate profiles across all stimuli also tended to be highly correlated 

(median ρ=.67, black inverted triangle).
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 A SWS p A REM p 

NMI .47 .42 .006 .46 .47 .14 
Thresh 45 55 .001 42 54 .0004 
CF 8.6 8.5 .93 9.1 8.0 .64 
BW 1.1 1.1 .98 1.1 1.2 .93 
Fmax 14.0 11.6 .37 12.7 10.2 .46 
VS .45 .43 .12 .44 .49 .07 
rBMF 28.9 31.2 .30 28.1 30.6 .73 
BWAM 3.8 3.9 .45 3.9 3.8 .64 

 

Table 4.1.  Summary of basic tuning properties. 

 
Comparison of tuning properties between awake (A) and SWS and between awake (A) and REM.  
Values represent means.  Wilcoxon rank sum tests used to derive p-values.  NMI=non-
monotonicity index, Thresh=sound level threshold (dB), CF=center frequency (kHz), 
BW=frequency tuning bandwidth (octaves), Fmax=fastest phase-locked modulation frequency 
(Hz), VS=vector strength, rBMF=rate best modulation frequency (Hz), and BWAM=bandwidth of 
modulation tuning (octaves). 
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Chapter 5: Population Properties of Neurons and LFP 
 

5.1 Summary 

 Instead of being in a dormant state during sleep, the brain is active.  Whether 

these activations are patterned or serve a functional purpose is a topic of intense research.  

In the auditory cortex, sleep has been shown to strongly modulate sensory responses of 

single neurons, but it is unclear if these modulations are patterned.  We recorded from 

pairs of nearby neurons and found that average firing rates were independently modulated 

by sleep.  Slow-wave sleep did enhance functional connectivity between neurons but at 

the cost of disrupting the pattern previously present in awake.  Connection patterns like 

those of awake re-emerged in rapid eye-movement sleep.  We recorded local field 

potentials (LFP) concurrently with single-units as an index of local activity.  LFP energy 

in low frequency bands (<40Hz) was modulated in a consistent fashion across multiple 

sleep cycles, but effects of sleep on LFPs were not correlated with those in single-units.  

These results suggest only weak organization of neurons at a larger spatial scale during 

sleep and that overall, single neuron responses across the cortical mantle are 

disorganized.  This is in contradistinction to what would be predicted from down 

regulation of a common thalamic input during sleep.  Any population coding of sounds 

may be disrupted leading to reductions in the fidelity of acoustic representations during 

sleep. 
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5.2 Introduction 

 Recordings of neural populations in a variety of settings have demonstrated the 

ability of the brain to organize.  During sleep in the hippocampus, coordinated replay 

events involving many neurons take place (Wilson and McNaughton, 1994).  These 

events tend to correlate with ripples (>100Hz) in the local-field potential (Foster and 

Wilson, 2006).  Also, neurons in the hippocampus will lock to certain phases of the theta 

oscillation so that populations of cells fire in a precise order (Harris et al., 2002).  In 

visual area V4, attention has been shown to induce coordination of neural firing with the 

gamma (40-100Hz) oscillations in the LFP (Fries et al., 2001).  This locking may give 

rise to improvements in neural synchrony such as those seen in the somatosensory cortex 

with attention (Steinmetz et al., 2000).  Finally, neural recordings in middle temporal 

cortex (MT) have found that neuron pairs exhibit correlated trial-by-trial fluctuations in 

their firing rates (Zohary et al., 1994; Bair et al., 2001).  These correlations arise partly 

because of common inputs from thalamus or V1.  Such neuron-neuron or neuron-LFP 

recordings are critical because they reveal network relationships that would have 

otherwise not been observable at the single-unit level.  Any patterns that are found can be 

windows into functional connectivity.  This is especially important in a state change such 

as sleep where functional organization may change.  Novel brain rhythms and 

neuromodulatory influences during sleep may change the state of the network (Steriade et 

al., 1993a; Steriade et al., 2001).  One study found that cortical slow oscillations (<1 Hz) 

that are prominent in SWS lead to prolonged periods of hyperpolarization (Steriade et al., 

1993a; Steriade et al., 1993b; Steriade et al., 1993c).  During these periods, spiking is 
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decreased.  The same group also found that SWS leads to greater spatial coherence of 

LFPs (Destexhe et al., 1999).  In REM, coherence returns to awake levels so that nearby 

LFP sites are not in phase, similar to wakefulness (Destexhe et al., 1999). 

 Most studies of network properties during sleep have relied on observations of 

internal activity (Pavlides and Winson, 1989).  But spontaneous firing can be quite low in 

cortex, limiting the number of neurons that can be studied.  Recently, robust externally 

driven responses have been demonstrated in auditory cortex during both SWS and REM 

(Pena et al., 1999; Edeline et al., 2001).  However, responses display quite diverse 

patterns of modulation.  Excitability of neurons in SWS can be either up or down 

regulated and is inconsistent with responsiveness in awake or even REM (see Chapter 3).  

The question arises as to whether these diverse responses are organized with respect to 

the network during sleep.  For one thing, sleep may up or down regulate specific sets of 

neurons or may induce synchronous behaviors between neurons through various brain 

rhythms.  Also, if sleep acts through the thalamus to achieve sensory gating as some have 

suggested (Steriade, 2003), then nearby cortical neurons receiving common thalamic 

input should show similar sleep behaviors. 

 These questions were addressed by recording from pairs of neurons and recording 

the LFP in conjunction with single neurons under conditions of external stimulation 

during sleep.  Analyses were performed to determine whether correlations between 

neurons or between neurons and the LFP existed at three time scales: cycle-by-cycle, 

trial-by-trail, spike-by-spike (locking).  Using these methods, a number of properties of 

network organization during sleep were revealed by natural stimulation with sounds. 
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5.3 Results 

 

 Single neuron recordings were performed in 5 hemispheres of 4 animals.  Activity 

was compared between awake, slow-wave sleep (SWS), and rapid eye movement sleep 

(REM) in 493 units.  Often multiple neurons were encountered on a single track, so that 

we recorded 325 pairs of neurons sequentially of which 71 were recorded simultaneously.  

An exemplary recording where three units were recorded simultaneously is shown in 

Figure 5.1.  These three nearby units showed three different behaviors during sleep.  The 

top unit only responded strongly in SWS (GainSWS=+83%).  The middle unit only 

responded strongly in awake (GainSWS=-73%).  And the third unit responded strongly in 

all states (GainSWS=+15%, GainREM=+18%).  In the next sleep cycle, this pattern of 

responses was again encountered (episodes 3 of SWS and REM in Fig. 5.1).  So sleep 

modulation was consistent from cycle to cycle as was shown in Chapter 3 for the 

population of single units we recorded.  The inconsistency between neurons, though, 

suggests a complex spatial effect of sleep.  Random behavior between nearby neurons 

during sleep has been noted previously in the primary visual (Livingstone and Hubel, 

1981) and auditory cortices (Pena et al., 1999; Edeline et al., 2001). 

 

5.3.1 Sleep modulation of neighboring neurons 

 In Figure 5.2, we quantified this heterogeneity in an analysis of all neurons 

recorded on the same electrode track.  Neurons were encountered at a variety of spacings, 

and neurons very close to each other were often tested (199 pairs at <200μ separation).  
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Despite their proximity, SWS modulation of firing rates in neuron pairs was not 

correlated (r2=.02, p=.08, n=199) (Fig. 5.2A).  This was also the case for the subset of 

simultaneously recorded neurons (r2=.07, p=.08, n=46).  In REM, the lack of organization 

persisted (r2=.001, p=.67, n=201) (Fig. 5.2B).  In almost half of the pairs (SWS=46%; 

REM=49%), neurons were modulated in opposite directions.  Whether neurons were 

modulated in the same or opposite direction did not depend on the distance between the 

pair or whether they were recorded simultaneously (Fig. 5.2, C and D).  The fraction of 

pairs changing in opposite directions remained above 40%.  Finally, there was no trend in 

sleep modulation with absolute depth (Fig. 5.2, E and F).  This analysis could be 

confounded, though, because our estimates of depth are inexact as electrode positioning 

varies daily.  But even at the extremes of the depth distribution (very superficial or very 

deep recordings), no clear bias in gain was seen (Fig. 5.2, E and F). 

 The lack of correlation between nearby units implies that neurons recorded on the 

same night were not modulated in a similar fashion (Fig. 5.3A).  This random spatial 

pattern can be quite disruptive to any population map especially given the large average 

magnitude of sleep modulation (~40%, see Chapter 3).  Figure 5.3B shows what the map 

of activity might look like across the cortical surface if the disorganization we observed 

orthogonal to the surface (in depth) is also present across the surface.  Figure 5.3C shows 

actual data across the cortical surface of the most extensively tested hemisphere (43q, 

right hemisphere).  This map shows neurons recorded from both A1 and lateral belt (LB).  

In general, the pattern of modulation (up or down) seems to be dispersed and not 

localized to any patch of cortex.  Read-out of relative firing rates would be affected 

unless sufficient averaging is employed. 
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5.3.2 Rate correlations in simultaneously recorded neurons during sleep 

 Another important aspect of a population code is the joint firing statistics of 

nearby neurons.  In about half of simultaneously recorded neuron pairs, both neurons 

could be driven with the same stimulus.  This allowed us to study trial-by-trial 

correlations in firing.  Neighboring neurons in primary sensory areas are known to exhibit 

correlated firing which arises from common inputs.  We wondered if sleep might disrupt 

these functional connections and hence affect population codes that depend on the 

covariation of firing rates across neurons.  In the awake state, mean rate correlation was 

.13 which is consistent with findings from previous studies (Zohary et al., 1994; Bair et 

al., 2001).  This value was highly significant (mean chance=-.002, p=2*10-12, Wilcoxon 

rank sum, n=268 stimuli) (Fig. 5.4A).  In SWS, correlation rose to even higher levels 

than awake (SWS=.21, awake=.13, p=.01, Wilcoxon rank sum, nSWS=378, nawake=268).  

In REM, firing correlations returned to awake levels (REM=.12, awake=.13, p=.53, 

Wilcoxon rank sum, nREM=144, nawake=268) (Fig. 5.4A). 

 An interesting observation was that correlation strengths did not simply scale in 

SWS.  The pattern of strongly and weakly connected neurons in SWS was not correlated 

to that in awake (r2=.004, p=.54, n=104) (Fig. 5.4B).  The increase in overall correlation 

strengths during SWS appears to override existing patterns.  In REM, the pattern of 

neuron correlations was restored to resemble those in awake (r2=.16, p=.001, n=64) (Fig. 

5.4C) and did not share properties with that in SWS (r2=.01, p=.41, n=65) (Fig. 5.4D).  

An increase in functional connectivity during SWS is consistent with spatial coherence 

imposed by large amplitude slow-waves (Destexhe et al., 1999).  In REM and awake, the 

relative independence of neurons is maintained.  Finally, we mention here that we were 
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unable to compare spike firing synchrony between neurons.  Spike train cross-

correlations (see Methods) were low in most of our small sample not allowing for a 

proper comparison between states. 

 

5.3.3 LFP examples 

 The local field potential (LFP) was recorded simultaneously with single units at 

299 sites in 2 animals (43q and 16s).  The LFP is a gross measure of synaptic activity in a 

1-3mm region of cortex (Kreiman et al., 2006) that can give a more stable picture than 

single neurons.  Especially since single neurons demonstrated diverse responses during 

sleep, we hoped to use the LFP to gain a better view of how sleep locally modulates 

activity on average.  Example LFP recordings from A1 and LB are shown in Figure 5.5.  

A few general observations can be made.  LFPs on single trials can be quite noisy, but if 

the stimulus-triggered average of the LFP is taken, a clear stimulus-locked waveform can 

be seen (thick black curves in Fig. 5.5, A-E).  The earliest observed waveform is a 

negative deflection that occurs at 17 ms in A1 and is followed by slower timescale 

oscillations (Fig. 5.5, A and B) and an occasional offset potential (Fig. 5.5, A-C).  The 

initial peak is thought to reflect the thalamic volley which reaches cortex first.  Later 

waveforms are less well-studied but probably correspond to cortical processing.  In LB, 

the initial peak is usually reduced to a small wiggle followed by a stronger, wider second 

peak (Fig. 5.5, D and E).  LFPs in LB were usually broad whereas LFPs in A1 could 

display narrow (Fig. 5.5, A and B) or broad (Fig. 5.5C) peaks.  The power spectrum of 

the LFP displays lowpass behavior.  Most of the power is concentrated below 40Hz (Fig. 

5.5F). 
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5.3.4 Sleep modulation of the LFP 

 Five measures were derived from LFP recordings: peak-to-peak amplitude (PTP) 

and absolute power in the 1-10, 10-40, 40-120 (high gamma), and 100-300 (ultra-high 

gamma) Hz bands (Liu and Newsome, 2006; Kreiman et al., 2006; Kayser et al., 2007).  

Gains in LFP power during SWS and REM were computed in a similar manner to gains 

computed for single neuron firing rates in Chapter 3 (%Gain=100*(sleep-

awake)/max(sleep,awake)).  Consistent with the idea that low frequency activity 

increases in SWS, gain in the two lowest frequency bands (1-10 and 10-40 Hz) and gain 

of peak-to-peak amplitude were significantly positive (mean Gain1-10=37%, Gain10-

40=28%, GainPTP=10%; p1-10=0, p10-40=0, pPTP=8*10-11; n1-10=205, n10-40=248, nPTP=278, t-

test) (Fig. 5.6A, left three bars).  On the other hand, REM activity demonstrated a 

consistent decrease of power in the low frequencies which is what would be expected 

during this stage of sleep (mean Gain1-10=-19%, Gain10-40=-11%; p=5*10-14, p=4*10-10; 

n1-10=210, n10-40=233, t-test) (Fig. 5.6B).  PTP response amplitude in REM was 

unaffected compared to awake (-2%, p=.13, n=309, t-test). 

 In the higher frequency bands (high and ultra-high gamma), effects were small 

and not as systematic as in the low frequency bands (Fig. 5.6, A and B).  High gamma 

activity could either increase or decrease when the animal fell into SWS (Fig. 5.6C) or 

REM (Fig. 5.6D).  This behavior resembles that of single units which could also be 

modulated up or down.  The difference is that modulation was much weaker for LFP 

gamma.  Average sleep modulation of single-unit firing rates (~40%) was twice that of 

LFP high-gamma (SWS=18%, REM=17%).  This is reflected in the relatively narrow 

%Gain distributions for high gamma power in SWS (Fig. 5.6C) and REM (Fig. 5.6D). 
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5.3.5 Comparison of LFP in A1 and LB 

 A comparison of LFP properties between A1 and LB revealed stronger overall 

LFP amplitude (Fig. 5.7, A and B) and energy (Fig. 5.7, C and D) in A1.  Although the 

LFP was stronger in A1, the pattern of sleep gains observed in A1 was also observed in 

LB.  Positive SWS gains and negative REM gains in low frequency power were found in 

both A1 and LB.  Gains in the power of higher frequency bands were near 0% in A1 and 

LB (Fig. 5.7, E and F).  Given the similarity in sleep modulation in the two regions, we 

grouped their data together in the remaining LFP analyses. 

 

5.3.6 LFP modulation in later sleep cycles 

 To be certain that changes in the LFP were systematic and not just random 

fluctuations, we re-measured LFP modulation in a later sleep cycle.  LFP gains in 

different cycles of SWS were correlated but only weakly.  Best correlations were 

observed for gains in PTP amplitudes (r2=.15, p=1*10-8, n=196) (Fig. 5.8A).  Low 

frequencies (0-10 Hz) had significant correlations (r2=.13, p=5*10-7, n=183) (Fig. 5.8B) 

which were reduced to marginally significant levels in the high gamma band (r2=.06, 

p=.0003, n=206) (Fig. 5.8C) and absent in the ultra-high gamma band (r2=.01, p=.21, 

n=208).  A similar pattern was observed in REM which is summarized along with SWS 

in Figure 5.8D.  Modulation of low frequencies was in opposite directions between SWS 

(strong 0-10 Hz) and REM (weak 0-10 Hz), but the strength and direction of this change 

re-occurs in a later episode of SWS or REM given the high correlation values between 

cycles.  This may not be surprising since the strength and frequency of slow-waves is 

known to be correlated between cycles.  Slow-waves start weak and become strong 
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toward the middle of the night before becoming weak again.  Comparing the LFP in the 

(0-10 Hz) band between episodes might reflect local consistencies during these trends.  

We were more interested in the correlations in the high frequency bands.  These may 

correlate with local activities of neurons (Liu and Newsome, 2006; Kreiman et al., 2006; 

Kayser et al., 2007).  Unfortunately, correlations in the gamma bands were weak (r2<.08).  

That any significant correlation exists between sleep cycles may reflect some 

organization in LFP fluctuations. 

 

5.3.7 Sleep modulation of single units and LFP 

 Up to this point, we have analyzed single-unit and LFP data separately.  In the 

remainder of the analyses, we will examine correlations between single-units and LFPs at 

three time scales: episode (sleep modulation), trial (rate modulation), and spike (locking 

of spikes to LFP).  When we compared the sleep gain for the LFP and a single-unit 

recorded at the same site, we found highly significant correlations in the ultra-high 

gamma band in SWS (r2=.06, p=2*10-5, n=315) (Fig. 5.9A) and REM (r2=.08, p=1*10-7, 

n=328) (Fig. 5.9B).  Correlations were higher than in any other frequency band.  This 

was surprising and suspicious at once.  It was a surprise because it suggested that 

modulations in the LFP may be an index of how nearby neurons will modulate in sleep.  

This was suspicious because we knew from our single-unit data, that even nearby units 

behave very differently in sleep.  How could the LFP correlate with the randomly 

modulated single-units?  Also, this correlation was very specific to the ultra-high gamma 

band.  The answer came when we divided our data into units with low signal-to-noise 

ratio (SNR) spike waveforms (<20 dB) and those with high SNRs (>23 dB).  The 
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correspondence between unit gains and LFP gains was only present in the high SNR 

population of units (r2=.15, p=.0005, n=80) and not the low SNR population (r2=.003, 

p=.65, n=73) (Fig. 5.9C).  This was also the case in REM (Fig. 5.9D). 

 

5.3.8 Influence of high SNR spikes on the LFP 

 The fact that high SNR units were well-correlated with the LFP can be explained 

by leakage of energy from the spike waveform into the LFP waveform.  In many cases, 

this overlap in signal energy artificially introduced a correspondence in the upper LFP 

band with single-unit firing.  Figure 5.10 illustrates this confound in a particularly well-

isolated single-unit (SNR=35 dB).  In many cases, LFP and spikes are co-tuned making it 

difficult to determine whether an increase in LFP power is independent of an increase in 

spike rate.  In the case of non-monotonic units like the one in Figure 5.10, a dissociation 

between firing rate and LFP amplitude can be made.  In Figure 5.10A, LFP amplitude 

rises with the loudness of the stimulus.  The single-unit response, however, is non-

monotonically tuned to quiet sounds, particularly 10 dB SPL (LFP prefers 70 dB) (Fig. 

5.10B).  Because the large spikes of the unit were not completely filtered out by our 

lowpass filter, the LFP contains spike artifacts (Fig. 5.10C).  The influence of the spike 

power is seen in the high frequency bands of the LFP spectrum (Fig. 5.10D, green lines).  

The effect is restricted to the high frequency bands as power in frequencies below 100Hz 

is unchanged with sound level.  It turns out to be critical to design a simple algorithm to 

remove high SNR spikes from the LFP before performing analyses on the gamma bands.  

This is relatively straightforward since spikes have stereotypical shapes and are easily 



140 

detectable.  Unfortunately, we filtered our signal in hardware and did not retain the whole 

signal which is necessary to perform spike removal (see Discussion). 

 

5.3.9 Covariation of firing rate and LFP power 

 We computed covariation of trial firing rates and LFP power at each site where 

both a single-unit and LFP were simultaneously recorded.  To avoid spiking artifacts in 

the LFP, we restricted our analysis to <20dB SNR units.  We divided the lower bands of 

the LFP spectrum into more traditional ranges used for the EEG (δ=.7-4.2, θ=4.2-7.5, 

α=7.5-12, β=12-20, γ=20-50, hγ=40-120, and uhγ=100-300Hz).  The rate-power 

correlations are plotted for each band in Figure 5.11A.  A few surprising features 

emerged.  First, since δ is prominent in SWS when arousal is low, we had expected 

negative correlations of spike rate with δ energy, but δ band-spike rate correlations were 

non-existent (pawake=.73, pSWS=.44, pREM=.47, t-test, nawake=116, nSWS=133, nREM=118).  

Second, we had expected that β energy might show positive correlation with firing rate 

since β is an indicator of arousal.  Instead, correlations between firing rate and any of the  

low frequency bands (θ, α, and β) were negative.  None reached significance at the p<.01 

level (t-test, nawake=116, nSWS=133, nREM=118).  Third, co-variance of spike rate and LFP 

power in the γ, hγ, and uhγ bands exhibited positive correlation (significant at the p<10-10 

levels for the hγ and uhγ bands, t-test, nawake=116, nSWS=133, nREM=118).  Taken alone 

this is not a surprising result.  The suggestion that γ power correlates with improved 

neural firing has been made before (Fries et al., 1997; Fries et al., 2001).  What is 

unexpected about our data is that gamma band correlations also exist in sleep.  In fact, 

rate-gamma correlations in SWS were significantly better than those in awake (phγ=.002, 
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puhγ=.001, Wilcoxon rank sum, nawake=116, nSWS=133).  This runs contrary to the idea that 

gamma has a special role in enhancing neural firing during aroused states such as 

attention.  The mechanism by which gamma energy can lead to (or be the result of) 

improved neural firing is operative in sleep.  For comparison, we measured correlations 

between driven and spontaneous rates on the same trials (Fig. 5.11A, far right bars).  

Correlations with spontaneous rate were as high as any of those with the LFP.  So the 

excitability of a neuron immediately before a stimulus is played can predict driven firing.  

Like gamma energy, spontaneous rates may be an indirect measure of local activity. 

 

5.3.10 Controlling for spike SNR in spike rate-LFP power covariation 

 To better estimate the effects of leakage from the spike signal on the LFP, we re-

measured rate-power correlations as a function of spike SNR, LFP power, and spike rate.  

We reasoned that leakage would depend to some degree on all three of these factors.  If a 

neuron has high SNR or a high firing rate, more spike power would be found in the LFP 

leading to spurious correlation between the LFP and spiking.  Likewise, if the LFP is of 

sufficiently high power, it may be more robust to the influence of spikes.  A trend of 

increasing rate-power correlations was found in units with high spike SNRs (Fig. 5.11B).  

This effect was restricted to the gamma bands and did not influence lower frequency 

bands.  Spikes above 30dB SNR had the most influence, but below 30 dB, the relation 

was mostly flat (Fig. 5.11B).  This suggests that the 20 dB cut-off used in the rate-power 

correlation analysis of Figure 5.11A was more than sufficient.  Unlike spike SNR, the 

mean number of spikes elicited had a weaker effect with curves at all frequencies being 

mostly flat (Fig. 5.11C).  And mean LFP power, high or low, had little influence on how 
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well the LFP correlated with single-unit firing rates (Fig. 5.11D).  If anything, a negative 

trend was present so that a stronger LFP limited the correlation that could be induced by 

spike leakage.  The highest three frequency bands (γ, hγ, and uhγ) were clearly separate 

(higher correlation values) from the lower frequency bands under all conditions (Fig. 

5.11, B-D).  This was the case regardless of how large spikes were, how many spikes 

were elicited, or how much power was contained in the LFP. 

 

5.3.11 Spike and LFP coherence 

 Finally, we measured the coherence between individual spikes and the LFP 

waveform.  The spike-triggered average (STA) of the LFP is a measure of the activity 

immediately preceding and following a spike (Fries et al., 2001) (see Methods).  The raw 

STA showed a clear negative deflection preceding spikes in all states and a longer, larger 

positive deflection following spikes (Fig. 5.12A).  The negative deflection lasted for only 

~50ms, but the longer post-spike deflection lasted for up to 200ms.  SWS shows a clear 

gain in STA power over awake and REM (mean gain=45%, p=0, t-test, n=337) (Fig. 

5.12B).  However, if the raw STA is normalized by the amplitude of the LFP used in 

spike-triggering, then SWS had a similar STA waveform to those in awake and REM 

(Fig. 5.12C), and power of the normalized STA is similar between awake and SWS 

(mean gain=-7%, p=.07, t-test, n=337) (Fig. 5.12D).  This suggests that the strength of 

the SWS STA is because of stronger LFP amplitudes in SWS. 

 If the Fourier transform of the STA is taken, the spike-field coherence (SFC) is 

obtained.  The SFC is a measure of how coherent spikes are with different frequency 

bands of the LFP (Fries et al., 2001).  For example, studies in the visual system have 
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shown an increase in the gamma range of the SFC when attention is directed inside a 

cell’s receptive field.  It is possible that spikes lock to different brain rhythms during 

sleep and wakefulness.  Of special interest were the low frequencies corresponding to 

slow waves since these could induce the correlations between neurons that we observed 

earlier (Figure 5.4A).  In Figure 5.12E, the SFC did show improved locking of spikes in 

SWS to frequencies below 10Hz.  At higher frequencies, awake, SWS, and REM all had 

similar SFC’s.  A more accurate measure is to normalize the SFC by the mean LFP 

spectrum.  In doing so, the normalized SFC captures any improvements in spike 

synchronization independent of enhancement in the regularity of the LFP oscillations.  In 

the normalized SFC, the observed trend in the low frequencies remained; spikes during 

SWS were more coherent with low frequencies than those in awake and REM (Fig. 

5.12F).  The normalized SFC above 100Hz became elevated, but this may be because the 

normalization values were very small (power is weak above 100Hz).  Also, above 100Hz, 

spike contamination becomes an issue, so high coherence may reflect the fact that the 

high frequency range of the LFP overlaps the lower end of spike power. 

 

5.4 Discussion 

 

5.4.1 Disorganization of single neurons during sleep 

 The responses of single-neurons can be up- or down-regulated in SWS and REM.  

In the present study, we did not find any evidence of spatial organization of these 

activations and deactivations.  Driven rates of nearby neurons could be modulated in 
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opposite directions.  The result is that the map of firing rates across the cortical surface or 

in depth is randomly modified.  This is somewhat surprising given that neurons in the 

thalamus are modulated much more homogoneously (Livingstone and Hubel, 1981; 

Edeline et al., 2001).  If thalamic projections to cortex are organized, then neighboring 

cortical neurons would be expected to be more homogeneous.  This result is also 

surprising from the perspective of the dynamics of sleep.  We supposed that during 

certain sleep cycles activity is regulated in a consistent fashion.  But even in neurons 

recorded simultaneously within the same sleep cycle, modulation was random.  This 

spatially random behavior has been suggested before by a few groups (Livingstone and 

Hubel, 1981; Pena et al., 1999; Edeline et al., 2001).  Our study is the first to directly 

confirm it by systematically recording from pairs of neurons simultaneously.  Combined 

with the finding in Chapter 1 that REM and SWS independently modulate firing rates, the 

picture we put forth is one of a network of neurons that is randomly spatially modulated 

in two different patterns, one pattern that recurs in every cycle of SWS and one pattern 

that recurs in each cycle of REM. 

 Although mean firing rates can differ between units, we observed a tendency for 

increased trial-by-trial firing rate correlations in SWS.  This came at the cost of 

disrupting correlation patterns normally present in awake and to some degree in REM.  

This finding is consistent with work showing improved neuronal correlations in 

spontaneous firing during SWS (Noda and Adey, 1970) and with work showing that 

slow-waves induce coherence across space (Destexhe et al., 1999).  In awake and REM, 

LFPs are less coherent across space (Destexhe et al., 1999) which may relate to decreased 

neural correlations.  Another possible explanation for the increase in correlated firing in 
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SWS comes from data in Chapter 4 showing that inhibition decreases in SWS.  This may 

lead to unmasking of more inputs including common inputs.  Regardless, our result 

implies that neurons in SWS fire less independently which may limit their coding 

capacity (Abbott and Dayan, 1999).  Neurons in awake and REM have baseline levels of 

correlation which may simply reflect common thalamic inputs to neighboring neurons.  

Alternatively, the awake-like correlations observed in REM may be related to dreaming.  

In such a scenario, correlations present in the preceding awake period would carry over 

into dreams during REM.  One way to test this hypothesis would be to re-measure awake 

and REM correlation patterns in later sleep cycles and see if these patterns change and 

are re-expressed in REM. 

 

5.4.2 LFP responses during sleep 

 This study is the first to report the effects of sleep on LFP sensory responses.  

Previous work correlated LFP sensory responses with single-unit responses during the 

awake state (Henrie and Shapley, 2005; Liu and Newsome, 2006; Kreiman et al., 2006; 

Kayser et al., 2007).  The main finding of those studies is that the gamma frequency 

bands (>20Hz) correlate strongly with single-unit tuning.  We found weak evidence that 

sleep modulated LFP gamma and no evidence of correlation between sleep modulation of 

LFP gamma and single-unit modulation.  Our original reason for collecting the LFP was 

that we thought it would tell us what the thalamic input is during sleep.  We thought that 

the LFP would clearly decrease during sleep since the thalamus is depressed in sleep.  

Instead, changes in LFP gamma averaged near 0%.  Either the thalamus is actually active 

in sleep or the LFP is a poor proxy for thalamic input.  A more direct way to assess 
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thalamic input to cortex during sleep may be to collect the current source density (CSD) 

and measure the strength of the layer 4 sink (Mitzdorf, 1985; Heynen and Bear, 2001). 

 Although the LFP was not a good predictor of sleep modulation of single unit 

responses, it was a good predictor of trial-by-trial variations in firing rate.  Especially in 

the gamma range, there were significant positive correlations between gamma power and 

firing rates.  Low frequency bands manifested a weaker but significant negative 

correlation with spiking rate.  This trial-by-trial correlation was present in all three states 

(awake, SWS, and REM).  Apparently, similar mechanisms are operative in sleep and 

awake. 

 Given that previous work had suggested a special role for gamma power in 

attention (Fries et al., 2001), we were surprised to find that SWS had the strongest 

gamma power-firing rate correlations (Fig. 5.11A).  This observation resembled our 

finding that pairs of units showed higher correlations in SWS (Fig. 5.4A).  We believe the 

two are related.  Improved spike rate-LFP gamma correlations probably imply improved 

correlations between units.  It is not clear what the causal order is.  Neurons could be 

coordinated through the gamma oscillation, or coherent firing of neurons could induce 

gamma oscillations.  A third possibility is that increased firing rates lead to both higher 

neuron coherence and higher gamma oscillations (de la Rocha et al., 2007), but we have 

no reason to believe that SWS increased firing rates.  Either way, correlations between 

units (Fig. 5.4A) and between units and LFP gamma (Fig. 5.11A) were closely related in 

our data because they were both strongest in SWS, significantly stronger than in awake or 

REM.  This adds evidence to the idea that SWS involves coordinated activity (Destexhe 

et al., 1999).  The novel finding is that this coherence may lead to improved gamma band 
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correlations.  Such gamma band correlations had normally been considered the domain of 

enhanced processing states like attention (Fries et al., 2001).  This view may have to be 

revised to include SWS.  The mechanism for improved population correlations seemed to 

at least partly involve the low frequencies of the EEG as spikes were more coherent with 

frequencies below 10 Hz in SWS than in any other state (Fig. 5.12F) 

 When we examined the correlation of spiking activity during the stimulus to 

spontaneous activity immediately preceding, there was also a strong correlation.  

Background firing rates, like high gamma activity, can predict the changes in evoked 

response strength.  As shown in Chapter 3, though, changes in spontaneous activity could 

not predict changes in overall driven activity during sleep.  This parallels the finding here 

that the sleep modulation of the LFP does not correlate with single-unit modulation.  The 

LFP and spontaneous activity seem to be a good measure of the excitability of neurons 

locally in time but not modulations of firing rate on the episode timescale during sleep. 

5.4.3 Technical issues with recording the LFP 

 Interpretation of the LFP is limited.  For one thing, the LFP resides in the 

frequency range between the EEG and spikes.  From one side, the EEG can confound the 

LFP, and from the other, spikes and multi-unit activity can mix with the LFP.  We did 

find strong amplitude changes in the SWS EEG which led to consistent changes in the 

LFP (Fig. 5.6).  But these changes were uncorrelated with single-units.  Low frequency 

portions of the EEG are likely too gross in their spatial scale to apply at the neural level.  

We had difficulty examining the higher gamma bands of the LFP because, above 100Hz, 

spiking can lead to energy in the LFP.  This was despite strong online hardware filtering.  

Lowpass filtering can only completely remove periodic signals, but, being impulses, 
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spikes contain energy in all frequencies.  Post-hoc we developed a spike removal 

algorithm that managed to clean-up LFPs, but for the analyses described above, we could 

not apply this algorithm and instead restricted our analyses to LFPs collected when spike 

SNRs were small.  Spike SNRs < 20dB seemed to be sufficient for examining the LFP 

independent of spike energy (Fig. 5.11B).  In the future, it is best to record the LFP on a 

separate electrode when using high impedance electrodes that routinely yield large spike 

waveforms.  This precaution may not be necessary when using low impedance electrodes 

or recording multi-unit activity (Fries et al., 2001).  An alternative is to remove spikes 

from the unfiltered waveform before lowpass filtering below 300Hz, but this would have 

to be done offline. 

 We adopted conventional frequency domain measures of the LFP in our analyses, 

but in order to correlate LFP data with the wealth of evoked potential studies during sleep 

(for reviews see Cote, 2002; Bastuji et al., 2002), future LFP work will need to examine 

properties of the LFP in the time domain.  Features of the LFP waveform may correspond 

to different components of thalamic and cortical processing.  Most studies to date have 

focused on the first 50ms of the LFP since this is most reliable.  Changes in wave shape 

with cortical depth make any further analysis difficult without first co-registering the LFP 

with laminar location (Mitzdorf, 1985; Heynen and Bear, 2001).  In evoked potential 

studies, however, the measured signal contains stable late components that can be 

interpreted to have a cortical basis (Bastuji et al. 2002; Hennevin et al., 2007).  Since the 

evoked potential is many steps removed from spiking responses, it is difficult to extend 

interpretations much further.  Ultimately, a multi-scale approach will be necessary to 

characterize the cortical network under different behavioral states. 
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5.5 Methods 

 

 See Chapter 2: General Methods for details of electrophysiological recordings and 

sleep scoring. 

 

5.5.1 LFP recordings 

 Local field potentials (LFP) were recorded in two hemispheres of two animals.  In 

one animal, LFPs were recorded in both A1 and LB (43q).  In the second animal, LFPs 

were recorded exclusively in LB (16s).  The findings of this study were unaffected when 

restricted to LB (Fig. 5.7), so the results from both A1 and LB were pooled.  LFPs were 

measured on the same electrode as single-units.  2-4MΩ tungsten microelectrodes were 

used.  After the first stage of filtering (1-10000Hz, 100x), the electrode signal was split 

and filtered separately to obtain the spike (300-3750Hz, 100x) and LFP (1-300Hz, 100x) 

signals.  The spike signal was digitized at 8kHz for later use.  A 1kHz sampling rate was 

used for digitizing LFP signals.  LFPs were DC subtracted and notched filtered offline at 

60Hz and higher harmonics (120Hz and 180Hz) using a fourth order elliptical filter 

(stopband attenuation=40dB, passband ripple=.1). 

 

5.5.2 Rate correlation 

 Correlations between two simultaneously recorded neurons responding to the 

same stimulus were computed using a simple normalized measure adapted from Bair et 

al., 2001: 
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which are mean subtracted and normalized by the standard deviation of firing across all 

trials to obtain a z-score zi.  Rate correlations were bootstrapped by randomly permuting 

the trials of one neuron in the pair and recalculating correlation (n=25). 

 

5.5.3 Spike synchrony 

 To measure spike timing synchrony between neurons, a cross-correlation between 

spike trains was first computed using (Bair et al., 2001): 
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τ , where τ is the time delay (τ =-100 to 

100ms), T is the length of the spike train, and N is the total number of trials.  This 

measure normalizes spike trains by their average firing rate before cross-correlating and 

corrects for edge effects using a triangular window.  Shift-predictor CCH’s were 

generated by re-computing and averaging the CCH for all trials i,j where i≠j.  We 

computed the standard deviation of individual shift predictor trials from the mean and 

used a cut-off of 2*sd to determine if synchrony was significant.  Few CCH’s passed this 

criterion in our sample which is a reflection either of low connectivity in auditory cortex, 

the low number of trials collected, not optimizing the stimulus for both neurons, or not 

eliciting enough spikes to achieve statistical significance. 
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5.5.4 Frequency analysis of LFP 

 Similar to previous work (Kreiman et al., 2006), we computed the power spectral 

density using the Welch method with either a 100 or 128 point Hamming window and 

50% overlap of segments.  To ensure that absolute power was preserved in the spectrum 

estimate, we normalized the spectrum by the sum of all the frequencies and multiplied by 

the power of the raw signal.  This yielded units of power (V2) per Hz.  The power was 

computed from the spectrum using two different schemes: δ=.7-4.2, θ=4.2-7.5, α=7.5-12, 

β=12-20, γ=20-50, high-γ=40-120, ultrahigh- γ=100-300 Hz, or 0-10, 10-40, 40-120, and 

100-300 Hz.  Spectra were computed separately during the pre-stimulus period (baseline) 

and during the first 100ms of stimulation.  For trial-by-trial correlations with single-unit 

firing rates, LFP spectra were computed for the whole signal (pre-stimulus, stimulus, and 

post-stimulus periods).  In addition to computing the spectrum on each trial, we 

computed the peak-to-peak value of the stimulus-triggered average of the LFP.  Spectral 

power or peak-to-peak amplitudes of LFPs were considered significant if they were 

3*sem above levels during the baseline period and were considered significantly different 

in two states if separated by more than 2*sem. 

 

5.5.5 Spike signal-to-noise ratio 

 100 spike waveforms were averaged and the peak-to-peak value was compared to 

the noise in the 10ms preceding the spike according to SNR = 20*log10(Vpp/σ). 
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5.5.6 Spike-triggered average of LFP 

 The spike-triggered average (STA) of the LFP was taken by averaging the LFP 

signal +200ms about each spike.  The STA was averaged across all spikes elicited in a 

neuron whether spontaneous or evoked and regardless of stimulus used.  The shift 

predictor was computed by permuting LFP trials and re-computing the STA 10 times.  

This randomization is important because it accounts for any stimulus induced correlations 

in spikes and LFP activity.  Often, in the first 100-200ms following stimulation the 

increase in spike rate and LFP power can artificially induce correlations.  A second 

bootstrap procedure we used was to randomize spike times within a trial before 

computing the STA.  This procedure yielded weaker shift predictors than randomizing 

trials.  We found it better to use the first, more conservative trial-shift predictor.  STAs 

that reached absolute values > 2.5*sd after shift predictor subtraction were considered 

significant. 

 

5.5.7 Spike field coherence 

 The spike-field coherence (SFC) is a measure of the degree of synchrony between 

spikes and field potentials in different frequency bands.  The raw SFC is simply the 

power spectrum of the STA.  In order to distinguish a change in coherence from a change 

in the strength of oscillatory patterning of the LFP, the raw SFC is normalized by the 

mean spectrum of all LFPs used in calculating the STA (Fries et al., 2001).  
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Figure 5.1.  Example of 3 simultaneously recorded units.

Three single-units were recorded simultaneously on one electrode.  Units were isolated on the 

basis of their different spike shapes (inset).  The EEG (bottom) reaches a peak in SWS (gray), 

falls in REM (orange), and returns to intermediate levels in awake (black).  Data was not collected 

continuously.  Each horizontal bar represents the mean rms EEG power of a continuous 

measurement.  Breaks between bars indicate separate measurements.  Data were recorded from 

all three units in two different episodes, episodes 2 and 3, of sleep (EEG returns to a high value in 

a second episode of SWS after awake period).

The spiking behavior of each unit was different.  The top unit responded most strongly in SWS 

(gray) (rasters oriented vertically, each column represents a single trial).  The second unit 

responded most strongly in awake (black), and the third unit responded equally well in awake, 

SWS, and REM.  The PSTH's (far right, oriented sideways) show the averages of activity across 

all trials in each state.  SNRs for the units (top to bottom) were 27, 39, and 28 dB.  Data collection 

from all three units spanned a 100 minute period.
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Figure 5.2.  Sleep modulation of nearby units. 

 
(a) SWS gains for unit pairs recorded within 200μ of each other.  Usually, units were recorded 
sequentially (dark gray), but, in some cases, unit pairs were recorded simultaneously in the same 
sleep cycle (light gray).  Gain for the first unit recorded is plotted against the gain of the second 
unit recorded.  No correlation was observed in sleep modulation of units in a pair (r2=.02, p=.08, 
n=199) even if recorded simultaneously (r2=.07, p=.08, n=46). 
 
(b) Same as (a) except for REM.  Gains of nearby units were uncorrelated (r2=.001, p=.67, 
n=201) even if recorded simultaneously (r2=.01, p=.44, n=49). 
 
(c) The direction of modulation in SWS was equally likely to be in the same (dark gray) or 
opposite direction (light gray) for neurons recorded on the same track at various distances.  
Distances labeled are centers of distance quintiles (0 corresponds to simultaneously recorded 
units).  Given the distribution of gains, we obtained a bootstrap estimate of how often two gains 
randomly drawn from this distribution would be in the same (dark gray dashed line) or opposite 
(light gray dashed line) directions (error bars represent +sd, n=100). 
 
(d) Same as (c) except for REM.  In general, REM modulation of a neuron was just as likely to be 
in the same or opposite direction as other neurons recorded in the same track. 
 
(e) SWS gain as a function of depth from the cortical surface.  No tendency exists in gain with 
depth (r2=.001, p=.61, n=443). 
 
(f) REM gain as a function of depth from the cortical surface.  No tendency exists in gain with 
depth (r2=.004, p=.16, n=456). 
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Figure 5.3.  Illustration of the lack of spatial organization in SWS. 

 
(a) All tracks where more than one unit was recorded (n=127).  Each dot represents a unit, and 
all units from the same track are connected by a line.  Tracks are first ordered by how consistent 
the sign of the gain was between units (all positive, all negative, or mixed sign) and then ordered 
by the mean gain.  On some tracks, units displayed consistent modulation (far right and left 
tracks), but on the majority (middle tracks), gains widely varied.  So sleep modulation was not 
consistent on any given night. 
 
(b) To simulate how disorganized cortical firing rates would be during SWS, we used the pairwise 
gain values obtained in Figure 5.2a.  We used these values as measures of pairwise correlation 
and arrayed the gain values in a grid (every two neurons represents a pair from Fig. 5.2a). 
 
(c) Actual data across the cortical surface from the most extensively mapped hemisphere (M43q, 
right hemisphere).  SWS modulation varies quite randomly.  The map of firing rates across 
auditory cortex is highly modified. 
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Figure 5.4.  Covariation of firing rates in awake, SWS, and REM.

(a) Trial-by-trial fluctuations in firing rate were strongest in SWS (light gray) but also significantly 

present in awake (dark gray) and REM (orange) (error bars represent +sem; open circles are 

bootstrapped estimates found by randomly assigning trial numbers).

(b) Strengths of rate correlations present in SWS were uncorrelated with those in awake (r2=.004, 

p=.54, n=104 stimuli).

(c) Pattern of rate correlations in awake and REM was similar (r2=.16, p=.001, n=64 stimuli).

(d) SWS rate correlations were dissimilar from REM rate correlations (r2=.01, .41, n=65).
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Figure 5.5.  Example LFPs recorded from A1 and LB. 

 
(a) LFP waveforms from individual trials are plotted in gray.  The mean LFP waveform is overlaid 
(black).  Negative LFP deflections are clear at the onset and offset of the stimulus. 
 
(b) Another example LFP from A1 showing a fast negative component at stimulus onset. 
 
(c) Example LFP from A1 that shows a broader waveform than in the examples of (a) or (b). 
 
(d) In LB, waveforms were generally broad and did not reach as high amplitudes as in A1.  In 
some cases, a small negative potential can be discerned at the short latencies seen in A1.  This 
was followed by a larger, slower negative waveform. 
 
(e) Small negative potential before main LFP deflection can be seen in this example taken from 
LB. 
 
(f) The power spectrum of the individual LFP waveforms on each trial in (e) (gray).  Mean 
spectrum is overlaid (black).  The LFP has a lowpass nature with most energy concentrated in the 
EEG range (<20Hz). 
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Figure 5.6.  Sleep modulation of LFP.

(a) SWS increased PTP amplitude and the power in the low frequencies of the LFP.  Energy in 

the high and ultrahigh gamma (40-120 and 100-300 Hz) bands did not change strongly when the 

animal entered into SWS.

(b) In REM, power in the low frequencies decreased (opposite of SWS effect, see (a)).  PTP and 

gamma energy did not appear to change strongly.

(c) SWS Modulation of high-gamma (40-120 Hz) energy was centered near 0 (mean -2%, p=.18, 

t-test, n=243).  Distribution was narrow.  Average magnitude of modulation was only 18%, but 

77% of LFPs were significantly modulated in SWS (>2*sem difference from awake) (darkly 

shaded bottom portions of bars represent significant gains; lightly shaded top portions represent 

insignificant gains).

(d) Same as (c) except for REM.  Gain in high-gamma energy tended to be positive in REM 

(mean 9%, p=8*10-10, n=247).  64% of LFPs were significantly modulated.  Magnitude of 

modulation only averaged 17%.
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Figure 5.7.  Comparison of LFP in A1 and LB. 

 
(a) Peak-to-peak LFP amplitudes were generally larger in A1 than in LB whether in awake (dark 
gray) or SWS (light gray).  Note that LFP amplitude tends to be higher in SWS than awake (error 
bars represent +sem).  PTP values were taken for all stimuli tested in a minimum of 5 reps in 
awake and SWS and having a response >3*sem above baseline in either awake or SWS. 
 
(b) Same as (a) except REM substituted for SWS.  Response amplitudes in A1 were stronger 
than those in LB for awake and REM states. 
 
(c) Comparison of LFP power in A1 and LB across frequency bands.  Power is generally higher in 
A1 (dark gray) than in LB (light gray) regardless of frequency range.  Power was computed as the 
mean of awake and SWS values for all stimuli eliciting a significant modulation of power (>3*sem 
from baseline) in at least 1 state (error bars represent +sem). 
 
(d) Same as (c) except for REM.  A1 power during REM was greater than LB power for all 
frequency bands. 
 
(e) Although A1 may have had higher LFP amplitude (a) and power (c) than LB, SWS modulation 
of amplitude (PTP, far left) and power were similar in A1 and LB (error bars represent +sem). 
 
(f) Same as (e) except for REM.  Pattern of negative gains at low frequency bands seen earlier in 
pooled data (Fig. 5.6b) was present in both A1 (dark gray) and LB (light gray) even though 
amplitude (b) and power (d) tended to be higher on average in A1. 
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Figure 5.8.  Consistency of LFP modulation across sleep cycles.

(a) In many cases, LFPs were re-measured in a later cycle of sleep at a different site (i.e. in 

conjunction with a different isolated single-unit).  SWS modulation of PTP amplitude was 

correlated between cycles (r2=.15, p=1*10-8, n=196).

(b) Modulation of delta power was somewhat similar from one cycle to the next (r2=.13, p=5*10-7, 

n=183).

(c) Modulation of high-gamma (40-120 Hz) power was weak but present from cycle to cycle 

(r2=.06, p=.0003, n=206).

(d) In general, correlation of sleep modulation between cycles was only present for SWS (dark 

gray).  REM modulations (light gray) were not as consistent.  The correlation between nearby 

episodes of SWS may reflect the waxing and waning trend of slow-wave amplitude throughout 

the night.  This general effect on waveform amplitude likely trickles into higher frequency bands 

(10-40 and 40-120 Hz) even though slow-waves are restricted below 5 Hz suggesting a 

multiplicative (modulatory) rather than additive effect of slow-waves.
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Figure 5.9.  Correlation between single-unit and LFP modulations during sleep.

(a) LFP recordings were made in conjunction with single-units.  The modulation of LFP amplitude 
(PTP) and power during SWS was compared to modulation of single-unit firing rates during SWS.  
Only the ultra-high gamma (100-300Hz) band showed a strongly significant correlation (*p<.01, 
**p<.001, ***p<.0001).  Sites were selected based on the presence of LFPs at least 1.5*sem 
above baseline and single-unit firing rates at least 2*sem above spontaneous.

(b) In REM, power in the ultra-high gamma band was also modulated in a manner consistent with 
single unit modulations.

(c) Redoing the analyses in (a) separately for low SNR (<20 dB, dark gray) and high SNR (>23 
dB, light gray) single-units reveals that ultra-high gamma correlations with firing rate modulation 
are only present in high SNR units.  Correlations return almost to 0 in the high and ultra-high 
gamma bands for low SNR units.

(d) Similar to SWS, REM modulation showed strong correlation in the high and ultra-high gamma 
bands only for high SNR units (orange), but for low SNR units the high and ultra-high gamma bins 
were near 0.
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Figure 5.10.  Example LFP contaminated by simultaneously recorded spikes.

(a) LFP amplitude generally increases monotonically with sound level of stimulus.  At quiet levels 

(green and gray), LFP waveform is weak.

(b) Single-units in auditory cortex often exhibit non-monotonic tuning with sound level.  This 

particular unit only responds to 0-20 dB SPL (green).

(c) Example stimulus trial at 10dB SPL.  The LFP (red) has no clear stimulus locked component 

at this quiet sound level.  However, the LFP has artifacts from the spiking signal (black).  Energy 

from the 35 dB SNR spikes leak into the signal despite lowpass filtering.

(d) Normally the LFP spectrum has the most power for loud sound levels (thick black lines), but in 

this case power is greatest for quiet sound levels (thick green lines) where driven spiking of unit 

artificially boosted power.  Note that differential effect is restricted to frequencies above 100 Hz.  

Lower frequencies are generally not affected by spike power.  Only the high part of the LFP 

spectrum is susceptible.
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Figure 5.11.  Spike rate-LFP power correlation. 

 
(a) In general, low frequency LFP power (<20Hz, β corresponds to 12-20Hz) was negatively 
correlated with spike rate.  Power in the gamma bands (20-50, 40-120, and 100-300 Hz) 
positively correlated with spike rate fluctuations.  Surprisingly, gamma-rate correlations were 
strongest in SWS (light gray).  For comparison, correlation between spontaneous (spon) rate 
immediately preceding driven activity is shown.  Sites were selected based on the presence of an 
LFP recorded simultaneously with a low SNR (<20 dB) single-unit.  No criteria for driven rate or 
LFP significance were used.  Rates included spontaneous and driven spikes, and LFP power was 
taken across the complete trial duration.  (error bars represent +sem) 
 
(b) Spike rate-LFP power correlation during SWS plotted as a function of spike SNR for all stimuli 
(n=18,464) where LFP and single-unit data were obtained.  SNRs were divided into quintiles and 
dots represent centers of each quartile.  The low frequency bands show no correlation with spike 
rate regardless of SNR.  Although the gamma bands show improved correlation with spike rate at 
high spike SNRs, strong correlation is still present even at the lowest SNRs (10 dB) suggesting 
that gamma-rate correlations are not completely attributable to spike artifact. 
 
(c) Spike rate-LFP power correlation during SWS as a function of mean spike rate.  Although the 
gamma bands show a slight increase in rate-power correlation for spike rates above 1Hz, the 
effect is weak.  Spike size (b) seems to have a stronger influence than spike rate on rate-power 
correlations. 
 
(d) Spike rate-LFP power correlation during SWS as a function of LFP power (summed energy 
from 1-50 Hz).  A negative trend is barely discernable.  Strong rate-LFP correlations are present 
in the gamma bands regardless of LFP power.  Even when LFP power is high and spike artifacts 
may have less influence, correlation above 0.2 is seen in the high and ultra-high gamma bands. 
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Figure 5.12.  Spike-triggered average of LFP and spike-field coherence. 

 
(a) For each unit recorded simultaneously with the LFP in all three states, the average LFP 
waveform 200ms preceding and following the spike was computed.  Individual unit STAs that 
reached a value at least 2.5*sd above the shift predictor were averaged to generate the 
population STA.  The population SWS STA (light gray) is stronger than the awake (dark gray) and 
REM (orange) STA’s (error bars represent +sem). 
 
(b) The gain of individual unit STA’s was high in SWS (mean 45%, p=0, t-test, n=337) reflecting 
the increase in SWS STA amplitude seen in (a) (light gray curve).  Gain was computed using the 
power (mean of squared amplitude) of the STA in SWS and awake where %Gain=(SWS-
A)/max(SWS,A). 
 
(c) When individual unit STA’s are normalized by average LFP amplitude before population 
averaging, the SWS curve (light gray) becomes more similar to the awake (dark gray) and REM 
(orange) curves.  This suggests that the strong SWS STA seen in (a) is partially the result of a 
larger amplitude LFP in SWS.  (error bars represent +sem) 
 
(d) The gain of LFP amplitude normalized STA’s for individual units was not different from 0 
(mean 7%, p=.07, t-test, n=337). 
 
(e) The SFC was found by averaging the power spectra of all individual unit STAs that reached a 
value at least 2.5*sd above the shift predictor.  For frequencies below 10 Hz, spikes and LFP 
appear to be especially coherent in SWS (light gray) (error bars represent +sem). 
 
(f) Normalizing the individual unit SFC’s by the mean of all LFP power spectra did not affect the 
trend in (e).  SWS still showed enhanced coherence between spikes and low frequencies of the 
LFP (error bars represent +sem). 
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Chapter 6: Concluding Remarks 
 

 In three main chapters, this thesis outlined properties of primate auditory cortex 

during sleep.  Here, I will summarize the major findings, their implications, and future 

directions. 

 In a distilled sense, Chapter 3 showed that cortical neurons respond to sounds 

during sleep; Chapter 4 showed that neurons can only respond in a limited range because 

of reduced excitation and inhibition; and Chapter 5 showed that single neuron activations 

in sleep are not spatially organized but can co-modulate with local activity especially in 

SWS. 

 A better way to consider these observations is from the point of view of a 

homunculus trying to make sense of activity in auditory cortex during sleep (or the 

thought experiment of an asleep auditory cortex placed in an alert rest of the brain).  

What the homunculus would see is that a neuron in SWS could increase or decrease its 

response to a sound by 40% and that nearby neurons would also change their responses 

unexpectedly.  Neurons that were once quiet in awake may suddenly respond very 

strongly to the sound in SWS.  As if reading this new map of activity is not confusing 

enough, the situation becomes worse when noise is added to the system.  Now, neurons 

start responding together so that some times they all respond slightly more as if more 

stimulus is present, but really it is common noise.  This correlated firing makes it hard to 

determine how much signal is present in the noise.  Finally, if temporal variations are 

introduced into the signal, the population of neurons will be slow to respond because 
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little dynamic range is available.  At any given moment, the homunculus would have a 

hard time determining if the signal changed since activity changes little.  These 

challenges the homunculus faces illustrate the multi-faceted effects of sleep.  They affect 

rate coding, signal-to-noise calculations, and population dynamics.  All of these would 

affect a population read-out of activity in auditory cortex (which is what the omniscient 

homunculus represents). 

 

6.1 Chapter 3 

 

6.1.1 Summary 

 The main finding of Chapter 3 is that neurons in auditory cortex are quite 

responsive to sounds even when the animal goes through various stages of sleep (SWS 

and REM).  In a way, this was a pilot study intended to find out whether neurons could 

even be studied when the animal fell asleep.  Not only did they respond, but they 

displayed a diversity of responses that became the subject of later chapters.  Externally 

driven responses during sleep were on average ~10% reduced from those in awake.  

Responses were repeatable from one cycle to the next as if the network kept returning to 

the same state of sensory processing on each cycle.  SWS and REM represent at least two 

different states of sensory processing as their responses were uncorrelated. 

 In the next stage of auditory processing, lateral belt, average responses were also 

mostly preserved during sleep.  Originally, we had expected that in higher brain areas 

responses would be more attenuated in sleep.  Our result, however, is consistent with 
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imaging work that shows activation in the extent of the human temporal lobe to sounds 

under a variety of altered states (sleep, vegetative, anesthetized) (Portas et al., 2000; 

Laureys et al., 2000; Davis et al., 2007).  As a side note, we did place a lesion in the 

region of our belt recordings in one animal.  Based on histologic examination, the lesion 

was well outside of A1 and may have been even as far as parabelt.  So our finding may 

extend to the lateral limit of auditory cortex and certainly well beyond primary auditory 

cortex. 

 

6.1.2 Significance 

 The study in Chapter 3 yielded data similar to labs already doing sleep work 

(Pena et al., 1999; Edeline et al., 2001).  In that sense, the suggestion that the brain is 

active during sleep is not entirely novel.  If there was doubt, our study solidified earlier 

findings by performing arousal controls, recording in a higher area, and testing neurons 

across the whole night.  In comparing to previous neurophysiology work, hindsight 

proves its worth.  Many hints that were dropped in anecdotes or unlikely tendencies in 

published data became magnified in our study.  The main theme from these studies is that 

neural responses are diverse (Livingstone and Hubel, 1981; Pena et al., 1999; Edeline et 

al., 2001).  Neurons are not all down-regulated as might be expected if sleep is a low 

activity state.  Diversity in cortical neurons has been noted before (Nelken, 2004).  Why 

cortical responses are so heterogeneous could be traced to complicated connectivity, the 

variety of neuron types, non-stationarity of responses, or the higher level nature of 

processing. 
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 Some imaging studies have found activity in human auditory areas during non-

awake states (Portas et al., 2000; Davis et al., 2007).  Since the imaging signal usually 

correlates better with synaptic activity, it does not determine whether the output of a 

given area is present (Viswanathan and Freeman, 2007).  A strong imaging signal only 

suggests that an output could exist.  Short of recording neurons directly in humans, our 

data strongly imply that the spiking output of auditory cortex is still at a high level during 

sleep. 

 The findings of Chapter 3 raised two major issues which became the subject of 

later chapters.  (1) Despite the presence of activity, does sensory processing change? 

(Chapter 4)  (2) Is this activity the result of or at least part of larger scale reorganization 

or ongoing sleep processes? (Chapter 5) 

 This chapter did provide some of the answers to two questions.  (1) Are responses 

in the sleep state like the anesthetized state?  Although we did not directly perform the 

comparison between the two states, we found during sleep a prevalence of driven 

responses in neurons even ones in the upper layers (anesthetized studies usually record 

from layer 4), awake-like sustained response patterns, and independent responses in 

REM, so it is safe to say that sleep is a unique state.  Any analogies made with 

anesthetics are either superficial, uninformed, or tenuous.  (2) Where are sounds gated 

from perception during sleep?  By showing that a putative ‘gate’ would have to occur at a 

level higher than secondary auditory cortex, these results overturn the long held notion 

that the thalamus prevents the relay of signals into cortex during sleep (Steriade, 2003). 
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6.2 Chapter 4 

 

6.2.1 Summary 

 The study in Chapter 4 found that auditory processing in SWS has limited 

dynamic range.  Depending on the sound level of the acoustic event, neural responses 

cannot be driven or suppressed as strongly in SWS.  These effects are less pronounced in 

REM.  REM seems to have more awake-like processing.  We were able to model the 

effects of sleep on firing rates using a simple scaling of the excitatory and inhibitory 

inputs into a cell.  The main prediction of this model was that less inhibition in SWS 

could actually lead to stronger firing rates.  This trend was seen in the population 

intensity and frequency tuning curves.  In general, though, when we tested more complex 

stimuli, no striking deficits were seen in sleep processing – aside from slight shifts in 

various tuning properties (phase-locking, sound level threshold, non-monotonicity, and 

modulation tuning). 

 

6.2.2 Significance 

 The results of Chapter 4 significantly expand on our understanding of sensory 

processing during sleep.  When we noticed the change in the underlying dynamic range 

of responses, it was a ‘makes sense’ type of result.  It made sense from the point of view 

of lowered metabolic consumption in the brain during sleep (Hobson, 2005).  Metabolism 

goes down in sleep and synaptic activity is known to be metabolically costly.  It is 

expected that excitatory and inhibitory synaptic activity would suffer.  Also, it made 
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sense from a mechanistic point of view of which the proposed conceptual model is a 

realization.  For a long time, we had been puzzled by the fact that the thalamus is 

consistently found to be depressed in sleep (Edeline et al., 1999) and that cortex 

consistently shows up as more active than its thalamic input (Livingstone and Hubel, 

1981; Edeline et al., 2001).  We had suspected that one way this was possible was that 

inhibition is released during sleep.  Seeing that less inhibition is present during SWS 

helped clarify a possible difference between thalamus and cortex. 

 Our finding was a nice fit to the idea that REM is a more awake-like state.  

External sounds are often incorporated into dreams (Ramsey, 1953; Berger, 1963; Burton 

et al., 1988), and generally people are more easily awakened from REM sleep (Bonnet, 

1982).  Classically, SWS is considered deep sleep because of its depth of behavioral 

unresponsiveness.  We found that dynamic range was not as compromised in REM, and 

that responses in REM could be just as rapid as those in awake.  This is an idea that 

emerges from the thesis; REM is not only an active state but may be close to awake as far 

as auditory processing.  Originally, we had started by comparing SWS and REM as two 

sleep states whereas now we tend to think of REM in terms of awake. 

 The bigger conceptual challenge of this chapter is what exactly is meant by 

limited dynamic range in SWS.  The first thing to mention is that we suspect the 

inhibition that we observed was likely of the broad (sums across all fibers, not tuned), 

normalizing (grows linearly with stimulus strength), slow type.  This may have been a 

limitation of our methods or may have been the overriding strength on extracellular 

responses of this type of inhibition.  Such inhibition has been considered important in 

response normalization across the network or gain control in different responses regimes 
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(Salinas and Their, 2000; Schwartz and Simoncelli, 2001).  Most recently, this sort of 

inhibition was observed in context of leech behavior (Baca et al., 2008) but is prevalent 

in many other settings (Chance et al., 2002).  Increasingly, inhibition has become a more 

prominent subject in neural studies.  An attention study bolstered the idea that inhibition 

is an important sculptor of the existing excitatory network by showing that attention may 

exert its influence through inhibitory interneurons (Mitchell et al., 2007).  These results 

including ours bring inhibition into view as a prominent player in cortical processing 

especially during behavioral state changes.  As mentioned, we tried to examine direct 

consequences of this inhibition on single neuron processing and found little effect.  Our 

current, untested speculation is that changes will be more strongly observed at higher 

levels of processing.  In the read-out of the modified auditory cortical responses will the 

true consequence to processing be observed.  This view receives indirect evidence from 

imaging studies showing that as soon as complicated discriminations of sounds are tested 

in sleeping or sedated subjects, higher frontal areas lose their response even though 

activity was present in the temporal lobe to simple stimuli (Portas et al., 2000; Davis et 

al., 2007).  Ultimately, these deficits should manifest behaviorally.  Unfortunately, 

sleeping subjects cannot be queried to report what they perceive while they sleep.  Is it 

much attenuated in amplitude or is the sound transmitted only in a garbled form?  Such 

processes go on subconsciously, and future studies will have to use more sophisticated 

approaches and record in higher areas to determine the nature of the cortical 

transformation of sounds during sleep. 
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6.3 Chapter 5 

 

6.3.1 Summary 

 In this study, we set out to determine if any organization existed in the modulation 

of auditory cortex by sleep.  We felt that organization could occur because of common 

thalamic input or because of patterned internal processes.  When we examined 

correlations between neurons or between neurons and the LFP, we found little evidence 

of local organization.  An interesting finding, though, was that the pattern of firing 

correlation between neurons in REM was similar to that in awake, so joint firing statistics 

may be similar between the two states.  On the other hand, SWS joint firing statistics 

were modified compared to those in awake and REM, and SWS had the strongest 

incidence of joint firing.  We found that the LFP was weakly correlated from one sleep 

cycle to the next, but neurons behaved independently with respect to these patterns on a 

long timescale.  On a short timescale, gamma band correlations with single neuron firing 

rates persisted in both states of sleep suggesting that gamma oscillations are universal in 

brain activity. 

 

6.3.2 Significance 

 The results of Chapter 5 couch our work in terms of more classical measures of 

sleep.  For example, hippocampal studies of learning measure correlations between pairs 

of neurons during sleep (Wilson and McNaughton, 1994), and many studies of general 

activity (not sensory processing) use signals like the EEG and LFP and look for 
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coherence across space and time (Destexhe et al., 1999; Steriade et al., 2001).  A major 

idea behind such work is that ensembles of neurons can display patterns of network-level 

organization during sleep (Harris et al., 2002; Harris, 2005).  Our LFP results agree with 

this notion as there were consistent (repeatable over cycles) biases in different frequency 

bands of the LFP, and LFP activity on single trials correlated with single unit responses.  

Consistent with the idea of improved coherence by the common oscillations in SWS 

(Destexhe et al., 1999), neuron pairs became more correlated during SWS.  This suggests 

to us some organization of activity.  Supporting this further, neurons in SWS tended to 

firing more strongly with increases in gamma energy.  We were somewhat surprised to 

find that gamma activity was an equally important determinant of single neuron firing in 

REM as in awake and was actually most salient in SWS.  Low frequency LFP energy led 

to lower firing rates in awake and REM, not just in SWS.  In other words, the LFP did not 

give a clean separation of what brain rhythms are more important in what states.  The 

LFP during SWS had strong power in all frequency bands even those above the EEG 

range.  We had expected some decrease at least in high frequency bands (because of 

decreased thalamic input).  In the end, we found the analyses of this chapter quite 

important.  Even if the results were hard to interpret, we achieved our goal to use network 

properties to differentiate awake, SWS, and REM.  The evidence that SWS is a coherent 

state could not have been inferred from single-unit data.  Future studies recording from a 

larger population of cells such as is done in the hippocampus or imposing daytime 

behaviors may be able to observe more organized activations in cortex.  Or it could be 

that external stimulation is an artificial activation of the sleep network.  Maybe measuring 

spontaneous activity patterns is the only means to finding sleep patterns. 
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6.4 Final Discussion 

 

 In the beginning of this thesis, I mentioned four possible hypotheses of sensory 

processing in sleep.  They were termed the Attention, Thalamic Gate, Mentation, and 

Vigilance hypotheses.  Some spoke at a mechanistic level (attention, thalamic gate) and 

some more at the functional level (mentation, vigilance), but all were broad.  In my 

opinion, the thalamic gate hypothesis needs to be re-visited.  I found it hard to believe 

that I was getting strong cortical responses, but it seemed like every time I doubted the 

response I was getting, a sleep active neuron would come along to re-convince me.  I was 

especially convinced when I recorded three neurons simultaneously (Figure 5.1) and 

found that they behaved completely differently.  Recording them simultaneously 

controlled for sleep cycle effects.  The question could always come up that I was only 

seeing ‘sleep active’ neurons in aberrant sleep cycles where the animal was not fully 

asleep.  In such a case, all neurons should be active.  When I moved far away from A1 to 

record in LB, I hoped to find less responses, but even then neurons would respond during 

sleep and occasionally respond stronger than in awake.  If the thalamus gates the signal 

from cortex, it appears to get re-amplified.  A study of the effects of sleep in the auditory 

thalamus of the marmoset would be a valuable complement to the results in this thesis.  I 

do not discount the idea that the thalamus is depressed, but this thesis suggests that is 

only part of the story; cortical responses exhibit unique behavior. 

 The attention hypothesis is also only part of the story.  I did observe that the 

arousal of the animal especially the eyes being open helped improve responses by up to 



181 

10% (on the order of attentional improvements reported in V1 (McAdams and Maunsell, 

1999)), but neurons did not behave in a graded fashion once the animal fell asleep.  Some 

neurons would respond better in SWS and some better in REM even though both states 

constitute a loss of arousal.  Attention effects in the visual literature suggest a saturation 

model (Reynolds et al., 2000; Reynolds and Chelazzi, 2004).  Instead, we observed a loss 

of dynamic range involving inhibition (super-saturation).  This model is more in line with 

the idea that metabolic and hence synaptic activity is lowered in SWS and may not be 

directly related to a top-down gating of arousal/attention. 

 The mentation and vigilance hypotheses were conceived to oppose each other.  

The mentation hypothesis states that sleep is focused on internal processes, while the 

vigilance hypothesis states that some resources are dedicated to monitoring the external 

environment for the safety and security of the sleeper.  Our results suggest both 

hypotheses.  Auditory cortex may be involved in vigilance since it can still respond to 

sounds.  Even if there is less dynamic range which may limit the discriminative capacity 

of processing, the amount of stimulus-driven activity we observed suggests that sounds 

can still be detected.  We do not doubt that internal processes activate cortical sensory 

areas (Ji and Wilson, 2007) whether in dreaming or in consolidation of new perceptual 

skills like those used in speech and music (Stickgold, 2005).  Our study was not geared to 

directly expose these phenomena, but we would tend to believe that they exist.  Neurons 

seemed to undergo complex and sometimes large modulations during our experiments. 
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6.5 Future Experiments 

 

 After I started doing the sleep experiments, I realized how much potential there is 

for studying sleep in the auditory system.  It becomes immediately obvious how powerful 

it is to be able to play sounds and measure responses even while the animal sleeps.  For 

one thing, it lets you assay how active neurons are during sleep.  For another, it allows 

you to manipulate activity in the brain during sleep.  The ability to measure and 

manipulate activity opens the door to a number of scientific questions that have yet to be 

asked.  This luxury is not as easily afforded in other sensory modalities.  Here are some 

future experiments suggested by the results of this thesis or by random musings on many 

a long night: 

 Chronic recording.  Sleep is an ideal candidate for the use of implanted 

electrodes.  From a practical point of view, implanting electrodes allows experiments to 

be done in a more natural setting for the animal.  They can sleep in their home cage.  

Also, if sleep is at all involved in plasticity, then it becomes important to track how 

neurons change over long periods of time.  Response behavior within a night was fairly 

consistent, but I always wondered how neurons would behave the next night or even the 

next day during daytime hours. 

 Frontal cortex and sensory association areas.  Recording from these areas 

which may be closer to perception could reveal stronger effects of sleep on sensory 

responses.  The only problem is that responses in these areas are not well-understood 

(Romanski, 2007).  It would be interesting to see how active these areas are or if their 
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responses drastically change as the imaging data suggests (Portas et al., 2000; Davis et 

al., 2007). 

 Plasticity and behavior.  Combining a behavioral task with sleep could be a 

powerful paradigm.  Studies in V1 have looked at how neural activity during sleep affects 

ocular dominance plasticity (Frank et al., 2001; Jha et al., 2005; Krahe et al., 2005).  

They showed that cortical activity during sleep is important for plasticity to take place.  

In the auditory system, this idea can be taken one step further by inducing different 

patterns of activity during sleep.  For example, if the animal is trained on a task to detect 

rising frequency modulated sweeps, rising sweeps can be used to stimulate the proper 

pattern of activity at night in order to improve behavior the next day.  Alternatively, 

down sweeps can be used to disrupt ongoing sleep patterns or maybe even potentiate 

synapses in the opposite direction.  The idea behind experiments like these is whether 

acoustically stimulating different patterns of activity in A1 on a regular basis during sleep 

can lead to systematic changes in neural maps or in behavior.  This assumes sleep is an 

especially plastic period.  A control would be to see if the same stimulation when the 

animal is awake could induce plastic changes. 

 Replay of rhythmic sounds.  In the long-term, recording from many neurons 

simultaneously may become more routine, and patterns of activation across multiple 

neurons can be observed (Lee and Wilson, 2002).  In the short term, sleep replay effects 

could be examined in single neuron firing patterns.  Periodic stimuli, which are 

commonly used in auditory studies, seem like a good candidate.  By training the animal 

on a modulation discrimination task or by simply overstimulating with sounds of a given 

periodicity, periodic patterns of neural replay could be observed in sleep.  The prediction 
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would be that neural interspike intervals become biased toward the periodicity of the 

stimulus used. 

 Attention, awake, asleep.  The influence of behavioral states has been repeatedly 

studied but rarely all in the same preparation.  Despite all of the work looking at effects 

of altered states, it is not clear how they relate at the single neuron level.  In this 

experiment, I propose comparing the effects of sleep to the effects of attention 

(behavioral task or controlled arousal) to see if they are the same in the same neural 

population or are achieved in different ways in each neuron.  A gain control model seems 

useful for attention and suggests simple mechanisms, but as I have mentioned, the effects 

of sleep may be different. 

 Intracellular recordings.  I am only aware of one study that recorded 

intracellularly from cortical neurons during sleep (Timofeev et al., 2001).  Doing this is a 

heroic experiment and could be important given the results of this thesis.  For one thing, 

what is the input like to a neuron and how does it relate to the output during sleep?  Such 

studies have been performed in thalamus (Coenen and Vendrik, 1972; Hirsch, 1983) 

during sensory stimulation but not in cortex.  Our work suggests that large changes are 

occurring in the excitatory and inhibitory inputs to a cell.  Additionally, the stability 

achievable in a sleeping animal (as opposed to an animal performing a task) affords a 

unique opportunity to study behavioral state effects at the mechanistic level. 

 Oddball paradigm.  In retrospect, we would have tested neurons using an 

oddball stimulus paradigm during sleep.  At the time of our studies, we were not aware of 

the extensive evoked potential literature showing that the MMN is no longer present in 

SWS (Sabri et al., 2003; Sabri and Campbell, 2005) and only weakly appears in REM 
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(Loewy et al., 1996; Nashida et al., 2000; Atienza et al., 2000).  The MMN is thought to 

be important since it might reflect higher level processing.  Short-term memory is 

required to keep track of stimulus probability given preceding stimuli.  In sleep, this 

higher order memory process appears to be compromised, although some have suggested 

a deficit in low-level transmission of the acoustic signal (Sabri and Campbell, 2005).  It 

would be interesting to see which hypothesis single neuron data support. 

 Background sounds.  When I first started the sleep project, we were really 

interested in the idea that calling someone’s name could wake them up.  We thought that 

testing neurons with vocalizations might reveal some special processing.  This may yet be 

true, but we did not find evidence of a special allowance for vocalizations at least in 

primary auditory cortex.  Maybe in higher areas it would be more apparent.  What I 

began to realize, though, is that specializations may exist in early areas for filtering out 

background sounds.  This perspective may prove valuable in future experiments.  

Functionally, it is important to stay asleep most of the time which means ignoring sounds 

off in the distance.  In SWS and REM, responses to quiet sounds decreased suggesting 

that sounds <30 dB, which are likely part of background, are selected out.  Also, quiet 

sound responses were weaker in neurons recorded during later sessions suggesting 

adaptation on the part of the animal.  The other interesting piece of data was a large 

negative gain in sleep for environmental and colony sounds.  No other class of sounds 

was nearly as suppressed.  In addition to higher order spectral and temporal structures, 

these sounds were long in duration.  Quite possibly, long, ongoing sounds are adapted to 

very strongly since they are probably not foreground events which would be more 

discrete in time.  Future experiments could manipulate other defining properties of 
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background sounds to see if and how sleep selectively acts on these types of sounds.  

This might require a better understanding of the statistics of background natural sounds.  

Perhaps it will turn out that the most important function of hearing during sleep is to filter 

out the 99% of irrelevant sounds rather than select the 1% of relevant sounds. 

 Biophysical model.  The studies embodied in this thesis were mainly 

phenomenological in nature.  Our intent was to gather details of auditory processing 

during sleep since almost no data exist on this matter.  Some of the observations we made 

could benefit from a detailed mechanistic modeling.  Although we came up with a 

conceptual model using excitation and inhibition, this model did not include a 

thresholding nonlinearity or account for fast and slow processes of inhibition.  The model 

also did not incorporate adaptation which would be important if we are to go beyond 

mean firing rates and model response profiles.  A quantitative model would facilitate 

going between extracellular firing rates and underlying excitatory and inhibitory currents 

and may be able to explain the observations that large sleep modulations tended to occur 

at low firing rates and that extracellularly observed suppression was nonlinearly 

dependent on spontaneous rate.  A successful model would be helpful in making 

predictions for future experiments. 
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