Climate Change, Climate Impacts & Integrated Assessment Modeling

Uncertainty quantification of future projections of global and regional climate change; Climate change impact assessment with a focus on the natural and managed land systems; Cost-benefit analysis of climate mitigation; Improving the representation of the coupled human-Earth system in integrated assessment models.

About me

Contact Information

Dr. Erwan Monier

Principal Research Scientist
Center for Global Change Science
Joint Program on the Science and Policy of Global Change
Massachusetts Institute of Technology
77 Massachusetts Avenue, E19-439GA
Cambridge, MA 02139-4307 USA
+1 617-715-5429 • emonier@mit.eduhttp://mit.edu/emonier

Biosketch

I am a Principal Research Scientist at the MIT Center for Global Change Science and Joint Program on the Science and Policy of Global Change. I first joined the MIT Center for Global Change Science as a Postdoctoral Associate in 2009 and became a Research Scientist in 2011. My research focuses on uncertainty quantification of future projections of global and regional climate change, climate change impact assessment with a focus on the natural and managed land systems, cost-benefit analysis of climate mitigation, and improving the representation of the coupled human-Earth system in integrated assessment models. In recent years, I contributed to the intercomparison project with Earth System Models of Intermediate Complexity (EMICs) undertaken in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) and I was a major contributor to the US Environmental Protection Agency (EPA) Climate Change Impacts and Risk Analysis (CIRA) project. Within the CIRA project, I contributed to or led various climate impact assessments including the impacts of climate on agriculture and water resources, on forestry and wildfires, and on air quality and health. I completed my PhD in Atmospheric Science at the University of California, Davis, and hold a Master's degree in Hydraulics and Fluid Dynamics Engineering from the National Polytechnic Institute of Toulouse.

Publications

2017

  1. Blanc E, Caron J, Fant C, Monier E (2017) Is Current Irrigation Sustainable in the United States? An Integrated Assessment of Climate Change Impact on Water Resources and Irrigated Crop Yields. Earth's Future, 5, 877–892, doi:10.1002/2016EF000473. [pdf]
  2. Xu L, Pyles RD, Paw U KT, Snyder RL, Monier E, Falk M, Chen SH (2017) Impact of Canopy Representations on Regional Modeling of Evapotranspiration using the WRF-ACASA Coupled Model. Agr. Forest. Meteorol., 247, 79-92, doi: 10.1016/j.agrformet.2017.07.003. [pdf]
  3. Monier E, Kicklighter DW, Sokolov AP, Zhuang Q, Sokolik IN, Lawford R, Kappas M, Paltsev SV, Groisman PYa (2017) A review of and perspectives on global change modeling for Northern Eurasia. Environ. Res. Lett., 12, 083001, doi: 10.1088/1748-9326/aa7aae. [pdf]
  4. Garcia-Menendez F, Monier E, Selin NE (2017) The role of natural variability in projections of climate change impacts on U.S. ozone pollution. Geophys. Res. Lett., 44, 2911-2921, doi:10.1002/2016GL071565. [pdf]
  5. Kim JB, Monier E, Sohngen B, Pitts G, Drapek R, McFarland J, Ohrel S, Cole J (2017) Assessing climate change impacts, benefits of mitigation, and uncertainties on major global forest regions under multiple socioeconomic and emissions scenarios. Environ. Res. Lett., 12, 045001, doi:10.1088/1748-9326/aa63fc. [pdf]
  6. Gao X, Schlosser CA, O'Gorman P, Monier E, Entekhabi D (2017) Twenty-First-Century Changes in U.S. Regional Heavy Precipitation Frequency Based on Resolved Atmospheric Patterns. J. Climate, 30, 2501-2521, doi:10.1175/JCLI-D-16-0544.1. [pdf]

2016

  1. Monier E, Xu L, Snyder R (2016) Uncertainty in future agro-climate projections in the United States and benefits of greenhouse gas mitigation. Environ. Res. Lett., 11, 055001, doi:10.1088/1748-9326/11/5/055001. [pdf]

2015

  1. Sue Wing I, Monier E, Stern A, Mundra A (2015) US Major Crops' Uncertain Climate Change Risks and Greenhouse Gas Mitigation Benefits. Environ. Res. Lett., 10, 115002, doi:10.1088/1748-9326/10/11/115002. [pdf]
  2. Garcia-Menendez F, Saari RK, Monier E, Selin NE (2015) U.S. air quality and health benefits from avoided climate change under greenhouse gas mitigation. Environ. Sci. Technol., 49(13), 7580-7588, doi:10.1021/acs.est.5b01324. [pdf]
  3. Mills D, Jones R, Carney K, St Juliana A, Ready R, Crimmins A, Martinich J, Shouse K, DeAngelo B, Monier E (2015) Quantifying and Monetizing Potential Climate Change Policy Impacts on Terrestrial Ecosystem Carbon Storage and Wildfires in the United States. Climatic Change, 131(1), 163-178, doi:10.1007/s10584-014-1118-z [Erratum: Climatic Change, 131(1), 179-181, doi:10.1007/s10584-015-1407-1]. [pdf] Erratum: [pdf]
  4. Strzepek K, Neumann J, Smith J, Martinich J, Boehlert B, Hejazi M, Henderson J, Wobus C, Jones R, Calvin K, Johnson D, Monier E, Strzepek J, Yoon J (2015) Benefits of Greenhouse Gas Mitigation on the Supply, Management, and Use of Water Resources in the United States. Climatic Change, 131(1), 127-141, doi:10.1007/s10584-014-1279-9. [pdf]
  5. Monier E, Gao X (2015) Climate change impacts on extreme events in the United States: an uncertainty analysis. Climatic Change, 131(1), 67-81, doi:10.1007/s10584-013-1048-1. [pdf]
  6. Monier E, Gao X, Scott JR, Sokolov AP, Schlosser CA (2015) A framework for modeling uncertainty in regional climate change. Climatic Change, 131(1), 51-66, doi:10.1007/s10584-014-1112-5. [pdf]
  7. Paltsev S, Monier E, Scott J, Sokolov A, Reilly J (2015) Integrated economic and climate projections for impact assessment. Climatic Change, 131(1), 21-33, doi:10.1007/s10584-013-0892-3. [pdf]

2014

  1. Xu L, Pyles RD, Paw U KT, Chen S, Monier E (2014) Coupling the high-complexity land surface model ACASA to the mesoscale model WRF. Geosci. Model Dev., 7, 2917-2932, doi:10.5194/gmd-7-2917-2014. [pdf]
  2. Gao X, Schlosser A, Xie P, Monier E, Entekhabi D (2014) An Analogue Approach to Identify Heavy Precipitation Events: Evaluation and Application to CMIP5 Climate Models in the United States. J. Climate, 27, 5941-5963, doi:10.1175/JCLI-D-13-00598.1. [pdf]

2013

  1. Monier E, Scott JR, Sokolov AP, Forest CE, Schlosser CA (2013) An integrated assessment modeling framework for uncertainty studies in global and regional climate change: the MIT IGSM-CAM (version 1.0). Geosci. Model Dev., 6, 2063-2085, doi:10.5194/gmd-6-2063-2013. [pdf]
  2. Monier E, Sokolov AP, Schlosser CA, Scott JR, Gao X (2013) Probabilistic projections of 21st century climate change over Northern Eurasia. Environ. Res. Lett., 8, 045008, doi:10.1088/1748-9326/8/4/045008. [pdf]
  3. Zickfeld K, Eby M, Weaver AJ, Alexander K, Crespin E, Edwards NR, Feulner G, Fichefet T, Forest CE, Friedlingstein P, Goose H, Holden PB, Joos F, Kawamiya M, Kicklighter D, Kienert H, Matsumoto K, Mokhov II, Monier E, Olsen SM, Pedersen JOP, Perrette M, Philippon-Berthier G, Ridgwell A, Schlosser A, Schneider von Deimling T, Shaffer G, Sokolov A, Spahni R, Steinacher M, Tachiiri K, Tokos KS, Yoshimori M, Zeng N, Zhao F (2013) Long-Term Climate Change Commitment and Reversibility: An EMIC Intercomparison. J. Climate, 26, 5782-5809, doi:10.1175/JCLI-D-12-00584.1. [pdf]
  4. Hallgren W, Schlosser CA, Monier E, Kicklighter D, Sokolov A, Melillo J (2013) Climate Impacts of a Large-Scale Biofuels Expansion. Geophys. Res. Lett., 40, 1624-1630, doi:10.1002/grl.50352. [pdf].
  5. Eby M, Weaver AJ, Alexander K, Zickfeld K, Abe-Ouchi A, Cimatoribus AA, Crespin E, Drijfhout SS, Edwards NR, Eliseev AV, Feulner G, Fichefet T, Forest CE, Goosse H, Holden PB, Joos F, Kawamiya M, Kicklighter D, Kienert H, Matsumoto K, Mokhov II, Monier E, Olsen SM, Pedersen JOP, Perrette M, Philippon-Berthier G, Ridgwell A, Schlosser A, Schneider von Deimling T, Shaffer G, Smith RS, Spahni R, Sokolov AP, Steinacher M, Tachiiri K, Tokos K, Yoshimori M, Zeng N, Zhao F (2013) Historical and idealized climate model experiments: an intercomparison of Earth system models of intermediate complexity. Clim. Past, 9, 1111-1140, doi:10.5194/cp-9-1111-2013. [pdf]
  6. Reilly J, Paltsev S, Strzepek K, Selin NE, Cai Y, Nam KM, Monier E, Dutkiewicz S, Scott J, Webster M, Sokolov A (2013) Valuing climate impacts in integrated assessment models: the MIT IGSM. Climatic Change, 117(3), 561-573, doi:10.1007/s10584-012-0635-x. [pdf]

2012

  1. Sokolov AP, Monier E (2012) Changing the Climate Sensitivity of an Atmospheric General Circulation Model through Cloud Radiative Adjustment. J. Climate, 25(19), 6567-6584, doi:10.1175/JCLI-D-11-00590.1. [pdf]

2011

  1. Monier E,Weare BC (2011) Climatology and trends in the forcing of the stratospheric zonal-mean flow. Atmos. Chem. Phys., 11, 12,751-12,771, doi:10.5194/acp-11-12751-2011. [pdf]
  2. Monier E,Weare BC (2011) Climatology and trends in the forcing of the stratospheric ozone transport. Atmos. Chem. Phys., 11, 6311-6323, doi:10.5194/acp-11-6311-2011. [pdf]

2010

  1. Monier E, Weare BC, Gustafson WI (2010) The Madden-Julian oscillation wind-convection coupling and the role of moisture processes in the MM5 model. Clim. Dyn., 35(2-3), 435-447, doi:10.1007/s00382-009-0626-4. [pdf]

Research

Climate Change Impact Assessment and Risk Analysis

I have been a major contributor to the Climate Change Impacts and Risks Analysis (CIRA) project led by the U.S. Environmental Protection Agency (EPA) in collaboration with the Massachusetts Institute of Technology, the Pacific Northwest National Lab, the National Renewable Energy Laboratory, and other partners. The primary goal of the CIRA project is to estimate the benefits of global greenhouse gas mitigation to multiple U.S. sectors. A three-step approach for assessing benefits includes developing GHG emissions scenarios; simulating future climate under these scenarios; and applying these projections in a series of coordinated impacts analyses encompassing multiple sectors related to health, infrastructure, electricity, water resources, agriculture and forestry, and ecosystems.

I contributed to the development of the integrated economic and climate projections that support the impact assessment of global action to mitigate climate change (Paltsev et al., 2015). I also led the development of a framework for modeling the uncertainty in regional climate change and investigated what uncertainties exist in projections of future changes in surface temperature and precipitation over the United States (Monier et al., 2015). I was also involved in or lead the assessment of the benefits of global climate change mitigation to various sectors of the economy and ecosystems services:

The project produced a peer-reviewed report, entitled "Climate Change in the United States: Benefits of Global Action" [pdf], that has been highlighted by EPA Administrator Gina McCarthy in various media, including CNN.

Contact me for information on how to access the climate data.

Coupled Human-Earth System

Over the last 8 years, I have been involved in the development and application of the MIT Integrated Global System Model (Reilly et al, 2013), an integrated assessment model that links a human system model, with a representation of the world’s economy, to an Earth system model of intermediate complexity (EMIC), the MIT Earth System Model. Using this integrated modeling framework, I was involved in a number of studies aimed at improving our understanding of the coupled human-Earth system. For example, I co-advised a postdoctoral student on project to examine the climate impacts of a large-scale biofuels expansion through the biogeophysical and biogeochemical effects of land-use change (Hallgren et al., 2013). I also co-advised a postdoctoral student on a study to investigate the U.S. air quality and health benefits from avoided climate change under greenhouse gas mitigation, which involved linking integrated economic and climate projections with an atmospheric chemistry model and a model to estimate the health impacts and associated economic values from changes in ambient air pollution (Garcia-Menendez et al., 2015). Finally, I contributed to an assessment of the effects of future climate and socioeconomic changes on water availability for irrigation in the U.S. and the subsequent consequences for crop yields (Blanc et al., 2017). This was achieved by integrating a water resources management model and a crop yield reduction module into the MIT Integrated Global System Modeling framework.

Last year, I was invited to write a review of and perspectives on global change modeling for Northern Eurasia (Monier et al., 2017), which serves as a programmatic paper on the Northern Eurasia Future Initiative (NEFI), an international project under the Future Earth umbrella. In this manuscript, I reviewed past and ongoing research efforts to model the impact of climate change on the region. The paper further provides guidelines on the future direction of global change modeling focusing on improving the representation of the coupled human-Earth system by combining Earth system models and integrated assessment models. I also led the writing of a manuscript proposing a paradigm shift toward a consistent modeling framework to assess climate impacts, currently under review in Nature Communications after minor revisions (Monier et al., 2017). This manuscript describes the development of an integrated framework for consistent multi-sectoral climate impact assessment through the detailed and systematic representation of the physical impacts of climate change on relevant ecosystems and sectors of the economy. Together, these papers highlight my central role in the continued development and improvement of the integrated assessment modeling at MIT.

Climate Modeling and Uncertainty Quantification

I was involved in an intercomparison project with Earth System Models of Intermediate Complexity (EMICs) undertaken in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). EMICs simulations were performed following the Coupled Model Intercomparison Project Phase 5 (CMIP5) protocol for pre-industrial, historical and future (Representative Concentration Pathways, RCP) scenarios extended to 2300. I developed a module to implement the CMIP5 land use data in the MIT Integrated Global System Model (IGSM), one of the EMICs invited to participate in the exercise. The RCP scenarios were prolonged beyond 2300 to investigate longer-term commitment and irreversibility (Zickfeld et al., 2013). Meanwhile, the preindustrial portions of the last millennium simulations were used to assess historical model carbon-climate feedbacks (Eby et al., 2013).

I was also involved in the implementation and validation of a cloud radiative adjustment method to change the climate sensitivity of an atmospheric general circulation model using the NCAR Community Atmosphere Model (CAM) version 3.1 (Sokolov and Monier, 2012). I linked CAM to the IGSM, to expand the 3-dimensional atmospheric modeling capabilities. The resulting IGSM-CAM framework (Monier et al., 2013) has been used to study the uncertainty in projections of future climate change at the regional level. Combining the IGSM-CAM framework with statistical methods for climate model emulation, I estimated probabilistic projections of 21st century climate change over Northern Eurasia (Monier et al., 2013) and quantified the contributions of four major sources of uncertainty over the United States (Monier et al., 2015), namely, (i) future emissions of greenhouse gases and aerosols; (ii) climate system parameters (e.g., climate sensitivity); (iii) natural variability; and (iv) climate model structural uncertainty. I also co-authored a study on the role of natural variability in projections of climate change impacts on U.S. ozone pollution (Garcia-Menendez et al, 2017).

I also investigated the uncertainty in the simulation of extreme events over the U.S. in a large ensemble of climate simulations (Monier and Gao, 2015). I further contributed to the development of an analogue method to improve simulations of extreme precipitation over several representative regions in the U.S. (Gao et al, 2014). This method detects the occurrence of heavy precipitation events without relying on modeled precipitation. Instead it identifies distinct large-scale atmospheric conditions associated with widespread heavy precipitation events across local scales. The analogue method performs better than the climate model-based precipitation in characterizing the statistics (minimum, lower and upper quartile, median, and maximum) of year-to-year seasonal heavy precipitation days and can be used to investigate future projections of precipitation extremes (Gao et al, 2017).

People

Alumni

Benjamin Choi, Student Intern

Benjamin Choi was a student intern at the MIT Joint Program on the Science and Policy of Global Change during July and August of 2017. He worked to calibrate and optimize an existing simple climate model developed to be used in a web app designed for outreach purposes. At the time of his internship, Benjamin was a student at Lexington High School. In university, he is interested in studying environmental engineering in the hope of one day tackling the global issue that he believes to be the most immediately pressing and imperative to mitigate: climate change. In his free time, Benjamin enjoys playing clarinet, throwing a disc around with friends, and exploring forest trails. These walks through nature have partially inspired his desire to mitigate the adverse effects of climate change.


Lincoln Berkley, Student Intern

Lincoln Berkley was a student intern at the MIT Joint Program on the Science and Policy of Global Change from June to July 2016. His work focused on creating a web app around a simple climate model for outreach purposes. This app is intended to communicate the importance of climate policy and the role of uncertainty in climate science to the general public, and allow users to run an actual—albeit simple—climate model online. At the time of his visit, Lincoln was a high school student at Concord Academy. In college, he hopes to focus on the application of computer science and engineering to global issues. In his spare time, Lincoln enjoys running, hiking, and tutoring younger students in math and science.


Bertrand Delorme, Visiting Student

Bertrand Delorme was a visiting student at the MIT Joint Program on the Science and Policy of Global Change from October 2014 to May 2015. The goal of his research project was to identify the impact of different pattern scaling and bias correction methods on climate data constructed for climate impact analysis. At the time of his visit, Bertrand was studying engineering in Toulouse, France, where he followed a dual curriculum in Applied Mathematics and Computational Climate Science at the National Polytechnic Institute of Toulouse, ENSEEIHT, and the French National School of Meteorology. He is now a PhD student in Physical Oceanography in the Department of Earth System Science at Stanford University. His primary research interest is developing novel numerical and statistical techniques to get a better knowledge of physical processes and improve the accuracy climate models. In his spare time, Bertrand enjoys mountaineering, surfing and rock climbing. These outdoors activities have developed his determination to work on climate related issues.

In the news

China Daily, November 2017

第二届麻省理工学院ILP全球创新(西安)论坛举行 [The 2nd MIT ILP Global Innovation (Xi'an) Forum]

携手推动全球土地生态化建设 [To jointly promote the global ecological construction of land]

[..]
土地使用与气候变化之间有着紧密联系。通过建立模型,可以将人类系统和地球系统(包括大气系统、海洋系统、土地系统、城镇化系统等)相关联,还可以了解人类活动和气候变化的关系。土地系统受全球社会经济和气候变化的影响是非常复杂的。必须把与土地相关的所有要素整合在一起,建立一系列模型进行分析,了解相关因素驱动下土地系统的变化。我们需要加强土地管理,更好地应对气候变化和强化环境保护。

(作者为麻省理工学院全球变化科学研究中心首席研究员)
[..]

There is a close link between land use and climate change. By modeling, human systems can be linked to the Earth system (including atmospheric systems, ocean systems, land systems, urbanization systems, etc.) as well as to understand the relationship between human activities and climate change. The impact of the land system on global socio-economic and climate change is very complex. All of the land-related elements must be integrated to create a series of models for analysis and understanding of the changes in land systems driven by relevant factors. We need to strengthen land management, better respond to climate change and strengthen environmental protection.

(The writer is principal research scientist at the MIT Center for Global Change Science)

Boston Globe, July 2017

Climate change could curb crop yields by 2050, MIT study says

Climate change could deplete some US water basins and dramatically reduce crop yields in some areas by 2050, according to researchers at the Massachusetts Institute of Technology.

A study by a group of MIT scientists and economists is one of the first to examine how the warming climate could affect the availability and distribution of the water basins that farmers depend on for irrigation. If no action is taken to combat climate change, the team predicts that by 2050, numerous basins used to irrigate crops across the country will either start to experience shortages or see existing shortages “severely accentuated.’’
[..]
Erwan Monier, a coauthor on the study, said researchers will now seek to examine the ways reduced crop yields could influence the country’s agricultural landscape. [..] “In the real world, if you’re a farmer and year after year you’re losing yield, you might decide, ‘I’m done farming,’ or switch to another crop that doesn’t require as much water, or maybe you move somewhere else,” Monier said.

The information provided in the study could prompt farmers, and even people outside the agricultural sector, to adapt before they start experiencing water shortages and problems with irrigation. “What we’re hoping is that there will be adaptation ahead of time so that the impact on the economy is as limited as possible,” Monier said. “We hope that people will realize that the way the world is at this moment is not going to be sustainable in the future.”

Also covered by: MIT News, AAAS EurakAlert!, Science Daily

Time, June 2017

MIT Researchers Say Trump Misunderstood the Research He Used to Justify His Paris Agreement Exit

Researchers from the Massachusetts Institute of Technology (MIT) have said that President Donald Trump misunderstood their research on climate change when he used it to justify his decision to withdraw the United States from the landmark Paris climate agreement.

During a press conference in the White House Rose Garden Thursday, Trump cited research that suggested the emissions cuts agreed to under the deal would not reduce global temperatures fast enough to have a significant impact. “It is estimated it would only produce a two-tenths of one degree … Celsius reduction in global temperature by the year 2100,” he said, adding: “Tiny, tiny amount.”

Although Trump did not name the source of the research, Reuters reported that he was referring to a study conducted by MIT in April 2016, titled 'How much of a difference will the Paris Agreement make?'. The research showed that if countries abided by their pledges in the deal, global warming would slow by between 0.6 degree and 1.1 degrees Celsius by 2100, Reuters reported.

In the paper, Joint Program Principal Research Scientist Erwan Monier described the Paris agreement as "certainly a step in the right direction" but "only" a step. “It puts us on the right path to keep warming under 3 C, but even under the same level of commitment of the Paris agreement after 2030, our study indicates a 95 percent probability that the world will warm by more than 2 C by 2100," he added. [..]

Also covered by: MIT Technology Review, Reuters, The Hill, Boston.com

Scientific American, January 2017

U.S. Crop Harvests Could Suffer with Climate Change

Future harvests of wheat, soybeans and corn could drop by 22 to 49 percent, mostly due to water stress

[..] The scarcity of water could be influenced by other consequences of climate change, like changes in precipitation patterns, as well as socio-economic factors like a higher demand for food, growth of the hydropower sector and population increase, said Erwan Monier, a principal research scientist with the Massachusetts Institute of Technology's Department of Earth, Atmospheric and Planetary Sciences.

"If there's no more water available for irrigation, the question becomes what would farmers do—they would either have to rely on rain-fed crops or move to a location where there's enough water for irrigation. If they shift to rain-fed crop management, there's going to be a significant decline in yield," he said. [..]

Also covered by: E&E News

MIT News, January 2017

Study finds more extreme storms ahead for California

New technique predicts frequency of heavy precipitation with global warming.

[...] Now MIT scientists have found that such extreme precipitation events in California should become more frequent as the Earth’s climate warms over this century. The researchers developed a new technique that predicts the frequency of local, extreme rainfall events by identifying telltale large-scale patterns in atmospheric data. For California, they calculated that, if the world’s average temperatures rise by 4 degrees Celsius by the year 2100, the state will experience three more extreme precipitation events than the current average, per year.

The researchers, who have published their results in the Journal of Climate, say their technique significantly reduces the uncertainty of extreme storm predictions made by standard climate models.
[...]
The research was led by Xiang Gao, a research scientist in the Joint Program on the Science and Policy of Global Change. The paper’s co-authors include Paul O’Gorman, associate professor of earth, atmospheric, and planetary sciences; Erwan Monier, principal research scientist in the Joint Program; and Dara Entekhabi, the Bacardi Stockholm Water Foundations Professor of Civil and Environmental Engineering.

Also covered by: Forbes, AAAS EurakAlert!, Phys.org, Science Daily, SFGate, United Press International, SFGate, IOP Publishing environmentalresearchweb.org

MIT News, October 2016

Even if the Paris Agreement is implemented, food and water supplies remain at risk

Report projects impacts of 2015 Paris climate agreement, identifies emissions paths/technology advances needed to limit global warming to 2 degrees Celsius.

If all pledges made in last December's Paris climate agreement (COP21) to curb greenhouse gases are carried out to the end of the century, then risks still remain for staple crops in major "breadbasket" regions and water supplies upon which most of the world's population depend. That's the conclusion of researchers at the MIT Joint Program on the Science and Policy of Global Change in the program's signature publication, the "2016 Food, Water, Energy and Climate Outlook," now expanded to address global agricultural and water resource challenges.
[...]
To project the global environmental impacts of COP21 and model emissions scenarios consistent with the 2 C target, the 2016 Outlook researchers used the MIT Joint Program's Integrated Global Systems Modeling (IGSM) framework, a linked set of computer models designed to simulate the global environmental changes that arise due to human causes, and the latest United Nations estimates of the world's population. [...]

Also covered by: Science Daily

MIT News, July 2016

Gauging the impact of climate change on US agriculture

New approach tracks key factors affecting crop yields, enabling early adaptation.

To assess the likely impact of climate change on U.S. agriculture, researchers typically run a combination of climate and crop models that project how yields of maize, wheat, and other key crops will change over time. But the suite of models commonly used in these simulations, which account for a wide range of uncertainty, produces outcomes that can range from substantial crop losses to bountiful harvests. These mixed results often leave farmers and other agricultural stakeholders perplexed as to how best to adapt to climate change.

Now, in a study published in Environmental Research Letters, a research team at MIT and the University of California at Davis, has devised a way to provide these stakeholders with the additional information they need to make more informed decisions. In a nutshell, the researchers complement the results of climate/crop model runs with projections of five useful indices of agriculture/climate interaction—dry days, plant heat stress, frost days, growing season length and start of field operations—that clarify what's driving projected yields up or down.

"It's very difficult to investigate the impact of the climate on agriculture because models don't agree even on the sign of projected yield, or indicate the mechanism behind it," says the study's lead author, Erwan Monier, a principal research scientist with the MIT Joint Program on the Science and Policy of Global Change. "Our work provides an alternative way to look at the fate of agriculture under climate change that provides information that's more relevant to farmers than existing climate/crop models." [...]

Also covered by: Phys.org

EOS News, June 2016

New Climate Studies: Worse Risks at 2°C Rise, Higher Rise Likely

Although the Paris agreement scheduled to be signed 22 April aims for a 2°C warming cap, new findings show that even a 1.5°C rise will hit glaciers hard.

[...] To limit temperature increases to just 1.5°C, countries may need to strengthen their emission reduction pledges significantly. Even if the current Paris commitments are met and extended beyond 2030, global temperatures are on track to rise 3°C above the preindustrial average, said Massachusetts Institute of Technology climate scientist Erwan Monier.

He collaborated in another study, also presented at the EGU meeting this week, that combined a human activity model with a climate model to look at five different global warming scenarios through 2100. His team found that there is only a 5% probability that the Paris agreement will keep global temperatures below 2°C, even with the most optimistic outlook.

Nonetheless, Monier told Eos that it is still possible to limit temperatures to 2°C by the end of the century. However, that would require major changes in policy. "We're not on that path right now, but it's totally achievable," he said. "I think most people know some policy tools that would get us there, like a carbon tax. But there's unwillingness to actually use those." [...]

Gannon, M. (2016), New climate studies: Worse risks at 2° rise, higher rise likely, Eos, 97, doi:10.1029/2016EO051095.

MIT News, April 2016

How much of a difference will the Paris Agreement make?

MIT study projects end-of-century climate under different scenarios.

Signed in December by climate negotiators from around the globe, the Paris Agreement centers on pledges from 188 countries to reduce their human-made greenhouse gas emissions, with the ultimate goal of capping the rise in global mean surface air temperature (SAT) since preindustrial times at 2 degrees Celsius. Toward that end, these pledges, which cover the years 2020-2030, are expected to be reviewed and strengthened periodically, but do not commit nations to any course of action after 2030. As a result, projections of the long-term climate impact of the Paris Agreement vary widely.

A useful way to assess that impact is to simulate the effects of policies that extend the Agreement's 188 pledges (known as Nationally Determined Contributions, or NDCs) to the end of the century. In a new study that takes this approach, a team of climate scientists and economists from the MIT Joint Program on the Science and Policy of Global Change led by research scientist Andrei Sokolov finds that by 2100, the Paris Agreement reduces the SAT considerably, but still exceeds the 2°C goal by about 1°C.

One of the study's co-authors, Joint Program Principal Research Scientist Erwan Monier, discussed the team's results at the General Assembly of the European Geosciences Union on April 21 in a panel/press conference, "Historical Responsibilities and Climate Impacts of the Paris Agreement."
[...]
"The Paris agreement is certainly a step in the right direction, but it is only a step," said Monier. "It puts us on the right path to keep warming under 3°C, but even under the same level of commitment of the Paris agreement after 2030, our study indicates a 95 percent probability that the world will warm by more than 2°C by 2100."

White House, June 2015

Obama Administration Releases Report on the Health and Economic Benefits of Global Action on Climate Change

President Obama is committed to protecting the health of future generations from the impacts of climate change. Today, the Environmental Protection Agency (EPA) is releasing a report quantifying the vast economic, health, and environmental benefits that reducing global carbon pollution will have on the United States, reinforcing the need to act with a sense of urgency.

[...] "The report finds that we can save tens of thousands of American lives, and hundreds of billions of dollars, annually in the United States by the end of this century, and the sooner we act, the better off America and future generations of Americans will be," said EPA Administrator Gina McCarthy.
[...]
The report is a product of the Climate Change Impacts and Risks Analysis (CIRA) project, led by EPA in collaboration with the Massachusetts Institute of Technology, the Pacific Northwest National Lab, the National Renewable Energy Laboratory, and other partners. The CIRA project is one of the first efforts to quantify the benefits of global action on climate change across a large number of U.S. sectors using a common analytic framework and consistent underlying data inputs. The project spans 20 U.S. sectors related to health, infrastructure, electricity, water resources, agriculture and forestry, and ecosystems. [...]

The White House, Office of the Press Secretary, Obama Administration Releases Report on the Health and Economic Benefits of Global Action on Climate Change

Also covered by: CNN, EPA boss: Climate change could kill thousands, Washington Post, Inaction on climate change would cost billions, major EPA study finds, The Huffington Post, Obama Admin Builds Economic Case For Action On Climate Change, As House Preps To Block It, The New York Times, E.P.A. Warns of High Cost of Climate Change, U.S. News & World Report, White House Touts Economic Benefits of Climate Action , NBC News, White House: Action on Climate Change Could Save Tens of Thousands of Lives, MSNBC, Obama administration lays out doomsday climate change scenario