Climate Change, Climate Impacts & Integrated Assessment Modeling

Uncertainty quantification of future projections of global and regional climate change; Climate change impact assessment with a focus on the natural and managed land systems; Cost-benefit analysis of climate mitigation; Improving the representation of the coupled human-Earth system in integrated assessment models.

About me

Contact Information

Dr. Erwan Monier

Principal Research Scientist
Center for Global Change Science
Joint Program on the Science and Policy of Global Change
Massachusetts Institute of Technology
77 Massachusetts Avenue, E19-439GA
Cambridge, MA 02139-4307 USA
+1 617-715-5429 • emonier@mit.eduhttp://mit.edu/emonier

Biosketch

I am a Principal Research Scientist at the MIT Center for Global Change Science and Joint Program on the Science and Policy of Global Change. I first joined the MIT Center for Global Change Science as a Postdoctoral Associate in 2009 and became a Research Scientist in 2011. My research focuses on uncertainty quantification of future projections of global and regional climate change, climate change impact assessment with a focus on the natural and managed land systems, cost-benefit analysis of climate mitigation, and improving the representation of the coupled human-Earth system in integrated assessment models. In recent years, I contributed to the intercomparison project with Earth System Models of Intermediate Complexity (EMICs) undertaken in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) and I was a major contributor to the US Environmental Protection Agency (EPA) Climate Change Impacts and Risk Analysis (CIRA) project. Within the CIRA project, I contributed to or led various climate impact assessments including the impacts of climate on agriculture and water resources, on forestry and wildfires, and on air quality and health. I completed my PhD in Atmospheric Science at the University of California, Davis, and hold a Master's degree in Hydraulics and Fluid Dynamics Engineering from the National Polytechnic Institute of Toulouse.

Publications

2017

  1. Blanc E, Caron J, Fant C, Monier E (2017) Is Current Irrigation Sustainable in the United States? An Integrated Assessment of Climate Change Impact on Water Resources and Irrigated Crop Yields. Earth's Future, 5, 877–892, doi:10.1002/2016EF000473. [pdf]
  2. Xu L, Pyles RD, Paw U KT, Snyder RL, Monier E, Falk M, Chen SH (2017) Impact of Canopy Representations on Regional Modeling of Evapotranspiration using the WRF-ACASA Coupled Model. Agr. Forest. Meteorol., 247, 79-92, doi: 10.1016/j.agrformet.2017.07.003. [pdf]
  3. Monier E, Kicklighter DW, Sokolov AP, Zhuang Q, Sokolik IN, Lawford R, Kappas M, Paltsev SV, Groisman PYa (2017) A review of and perspectives on global change modeling for Northern Eurasia. Environ. Res. Lett., 12, 083001, doi: 10.1088/1748-9326/aa7aae. [pdf]
  4. Garcia-Menendez F, Monier E, Selin NE (2017) The role of natural variability in projections of climate change impacts on U.S. ozone pollution. Geophys. Res. Lett., 44, 2911-2921, doi:10.1002/2016GL071565. [pdf]
  5. Kim JB, Monier E, Sohngen B, Pitts G, Drapek R, McFarland J, Ohrel S, Cole J (2017) Assessing climate change impacts, benefits of mitigation, and uncertainties on major global forest regions under multiple socioeconomic and emissions scenarios. Environ. Res. Lett., 12, 045001, doi:10.1088/1748-9326/aa63fc. [pdf]
  6. Gao X, Schlosser CA, O'Gorman P, Monier E, Entekhabi D (2017) Twenty-First-Century Changes in U.S. Regional Heavy Precipitation Frequency Based on Resolved Atmospheric Patterns. J. Climate, 30, 2501-2521, doi:10.1175/JCLI-D-16-0544.1. [pdf]

2016

  1. Monier E, Xu L, Snyder R (2016) Uncertainty in future agro-climate projections in the United States and benefits of greenhouse gas mitigation. Environ. Res. Lett., 11, 055001, doi:10.1088/1748-9326/11/5/055001. [pdf]

2015

  1. Sue Wing I, Monier E, Stern A, Mundra A (2015) US Major Crops' Uncertain Climate Change Risks and Greenhouse Gas Mitigation Benefits. Environ. Res. Lett., 10, 115002, doi:10.1088/1748-9326/10/11/115002. [pdf]
  2. Garcia-Menendez F, Saari RK, Monier E, Selin NE (2015) U.S. air quality and health benefits from avoided climate change under greenhouse gas mitigation. Environ. Sci. Technol., 49(13), 7580-7588, doi:10.1021/acs.est.5b01324. [pdf]
  3. Mills D, Jones R, Carney K, St Juliana A, Ready R, Crimmins A, Martinich J, Shouse K, DeAngelo B, Monier E (2015) Quantifying and Monetizing Potential Climate Change Policy Impacts on Terrestrial Ecosystem Carbon Storage and Wildfires in the United States. Climatic Change, 131(1), 163-178, doi:10.1007/s10584-014-1118-z [Erratum: Climatic Change, 131(1), 179-181, doi:10.1007/s10584-015-1407-1]. [pdf] Erratum: [pdf]
  4. Strzepek K, Neumann J, Smith J, Martinich J, Boehlert B, Hejazi M, Henderson J, Wobus C, Jones R, Calvin K, Johnson D, Monier E, Strzepek J, Yoon J (2015) Benefits of Greenhouse Gas Mitigation on the Supply, Management, and Use of Water Resources in the United States. Climatic Change, 131(1), 127-141, doi:10.1007/s10584-014-1279-9. [pdf]
  5. Monier E, Gao X (2015) Climate change impacts on extreme events in the United States: an uncertainty analysis. Climatic Change, 131(1), 67-81, doi:10.1007/s10584-013-1048-1. [pdf]
  6. Monier E, Gao X, Scott JR, Sokolov AP, Schlosser CA (2015) A framework for modeling uncertainty in regional climate change. Climatic Change, 131(1), 51-66, doi:10.1007/s10584-014-1112-5. [pdf]
  7. Paltsev S, Monier E, Scott J, Sokolov A, Reilly J (2015) Integrated economic and climate projections for impact assessment. Climatic Change, 131(1), 21-33, doi:10.1007/s10584-013-0892-3. [pdf]

2014

  1. Xu L, Pyles RD, Paw U KT, Chen S, Monier E (2014) Coupling the high-complexity land surface model ACASA to the mesoscale model WRF. Geosci. Model Dev., 7, 2917-2932, doi:10.5194/gmd-7-2917-2014. [pdf]
  2. Gao X, Schlosser A, Xie P, Monier E, Entekhabi D (2014) An Analogue Approach to Identify Heavy Precipitation Events: Evaluation and Application to CMIP5 Climate Models in the United States. J. Climate, 27, 5941-5963, doi:10.1175/JCLI-D-13-00598.1. [pdf]

2013

  1. Monier E, Scott JR, Sokolov AP, Forest CE, Schlosser CA (2013) An integrated assessment modeling framework for uncertainty studies in global and regional climate change: the MIT IGSM-CAM (version 1.0). Geosci. Model Dev., 6, 2063-2085, doi:10.5194/gmd-6-2063-2013. [pdf]
  2. Monier E, Sokolov AP, Schlosser CA, Scott JR, Gao X (2013) Probabilistic projections of 21st century climate change over Northern Eurasia. Environ. Res. Lett., 8, 045008, doi:10.1088/1748-9326/8/4/045008. [pdf]
  3. Zickfeld K, Eby M, Weaver AJ, Alexander K, Crespin E, Edwards NR, Feulner G, Fichefet T, Forest CE, Friedlingstein P, Goose H, Holden PB, Joos F, Kawamiya M, Kicklighter D, Kienert H, Matsumoto K, Mokhov II, Monier E, Olsen SM, Pedersen JOP, Perrette M, Philippon-Berthier G, Ridgwell A, Schlosser A, Schneider von Deimling T, Shaffer G, Sokolov A, Spahni R, Steinacher M, Tachiiri K, Tokos KS, Yoshimori M, Zeng N, Zhao F (2013) Long-Term Climate Change Commitment and Reversibility: An EMIC Intercomparison. J. Climate, 26, 5782-5809, doi:10.1175/JCLI-D-12-00584.1. [pdf]
  4. Hallgren W, Schlosser CA, Monier E, Kicklighter D, Sokolov A, Melillo J (2013) Climate Impacts of a Large-Scale Biofuels Expansion. Geophys. Res. Lett., 40, 1624-1630, doi:10.1002/grl.50352. [pdf].
  5. Eby M, Weaver AJ, Alexander K, Zickfeld K, Abe-Ouchi A, Cimatoribus AA, Crespin E, Drijfhout SS, Edwards NR, Eliseev AV, Feulner G, Fichefet T, Forest CE, Goosse H, Holden PB, Joos F, Kawamiya M, Kicklighter D, Kienert H, Matsumoto K, Mokhov II, Monier E, Olsen SM, Pedersen JOP, Perrette M, Philippon-Berthier G, Ridgwell A, Schlosser A, Schneider von Deimling T, Shaffer G, Smith RS, Spahni R, Sokolov AP, Steinacher M, Tachiiri K, Tokos K, Yoshimori M, Zeng N, Zhao F (2013) Historical and idealized climate model experiments: an intercomparison of Earth system models of intermediate complexity. Clim. Past, 9, 1111-1140, doi:10.5194/cp-9-1111-2013. [pdf]
  6. Reilly J, Paltsev S, Strzepek K, Selin NE, Cai Y, Nam KM, Monier E, Dutkiewicz S, Scott J, Webster M, Sokolov A (2013) Valuing climate impacts in integrated assessment models: the MIT IGSM. Climatic Change, 117(3), 561-573, doi:10.1007/s10584-012-0635-x. [pdf]

2012

  1. Sokolov AP, Monier E (2012) Changing the Climate Sensitivity of an Atmospheric General Circulation Model through Cloud Radiative Adjustment. J. Climate, 25(19), 6567-6584, doi:10.1175/JCLI-D-11-00590.1. [pdf]

2011

  1. Monier E,Weare BC (2011) Climatology and trends in the forcing of the stratospheric zonal-mean flow. Atmos. Chem. Phys., 11, 12,751-12,771, doi:10.5194/acp-11-12751-2011. [pdf]
  2. Monier E,Weare BC (2011) Climatology and trends in the forcing of the stratospheric ozone transport. Atmos. Chem. Phys., 11, 6311-6323, doi:10.5194/acp-11-6311-2011. [pdf]

2010

  1. Monier E, Weare BC, Gustafson WI (2010) The Madden-Julian oscillation wind-convection coupling and the role of moisture processes in the MM5 model. Clim. Dyn., 35(2-3), 435-447, doi:10.1007/s00382-009-0626-4. [pdf]

Research

Climate Modeling

I was involved in an intercomparison project with Earth System Models of Intermediate Complexity (EMICs) undertaken in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). EMICs simulations were performed following the Coupled Model Intercomparison Project Phase 5 (CMIP5) protocol for pre-industrial (starting in 850 CE), historical and future (Representative Concentration Pathways, RCP) scenarios extended to 2300. These scenarios were prolonged beyond 2300 to investigate longer-term commitment and irreversibility. Meanwhile, the preindustrial portions of the last millennium simulations were used to assess historical model carbon-climate feedbacks.

I was involved in the development of a new module in the MIT Earth System Model (MESM), the Earth system component of the MIT Integrated Global System Model (IGSM), to allow the CMIP5 land use data to be implemented. Simulations with the IGSM were used in two EMIC intercomparison publications, one focusing on long-term climate change commitment and reversibility (Zickfeld et al., 2013), the other on historical and idealized climate model experiments to assess, among others, historical model carbon-climate feedbacks (Eby et al., 2013).

A limitation of the MIT IGSM is the two-dimensional, zonally averaged atmosphere model that does not permit direct regional climate studies. For studies requiring projections of future climate change at the regional scale, I developed the MIT IGSM-CAM framework (Monier et al., 2013), which links the IGSM to the three-dimensional Community Atmosphere Model version 3 (CAM3) developed at the National Center for Atmospheric Research (NCAR). For consistency within the IGSM-CAM framework, new modules were developed and implemented in CAM in order to change its climate parameters to match those of the IGSM. In particular, the climate sensitivity is changed through cloud radiative adjustment (Sokolov and Monier, 2012).

Climate Change Impacts and Risk Analysis

I have been a major contributor to the Climate Change Impacts and Risks Analysis (CIRA) project led by the U.S. Environmental Protection Agency (EPA) in collaboration with the Massachusetts Institute of Technology, the Pacific Northwest National Lab, the National Renewable Energy Laboratory, and other partners. The primary goal of the CIRA project is to estimate the degree to which climate change impacts and damages to multiple U.S. sectors (e.g., human health, water resources) are avoided or reduced in the 21st century due to global reductions in greenhouse gases (GHGs). A three-step approach for assessing benefits includes developing GHG emissions scenarios; simulating future climate under these scenarios; and applying these projections in a series of coordinated impacts analyses encompassing multiple sectors related to health, infrastructure, electricity, water resources, agriculture and forestry, and ecosystems.

I contributed to the development of the integrated economic and climate projections that support the impact assessment of global action to mitigate climate change (Paltsev et al., 2015). I also led the development of a framework for modeling the uncertainty in regional climate change and investigated what uncertainties exist in projections of future changes in surface temperature and precipitation over the United States (Monier et al., 2015). I further contributed an analysis of future changes in extreme events over the United States (Monier and Gao, 2015) over the United States.

I was also involved in or lead the assessment of the benefits of global climate change mitigation on various sectors of the economy and ecosystems services:

The project produced a peer-reviewed report, entitled "Climate Change in the United States: Benefits of Global Action", that has been highlighted by EPA Administrator Gina McCarthy in various media, including CNN.

Contact me for information on how to access the climate data.

Climate Change Uncertainty

A large part of my research focuses on quantifying the uncertainty in future global and regional climate projections and estimating the contributions from various sources of uncertainty, including the uncertainty in the global climate system response, emissions of greenhouse gases and aerosols, natural variability, future land use change as well as climate model structural uncertainty. My research has primarily focused on the United States and Northern Eurasia, two regions for which I have developed a large number of climate projections to better understand the potential range of future changes in temperature and precipitation.

I was involved in the analysis of the global and regional climate impacts of a large-scale biofuels expansion to better understand land-use/climate feedbacks (Hallgren et al., 2013). I also led the development of a framework for modeling the uncertainty in regional climate change and investigated the role of four majors sources of uncertainty (future GHG emissions, climate sensitivity, natural variability and climate model) on projections of future changes in surface temperature and precipitation (Monier et al., 2015)

As part of a NASA funded project led by Prof. Qianlai Zhuang from Purdue University, I am involved in assessing the regional and global climate and societal impacts of land-use and land-cover change in Northern Eurasia using the MIT Integrated Global System Model. My first contribution to that project was to derive probabilistic projections of 21st century climate change over Northern Eurasia using the MIT Integrated Global System Model (Monier et al., 2013).

People

Alumni

Benjamin Choi, Student Intern

Benjamin Choi was a student intern at the MIT Joint Program on the Science and Policy of Global Change during July and August of 2017. He worked to calibrate and optimize an existing simple climate model developed to be used in a web app designed for outreach purposes. At the time of his internship, Benjamin was a student at Lexington High School. In university, he is interested in studying environmental engineering in the hope of one day tackling the global issue that he believes to be the most immediately pressing and imperative to mitigate: climate change. In his free time, Benjamin enjoys playing clarinet, throwing a disc around with friends, and exploring forest trails. These walks through nature have partially inspired his desire to mitigate the adverse effects of climate change.


Lincoln Berkley, Student Intern

Lincoln Berkley was a student intern at the MIT Joint Program on the Science and Policy of Global Change from June to July 2016. His work focused on creating a web app around a simple climate model for outreach purposes. This app is intended to communicate the importance of climate policy and the role of uncertainty in climate science to the general public, and allow users to run an actual—albeit simple—climate model online. At the time of his visit, Lincoln was a high school student at Concord Academy. In college, he hopes to focus on the application of computer science and engineering to global issues. In his spare time, Lincoln enjoys running, hiking, and tutoring younger students in math and science.


Bertrand Delorme, Visiting Student

Bertrand Delorme was a visiting student at the MIT Joint Program on the Science and Policy of Global Change from October 2014 to May 2015. The goal of his research project was to identify the impact of different pattern scaling and bias correction methods on climate data constructed for climate impact analysis. At the time of his visit, Bertrand was studying engineering in Toulouse, France, where he followed a dual curriculum in Applied Mathematics and Computational Climate Science at the National Polytechnic Institute of Toulouse, ENSEEIHT, and the French National School of Meteorology. He is now a PhD student in Physical Oceanography in the Department of Earth System Science at Stanford University. His primary research interest is developing novel numerical and statistical techniques to get a better knowledge of physical processes and improve the accuracy climate models. In his spare time, Bertrand enjoys mountaineering, surfing and rock climbing. These outdoors activities have developed his determination to work on climate related issues.

In the news

Boston Globe, July 2017

Climate change could curb crop yields by 2050, MIT study says

Climate change could deplete some US water basins and dramatically reduce crop yields in some areas by 2050, according to researchers at the Massachusetts Institute of Technology.

A study by a group of MIT scientists and economists is one of the first to examine how the warming climate could affect the availability and distribution of the water basins that farmers depend on for irrigation. If no action is taken to combat climate change, the team predicts that by 2050, numerous basins used to irrigate crops across the country will either start to experience shortages or see existing shortages “severely accentuated.’’
[..]
Erwan Monier, a coauthor on the study, said researchers will now seek to examine the ways reduced crop yields could influence the country’s agricultural landscape. [..] “In the real world, if you’re a farmer and year after year you’re losing yield, you might decide, ‘I’m done farming,’ or switch to another crop that doesn’t require as much water, or maybe you move somewhere else,” Monier said.

The information provided in the study could prompt farmers, and even people outside the agricultural sector, to adapt before they start experiencing water shortages and problems with irrigation. “What we’re hoping is that there will be adaptation ahead of time so that the impact on the economy is as limited as possible,” Monier said. “We hope that people will realize that the way the world is at this moment is not going to be sustainable in the future.”

Also covered by: MIT News, AAAS EurakAlert!, Science Daily

Time, June 2017

MIT Researchers Say Trump Misunderstood the Research He Used to Justify His Paris Agreement Exit

Researchers from the Massachusetts Institute of Technology (MIT) have said that President Donald Trump misunderstood their research on climate change when he used it to justify his decision to withdraw the United States from the landmark Paris climate agreement.

During a press conference in the White House Rose Garden Thursday, Trump cited research that suggested the emissions cuts agreed to under the deal would not reduce global temperatures fast enough to have a significant impact. “It is estimated it would only produce a two-tenths of one degree … Celsius reduction in global temperature by the year 2100,” he said, adding: “Tiny, tiny amount.”

Although Trump did not name the source of the research, Reuters reported that he was referring to a study conducted by MIT in April 2016, titled 'How much of a difference will the Paris Agreement make?'. The research showed that if countries abided by their pledges in the deal, global warming would slow by between 0.6 degree and 1.1 degrees Celsius by 2100, Reuters reported.

In the paper, Joint Program Principal Research Scientist Erwan Monier described the Paris agreement as "certainly a step in the right direction" but "only" a step. “It puts us on the right path to keep warming under 3 C, but even under the same level of commitment of the Paris agreement after 2030, our study indicates a 95 percent probability that the world will warm by more than 2 C by 2100," he added. [..]

Also covered by: MIT Technology Review, Reuters, The Hill, Boston.com

Scientific American, January 2017

U.S. Crop Harvests Could Suffer with Climate Change

Future harvests of wheat, soybeans and corn could drop by 22 to 49 percent, mostly due to water stress

[..] The scarcity of water could be influenced by other consequences of climate change, like changes in precipitation patterns, as well as socio-economic factors like a higher demand for food, growth of the hydropower sector and population increase, said Erwan Monier, a principal research scientist with the Massachusetts Institute of Technology's Department of Earth, Atmospheric and Planetary Sciences.

"If there's no more water available for irrigation, the question becomes what would farmers do—they would either have to rely on rain-fed crops or move to a location where there's enough water for irrigation. If they shift to rain-fed crop management, there's going to be a significant decline in yield," he said. [..]

Also covered by: E&E News

MIT News, January 2017

Study finds more extreme storms ahead for California

New technique predicts frequency of heavy precipitation with global warming.

[...] Now MIT scientists have found that such extreme precipitation events in California should become more frequent as the Earth’s climate warms over this century. The researchers developed a new technique that predicts the frequency of local, extreme rainfall events by identifying telltale large-scale patterns in atmospheric data. For California, they calculated that, if the world’s average temperatures rise by 4 degrees Celsius by the year 2100, the state will experience three more extreme precipitation events than the current average, per year.

The researchers, who have published their results in the Journal of Climate, say their technique significantly reduces the uncertainty of extreme storm predictions made by standard climate models.
[...]
The research was led by Xiang Gao, a research scientist in the Joint Program on the Science and Policy of Global Change. The paper’s co-authors include Paul O’Gorman, associate professor of earth, atmospheric, and planetary sciences; Erwan Monier, principal research scientist in the Joint Program; and Dara Entekhabi, the Bacardi Stockholm Water Foundations Professor of Civil and Environmental Engineering.

Also covered by: Forbes, AAAS EurakAlert!, Phys.org, Science Daily, SFGate, United Press International, SFGate, IOP Publishing environmentalresearchweb.org

MIT News, October 2016

Even if the Paris Agreement is implemented, food and water supplies remain at risk

Report projects impacts of 2015 Paris climate agreement, identifies emissions paths/technology advances needed to limit global warming to 2 degrees Celsius.

If all pledges made in last December's Paris climate agreement (COP21) to curb greenhouse gases are carried out to the end of the century, then risks still remain for staple crops in major "breadbasket" regions and water supplies upon which most of the world's population depend. That's the conclusion of researchers at the MIT Joint Program on the Science and Policy of Global Change in the program's signature publication, the "2016 Food, Water, Energy and Climate Outlook," now expanded to address global agricultural and water resource challenges.
[...]
To project the global environmental impacts of COP21 and model emissions scenarios consistent with the 2 C target, the 2016 Outlook researchers used the MIT Joint Program's Integrated Global Systems Modeling (IGSM) framework, a linked set of computer models designed to simulate the global environmental changes that arise due to human causes, and the latest United Nations estimates of the world's population. [...]

Also covered by: Science Daily

MIT News, July 2016

Gauging the impact of climate change on US agriculture

New approach tracks key factors affecting crop yields, enabling early adaptation.

To assess the likely impact of climate change on U.S. agriculture, researchers typically run a combination of climate and crop models that project how yields of maize, wheat, and other key crops will change over time. But the suite of models commonly used in these simulations, which account for a wide range of uncertainty, produces outcomes that can range from substantial crop losses to bountiful harvests. These mixed results often leave farmers and other agricultural stakeholders perplexed as to how best to adapt to climate change.

Now, in a study published in Environmental Research Letters, a research team at MIT and the University of California at Davis, has devised a way to provide these stakeholders with the additional information they need to make more informed decisions. In a nutshell, the researchers complement the results of climate/crop model runs with projections of five useful indices of agriculture/climate interaction—dry days, plant heat stress, frost days, growing season length and start of field operations—that clarify what's driving projected yields up or down.

"It's very difficult to investigate the impact of the climate on agriculture because models don't agree even on the sign of projected yield, or indicate the mechanism behind it," says the study's lead author, Erwan Monier, a principal research scientist with the MIT Joint Program on the Science and Policy of Global Change. "Our work provides an alternative way to look at the fate of agriculture under climate change that provides information that's more relevant to farmers than existing climate/crop models." [...]

Also covered by: Phys.org

EOS News, June 2016

New Climate Studies: Worse Risks at 2°C Rise, Higher Rise Likely

Although the Paris agreement scheduled to be signed 22 April aims for a 2°C warming cap, new findings show that even a 1.5°C rise will hit glaciers hard.

[...] To limit temperature increases to just 1.5°C, countries may need to strengthen their emission reduction pledges significantly. Even if the current Paris commitments are met and extended beyond 2030, global temperatures are on track to rise 3°C above the preindustrial average, said Massachusetts Institute of Technology climate scientist Erwan Monier.

He collaborated in another study, also presented at the EGU meeting this week, that combined a human activity model with a climate model to look at five different global warming scenarios through 2100. His team found that there is only a 5% probability that the Paris agreement will keep global temperatures below 2°C, even with the most optimistic outlook.

Nonetheless, Monier told Eos that it is still possible to limit temperatures to 2°C by the end of the century. However, that would require major changes in policy. "We're not on that path right now, but it's totally achievable," he said. "I think most people know some policy tools that would get us there, like a carbon tax. But there's unwillingness to actually use those." [...]

Gannon, M. (2016), New climate studies: Worse risks at 2° rise, higher rise likely, Eos, 97, doi:10.1029/2016EO051095.

MIT News, April 2016

How much of a difference will the Paris Agreement make?

MIT study projects end-of-century climate under different scenarios.

Signed in December by climate negotiators from around the globe, the Paris Agreement centers on pledges from 188 countries to reduce their human-made greenhouse gas emissions, with the ultimate goal of capping the rise in global mean surface air temperature (SAT) since preindustrial times at 2 degrees Celsius. Toward that end, these pledges, which cover the years 2020-2030, are expected to be reviewed and strengthened periodically, but do not commit nations to any course of action after 2030. As a result, projections of the long-term climate impact of the Paris Agreement vary widely.

A useful way to assess that impact is to simulate the effects of policies that extend the Agreement's 188 pledges (known as Nationally Determined Contributions, or NDCs) to the end of the century. In a new study that takes this approach, a team of climate scientists and economists from the MIT Joint Program on the Science and Policy of Global Change led by research scientist Andrei Sokolov finds that by 2100, the Paris Agreement reduces the SAT considerably, but still exceeds the 2°C goal by about 1°C.

One of the study's co-authors, Joint Program Principal Research Scientist Erwan Monier, discussed the team's results at the General Assembly of the European Geosciences Union on April 21 in a panel/press conference, "Historical Responsibilities and Climate Impacts of the Paris Agreement."
[...]
"The Paris agreement is certainly a step in the right direction, but it is only a step," said Monier. "It puts us on the right path to keep warming under 3°C, but even under the same level of commitment of the Paris agreement after 2030, our study indicates a 95 percent probability that the world will warm by more than 2°C by 2100."

White House, June 2015

Obama Administration Releases Report on the Health and Economic Benefits of Global Action on Climate Change

President Obama is committed to protecting the health of future generations from the impacts of climate change. Today, the Environmental Protection Agency (EPA) is releasing a report quantifying the vast economic, health, and environmental benefits that reducing global carbon pollution will have on the United States, reinforcing the need to act with a sense of urgency.

[...] "The report finds that we can save tens of thousands of American lives, and hundreds of billions of dollars, annually in the United States by the end of this century, and the sooner we act, the better off America and future generations of Americans will be," said EPA Administrator Gina McCarthy.
[...]
The report is a product of the Climate Change Impacts and Risks Analysis (CIRA) project, led by EPA in collaboration with the Massachusetts Institute of Technology, the Pacific Northwest National Lab, the National Renewable Energy Laboratory, and other partners. The CIRA project is one of the first efforts to quantify the benefits of global action on climate change across a large number of U.S. sectors using a common analytic framework and consistent underlying data inputs. The project spans 20 U.S. sectors related to health, infrastructure, electricity, water resources, agriculture and forestry, and ecosystems. [...]

The White House, Office of the Press Secretary, Obama Administration Releases Report on the Health and Economic Benefits of Global Action on Climate Change

Also covered by: CNN, EPA boss: Climate change could kill thousands, Washington Post, Inaction on climate change would cost billions, major EPA study finds, The Huffington Post, Obama Admin Builds Economic Case For Action On Climate Change, As House Preps To Block It, The New York Times, E.P.A. Warns of High Cost of Climate Change, U.S. News & World Report, White House Touts Economic Benefits of Climate Action , NBC News, White House: Action on Climate Change Could Save Tens of Thousands of Lives, MSNBC, Obama administration lays out doomsday climate change scenario