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In addition to being observable in laboratory experiments, internal wave beams are re-

ported in geophysical settings, which are characterized by nonuniform density stratifica-

tions. Here, we perform a combined theoretical and experimental study of the propagation

of internal wave beams in nonuniform density stratifications. Transmission and reflection

coefficients, which can differ greatly for different physical quantities, are determined for

sharp density-gradient interfaces and finite-width transition regions, accounting for vis-

cous dissipation. Thereafter, we consider even more complex stratifications to model

geophysical scenarios. We show experimentally that wave beam ducting can occur under

conditions that do not necessitate evanescent layers. Comparisons between the theory

and quantitative experimental measurements of these processes show excellent agree-

ment. Insights into wave beam observations at the Keana ridge, Hawaii are given within

the context of these ideas.
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1. Introduction

Internal waves are propagating disturbances of the density stratification of a stably-

stratified fluid. When generated by oscillatory flow relative to an obstacle, linear internal

waves form beams, whose orientation is given by sin θ = ω/N , where θ is the angle the

beams make with a horizontal coordinate perpendicular to gravity g, ω is the forcing

frequency, N =
√
− g

ρ0

dρ̄
dz is the local buoyancy frequency, dρ̄/dz is the local vertical

density gradient and ρ0 is a characteristic density of the fluid. The best known example

is the St. Andrews Cross generated by an oscillating cylinder (Mowbray & Rarity 1967).

Internal wave beams are not restricted to the laboratory, however, and are also reported

in the ocean (e.g. Lien & Gregg 2001, Martin et. al. 2006, Cole et al. 2009) and the

atmosphere (e.g. Alexander et. al. 1995, Walterscheid et. al. 2001).

In geophysical settings, internal waves encounter significant variations in the strati-

fication; examples include the thermocline in the ocean and evanescent regions in the

mesosphere. To understand the impact of sudden changes in the stratification, Delisi

& Orlanski (1975) investigated internal wave reflection from a density (and density-

gradient) discontinuity. With the atmosphere in mind, Sutherland & Yewchuk (2004)

derived an analytic prediction for plane internal waves traversing a sharply-defined layer

of stronger stratification. This analysis was extended by Brown & Sutherland (2007) and

Nault & Sutherland (2007), the latter considering plane waves propagating through a

medium changing continuously from one stratification to another.

While there have been several recent experimental studies on internal wave beams

in uniform stratifications (e.g. Peacock & Tabaei 2005, Zhang et al. 2007, Gostiaux &

Dauxois 2007, Peacock et al. 2008), the effect of a nonuniform stratification on an internal

wave beam has not come under such scrutiny. A theoretical study of internal wave beams

propagating in an arbitrarily stratified fluid was performed by Kistovich & Chashechkin
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(1998). They presented the results of analysis for: a smoothly varying stratification to

which the beam continuously adjusts; reflection from a critical level where ω = N ; and

interaction with discontinuities in N . The only related experimental studies used internal

wave beams as approximations of plane waves (Delisi & Orlanski (1975), Sutherland &

Yewchuck (2004)).

Here, we present a detailed study of the fundamental problem of an internal wave

beam propagating in a nonuniform stratification. In the process, the plane wave analysis

of Nault & Sutherland (2007) is extended to the regime in which internal waves propagate

into regions of stronger stratification. We also develop an analytical method that is not

subject to the restrictions of Kistovich & Chashechkin (1998), enabling investigation of

important regimes where the scale of a wave beam is comparable to the scale of variations

in the stratification. This analysis is complemented by the first quantitative comparison

between theory and laboratory experiments for these processes.

The organization of the paper is as follows. The transmission of internal wave beams

across sharp and finite-width density-gradient interfaces is addressed in sections 2 and 3,

respectively. More complex, nonlinear stratifications are then considered in section 4. A

direct comparison between theory and laboratory experiments is presented in section 5,

followed by a discussion of geophysical applications in section 6. Finally, conclusions are

presented in section 7.

2. Wave beam transmission across a sharp density-gradient interface

Consider a linear, two-dimensional plane wave propagating upwards in a medium of

uniform buoyancy frequency N1, encountering a sharp density-gradient interface above

which the uniform buoyancy frequency is N2 (density being continuous across the inter-

face), as illustrated in figure 1. The fluid layers on either side of the interface extend to



4 Manikandan Mathur and Thomas Peacock

infinity, and non-Boussinesq and viscous effects are ignored, as is background rotation.

The streamfunctions ψI , ψR and ψT associated with the incident (I), reflected (R) and

transmitted (T ) waves are:

ψI = <(ΨIe
[ik(x−z cot θ1)−iωt]), (2.1)

ψR = <(ΨRe[ik(x+z cot θ1)−iωt]), (2.2)

ψT = <(ΨT e[ik(x−z cot θ2)−iωt]), (2.3)

where ΨI , ΨR and ΨT are complex amplitudes, < denotes the real part, x and z are

the horizontal and vertical directions, and k the horizontal wavenumber. The angles

0 < θ1, θ2 < π/2 are defined with respect to the x-axis, and the direction of energy

propagation is further set by the sign of the coefficient of z in the exponent. The horizontal

and vertical velocities are u = −∂ψ
∂z and w = ∂ψ

∂x , respectively. The pressure and density

perturbations, p′ and ρ′, are related to the streamfunction by ∂2p′

∂x2 = ρ0
∂3ψ

∂x∂z∂t and

∂ρ′

∂t = ρ0N2

g
∂ψ
∂x , respectively.

Applying continuity of vertical velocity and pressure at the density-gradient interface

z = 0 gives transmission coefficients for different physical quantities. For example,

Te =
4 cot θ1 cot θ2

(cot θ1 + cot θ2)2
, (2.4)

Tu =
2 cot θ2

cot θ1 + cot θ2
, (2.5)

Tw =
2 cot θ1

cot θ1 + cot θ2
, (2.6)

T∆N2 =
2 cot θ2

cot θ1 + cot θ2

sin2 θ1

sin2 θ2

, (2.7)

where Te, Tu, Tw and T∆N2 are respectively the transmission coefficients for energy, e,

the horizontal velocity, u, the vertical velocity, w, and ∆N2 = −g
ρ0

ρ′z, ρ′z being the vertical

density gradient perturbation. The definition of Te accounts for the geometric focusing of
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internal wave energy, illustrated in figure 1. Since Te is symmetric (i.e. unchanged upon

interchanging θ1 and θ2), the fraction of the incident energy transmitted for a plane wave

of frequency ω and horizontal wavenumber k is independent of whether it is passing from

N1 to N2, or the reverse. The coefficients Tw and T∆N2 are not symmetric, however,

and hence depend on whether the transmission is from N1 to N2, or vice versa. Some

of the transmission coefficients are bounded (e.g. Te ≤ 1, Tw ≤ 2), whereas others are

not (e.g. 0< T∆N2 < ∞) and hence the corresponding quantities can experience great

amplification or diminution.

Before proceeding to study wave beams, an important piece of information is to know

whether a plane wave can become unstable upon passing from one stratification to an-

other. To investigate, first consider the net vertical density gradient, which is the sum of

the background value dρ̄
dz and the perturbation ∂ρ′

∂z . For a plane wave that passes into the

N2 medium, the maximum value of this combination in the N2 medium is:

(
−ρ0N

2
2

g
)[1− k2|ΨI | cot θ1

N1 sin θ1

2 cot θ2

cot θ1 + cot θ2
]. (2.8)

Assuming that the incident wave is linear and gravitationally stable, which requires

|∆N2
I

N2
1
|max = k2|ΨI | cot θ1

N1 sin θ1
<< 1, it is not possible for gravitational instability (i.e. dρ̄

dz +

∂ρ′

∂z > 0) to arise upon transmission since 2 cot θ2
cot θ1+cot θ2

≤ 2. To consider shear-driven

instability, one turns to the Richardson number Ri = N2

(∂u/∂z)2 , for which a widely used

instability criterion based on the properties of linear shear flow is Ri < 1/4 (Drazin &

Reid 1981). While it is possible for the minimum Richardson number of a plane wave to be

reduced on passing through a sharp density-gradient interface, increasing the likelihood

of shear-driven instability, a gravitationally-stable linear plane wave cannot be shear-

unstable (Thorpe 1999).

The results for plane waves extend to inviscid wave beams by following the lead of

Kistovich & Chashechkin (1998) and Tabaei & Akylas (2003), and constructing the



6 Manikandan Mathur and Thomas Peacock

stream function for a unidirectional wave beam using a linear superposition of plane

waves (i.e. a Fourier decomposition of the wave field):

ψ(x, z, t) = <(e−iωt

∫ ∞

0

ΨI(k)eik(x−z cot θ)dk), (2.9)

where ΨI(k) is the spectrum of the streamfunction for the wave beam. The cross-beam

coordinate is (x− z cot θ) and integration is over positive values of k, enforcing that the

energy flux of the component plane waves is always up and to the right. The corresponding

spectra for other physical quantities can be determined via the governing linear equations.

For example, the spectra for u, w, p′ and ρ′z are UI(k) = −ik cot θΨI(k), WI(k) =

−ikΨI(k), PI(k) = −iρ0ω cot θΨI(k) and DI(k) = − iρ0ω
g

k2 cot θ
sin2 θ

ΨI(k), respectively.

In using a summation of plane waves to construct a wave beam, one must determine

whether the resulting wave beam is both gravitationally and shear stable. By definition,

a gravitationally stable wave beam in a background stratification N0 has ∆N2

N2
0

< 1

throughout. For a linear wave beam, this condition also requires that the wave beam be

shear stable, as shown in Appendix A.

Since plane wave transmission and reflection coefficients are independent of k for a

sharp density-gradient interface, these coefficients are the same for a wave beam as a

whole. Figures 2(a)-(d) present theoretical snapshots of four different physical quantities

for a wave beam with ΨI(k) ∝ ke−k2/c at an arbitrarily chosen phase. The arrangement

has ω/N1 = 0.94 and N2/N1 = 3.2, giving Tu = 1.8, Tw = 0.2, T∆N2 = 18.4 and

Te = 0.36. In each figure, the physical quantity has been scaled so that the maximum

value is unity. Figures 2(a)-(d) show u, w, ∆N2 and the magnitude of the time-averaged

energy flux, ē = |< p(u,w) >|, respectively. The vertical velocity w is diminished, whereas

u and ∆N2 are amplified, upon transmission. The value of ē is enhanced by the geometric

focusing of the beam, but only 36% of the overall incident energy flux is transmitted.

As is the case for a plane wave, the stability of a wave beam upon transmission is
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determined by its effect on the stratification, since the general result that a gravitationally

stable wave beam is shear stable still applies. Thus if ∆N2

N2
0

<< 1 throughout the incident

beam, this beam cannot become unstable. If ∆N2

N2
0

is finite in the incident beam, linear

theory no longer applies, and instability upon transmission is a possibility.

3. Wave beam transmission across a finite-width transition region

To understand the effect of a finite-width transition region on an internal wave beam,

we first consider a plane wave propagating through the stratification

N2 =
N2

2 −N2
1

2
tanh(

z

L
) +

N2
1 + N2

2

2
, (3.1)

shown in figure 3. Adopting the approach of Nault & Sutherland (2007), reflection and

transmission coefficients can be calculated for periodic plane waves of frequency ω by

defining ψ = < (
φ(z)e[i(kx−ωt)]

)
and solving the inviscid equation,

φ
′′

+ k2(
N2

ω2
− 1)φ = 0, (3.2)

where k, like ω, is assumed to be real, and the prime denotes differentiation with re-

spect to z. An upward-propagating plane wave of unit amplitude in the N1 layer results

in a downward-propagating reflected wave in the N1 layer and an upward-propagating

transmitted wave in the N2 layer. Thus, the general solutions in the N1 and N2 layers,

respectively, are:

φ1 = em1z + Aem2z, (3.3)

φ2 = Cen1z, (3.4)

where the vertical wave numbers in the lower and upper constant stratifications are m1 =

−m2 = −k cot θ1 and n1 = −k cot θ2, respectively. The energy transmission coefficient is

Te = |C|2 n1

m1
, (3.5)
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and the corresponding reflection coefficient is Re = |A|2. It is found that, for a given

k and ω, Te is independent of whether a wave passes from N1 to N2 or vice-versa. In

general, Te strongly depends on ω/N1, N2/N1 and the ratio of the transition length L to

the vertical wavelength of the plane wave, which can change significantly on transmission.

Figures 4(a) and (b) present Te as a function of ω/N1 and N2/N1 for Lk = 0.1 and

Lk = 1, respectively. As the transition region increases in thickness relative to the vertical

wavelength there is increased transmission for all ω/N1 and N2/N1. Roughly speaking,

near perfect transmission occurs when the maximum vertical wavelength in the N1 or

N2 layers is much smaller than L, i.e.

Lk min(cot θ1, cot θ2) À 1. (3.6)

More precisely, if Lk min(cot θ1, cot θ2) > 1, leading order WKB theory predicts energy

transmission to within 10% for all but the cases where |θ1 − θ2| > 84o. To illustrate

this, contours of Lk min(cot θ1, cot θ2) = 0.5, 1 are included in figures 4(a) and (b). These

results are consistent with Nault & Sutherland (2007), who studied the case N2 < N1. At

the other extreme, the transmission process is akin to a sharp density-gradient interface

when the smallest vertical wavelength in the N1 or N2 layers is significantly larger than

L, i.e.

Lk max(cot θ1, cot θ2) ¿ 1. (3.7)

Indeed, if Lk max(cot θ1, cot θ2) < 0.1, sharp-interface theory correctly predicts energy

transmission to within 1%.

To compute the transmission of an inviscid wave beam encountering a finite-width N1-

to-N2 transition region, the streamfunction of the incident beam is again represented as

the Fourier sum (2.9). For a given ΨI(k), the spectra ΨT (k) and ΨR(k) must be computed

using (3.2) to determine transmission and reflection for each constituent wave number k.
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The nature of the transmitted and reflected beam profiles is determined by the details

of the transition region, which acts as a high-pass filter that allows large wavenumbers

to transmit completely (3.6). This is illustrated in figure 5, which presents results for

an incident wave beam with ω/N1 = 0.94, comprising equal amounts of energy in two

bands of wavenumbers, one centered around kL = 0.1 and the other around kL = 0.7.

Figure 5(a) presents a snapshot of the horizontal velocity field for N2/N1 = 10, in which

it is apparent that the transmitted beam is much finer in scale than the incident beam.

Furthermore, the reflected beam is noticeably weaker than the incident beam, indicating

that significant energy flux is passing through the interface. The transmitted beam is finer

in scale not only because of focusing by a stronger stratification, but also due to filtering

by the finite-width transition region. This filtering process, where the large wavenumbers

transmit completely (3.6) and the small wavenumbers follow the sharp-interface results

(3.7), is elucidated in figures 5(b) and (c), which plot the energy flux transmission and

reflection coefficients as a function of Lk, and the energy spectra |E(k)| = k|Ψ|2 cot θ of

the incident, transmitted and reflected beams. As a consequence of the variations of Te

and Re with Lk, the reflected and transmitted wave beam spectra are strong at relatively

small and large values of Lk, respectively.

For the purpose of comparison with experiments in section 5, we consider the full

viscous equation:

φ
′′

+ k2(
N2

ω2
− 1)φ =

iν

ω

(
φ
′′′′ − 2k2φ

′′
+ k4φ

)
, (3.8)

where ν is the kinematic viscosity, and k and ω are again real. The Schmidt number, which

represents the ratio of momentum diffusivity (dynamic viscosity) and mass diffusivity, is

assumed to be infinite. The above fourth order equation requires four boundary conditions

for a unique solution. It is not practical to solve the equation as an initial value problem

(satisfying all four boundary conditions at z = −∞ or z = +∞), because it has a pair of
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rapidly growing and decaying viscous solutions that cause numerical instability. Instead,

this is best solved as a boundary value problem (satisfying two boundary conditions each

at z = −∞ and z = +∞), which requires four boundary conditions. To express the

boundary conditions in terms of φ, φ
′
, φ

′′
and φ

′′′
, an incident, weakly damped, upward-

propagating wave of unit amplitude in the N1 layer is assumed. This can generate a pair

of reflected, downward-propagating waves in the N1 layer, one weakly damped and the

other strongly damped; and a pair of transmitted, upward-propagating waves in the N2

layer, one weakly damped and the other strongly damped. Thus, the general solutions in

the N1 and N2 layers, respectively, are:

φ1 = em1z + Aem2z + Bem3z, (3.9)

φ2 = Cen1z + Den2z. (3.10)

The coefficients A, B, C and D are the unknown reflection and transmission amplitudes,

and the exponents mi and ni are obtained by solving (3.8) in the constant stratification

regions, keeping only modes that decay in the upward and downward directions for the

upper and lower layers, respectively. To further clarify the directions of viscous decay

in the two layers, we point out that <(m1) < 0, <(m2,m3) > 0, m2 = −m1 and

<(n1, n2) < 0. Expressions for φ1, φ
′
1, φ

′′
1 and φ

′′′
1 in the N1 layer are reduced to two

boundary conditions by eliminating the unknown constants A and B. A similar procedure

to eliminate the unknown constants C and D gives two boundary conditions in the upper

N2 layer. The boundary value problem is now numerically solved in Matlab using the

function bvp4c.
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4. Wave beam propagation in complex stratifications

4.1. Multiple sharp density-gradient interfaces

When a wave beam encounters a series of sharp density-gradient interfaces, multiple

reflections and transmissions occur. Two canonical scenarios are presented in figures 6(a)

and (b), respectively . In the sketch in figure 6(a), a finite depth N2-layer lays between

two semi-infinite N1-layers. Determining the amplitudes of reflected and transmitted

wave beams that result from an upward-propagating incident wave beam requires the

imposition of boundary conditions on vertical velocity and pressure at z = −H, H for the

constituent plane waves (Gill 1982, Sutherland & Yewchuk 2004). A related arrangement,

presented in figure 6(b), is a finite-depth N2-layer sitting atop a semi-infinite N1-layer,

above which is a rigid boundary. To obtain a solution here requires imposition of boundary

conditions at z = 0,−H. The resulting wave field is related by symmetry to that in figure

6(a), as indicated. Scenarios with multiple finite-depth layers can be solved using the same

approach, with the imposition of boundary conditions becoming more laborious as the

number of layers increases.

Focusing on the scenario in figure 6(b), all the energy in the incident wave beam is

ultimately reflected back to the N1-layer, irrespective of the values of ω/N1 and N2/N1.

As will be shown, however, energy can be ducted for quite some distance. An important

parameter for this configuration is the ratio of the horizontal distance L∗ = 2H cot θ2 to

the horizontal width of an incident wave beam Lh. If L∗/Lh > 1, neighboring reflected

wave beams do not interfere with each other. In this case, the fraction of incident energy

returned in the nth downward-propagating beam, given that Te is symmetric with respect

to an interchange between N1 and N2, is αn = Rn−2
e T 2

e for n ≥ 2, where Re = 1 − Te;

for n = 1, α1 = Re. The fraction of incident energy remaining in the N2−layer after the

emergence of n ≥ 2 downward beams has a maximum value of (n−1)n−1

nn for Te = 1
n . To
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maximize the remaining energy for n = 2, 3, 4, 5, the values of Te must therefore be 0.5,

0.33, 0.25 and 0.2, respectively; for which the fraction of incident energy remaining is

0.25, 0.15, 0.11 and 0.082, respectively. When L∗/Lh ≈ 1, there is no longer a sequence

of re-emerging individual beams, but rather a more broadly scattered wave field. Finally,

the case L∗/Lh << 1 is equivalent to the N2−layer being absent, and for all practical

purposes there is a solid boundary that reflects the wave beam. In this limit, if Lh is

also much larger than the characteristic horizontal wave length in the wave beam, the

reflection process becomes akin to that of a plane wave.

To elucidate these scenarios, in figure 7 we plot the cumulative re-emerging energy

flux across the interface ec (normalized by the energy flux in the incident wave beam) as

a function of x/Lh. For this example, ω/N1 = 0.5 and N2/N1 = 2.8, giving Te = 0.73.

For L∗/Lh > 1, the re-emerging beams are distinct, giving rise to rapid increases in ec

at specific locations. The interference between neighboring wave beams for L∗/Lh ≈ 1

produces a more continuous spatial variation of ec. For a thin N2-layer, there is essentially

only a single reflected beam originating from the initial reflection site. For all the cases

studied, at least 70% of the incident energy is reflected back to the N1−layer by x/L∗ = 2,

although this can occur in the different ways just described. For L∗/Lh > 1, either the

first or second reflected wave beam contains most of the energy, depending on whether

Te > 0.62 or Te < 0.62, respectively.

4.2. Continuous stratifications

It is readily possible to study complex, continuous stratifications using the approach de-

tailed in section 3. To represent the upper-ocean better, for example, a natural extension

of the configuration in figure 6(b) that accounts for the thermocline and mixed-layer

is to introduce a finite-width N1-to-N2 transition and a uniform density layer atop the

N2-layer. This problem can be solved using equation (3.3), with or without viscosity, by
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specifying boundary conditions at the upper rigid boundary and for reflected waves in the

N1 layer. For this scenario, however, it was actually found to be computationally faster

to exploit the symmetry identified in figure 6(a). The results presented in the following

section were therefore obtained by solving for the configuration in 6(a) and then forming

the solution ψ∗(x, z, t) = ψ(x, z, t)− ψ(x,−z, t) for z < 0.

5. Experiments

5.1. Apparatus

To complement the analysis of the previous sections, we performed experiments in a 1.28

m-long, 0.66 m-high and 0.2 m-wide acrylic tank, with 19 mm-thick walls. The tank

was filled from below with salt water and stratified using the double-bucket method.

Nonlinear stratifications with mm-scale transition regions were achieved using computer-

controlled peristaltic pumps, which enabled precise control of the flow rates within, and

out of, the double bucket system. If desired, the transition regions were sharpened by

slowly and selectively withdrawing fluid via a syringe. A calibrated PME conductivity

and temperature probe, mounted on a linear traverse, was used to measure the resulting

density profile prior to an experiment. Blocksom-filter matting, a coarse coconut-hair

matting, effectively damped reflections of internal wave beams from the side walls.

An internal wave beam was produced using a generator based on the design of Gostiaux

et al. (2007). The generator, comprising twelve oscillating plates, could be oriented to

point downwards at an angle 0o < θ < 45o with respect to the horizontal. The motion

of the plates was driven using a computer-controlled stepper motor. A nice feature of

a generator such as this is the ability to produce a single internal wave beam, with

accurate control of the frequency of oscillation (and thus propagation direction) and cross-

beam profile (and thus dominant wavelength). The profile used for these experiments
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had a maximum oscillation amplitude of 8 mm for the central plates, which tapered

smoothly to zero at the top and bottom plates. This arrangement produced a wave beam

with a roughly gaussian spectrum for DI(k) that peaked at around k0 = 100 m−1 for

the experiments discussed here and decayed to half the peak value within the range

k = k0 ± 55 m−1.

Internal wave beams were visualized using the Synthetic Schlieren method (Dalziel et

al. 2000). A random pattern of mm-scale dots, backlit by an electroluminescent sheet, was

positioned 1.25 m behind the experimental tank. A JAI CV-M4+ CCD camera, located

3.18 m in front the tank, was used to record apparent distortions of the dot pattern. These

distortions were processed using DigiFlow (Dalziel 2009), to obtain spatiotemporal data

of density-gradient perturbations within the stratification.

5.2. Results

The density profile for the first experiment is presented in figure 8(a). This comprised an

approximately 2 cm-wide strong stratification layer between an upper, linear stratification

and an underlying, 10 cm-high constant-density layer. The constant-density layer was

included for practical purposes: to aid visualization, to reduce erosion of the stratification

layer from below by diffusion, and to permit several selective withdrawal procedures. It

played a passive role in the experiments. The corresponding N−profile, computed from

the experimentally measured density profile in figure 8(a), is presented in figure 8(b).

The maximum stratification was Nmax = 1.44 s−1, while N1 = 0.89 s−1 in the upper,

constant stratification .

An experimental Synthetic Schlieren visualization for a wave beam with ω/N1 = 0.82

propagating in the stratification in figure 8(b) is presented in figure 8(c). This image was

obtained 128 seconds after the wave generator was started, allowing sufficient time for the

wave field to achieve a periodic state. The phase of oscillation was chosen arbitrarily, since
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the qualitative picture was the same at any phase during the cycle. For this configuration,

neighboring reflected wave beams overlap, resulting in a continuously distributed wave

field scattered back into the N1 medium, with a detectable signal as far away as three

times the horizontal width of the incident wave beam.

To relate this experiment to the simple model in figure 6(b), the system can be ap-

proximated as having a semi-infinite upper layer of constant stratification N1 = 0.89 s−1

and a roughly 2 cm-thick layer of mean stratification N2 ≈ 1.34 s−1, separated by a

transition layer L of mm-scale thickness. The passive, constant-density layer is treated

as an inviscid solid boundary at the base of the N2 layer. A dominant horizontal wave

length of 7 cm in the spectrum DI(k) = − iρ0ω
g

k2 cot θ
sin2 θ

ΨI(k) means that Lk cot θ2 ¿ 0.1,

so a sharp interface approximation can be used for the N1-to-N2 transition. For this

scenario Te = 0.86, meaning most of the incident energy gets transmitted to the N2-layer

and hence a little ducting can take place. Since L∗ ∼ 10 cm is on the same scale as the

horizontal width of the wave beam Lh, giving L∗/Lh ∼ 1, there is a broadly scattered

beam.

A more rigorous comparison of experiment and theory was sought by extracting the

horizontal Fourier spectrum of the incident experimental wave beam. For each horizontal

wave number, using a resolution of δk = 0.1 m−1, the corresponding vertical mode

of the stratification was calculated using the viscous equation (3.8) with ν = 1.0 ×

10−6 m2s−1. This decomposition was used to reproduce the horizontal structure of the

incident wave beam, and its accuracy was validated by checking that the vertical cross-

sectional structure of the incident wave beam was also reproduced. Having obtained

the decomposition, the propagation of the wave beam through the stratification was

determined by plotting the incident and reflected wave fields for the horizontal extent

of the experimental domain. The result is presented in figure 8(d), which shows good
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agreement with the experimental data in 8(c). An even more direct comparison between

theory and experiments in presented in figure 8(e), in which the local oscillation amplitude

(i.e. the amplitude envelope) of ρ′z is plotted for the horizontal cross section indicated in

figures 8(c) and (d).

A second experiment was performed that required further selective withdrawal from

z ≈ 0.144m, after which the density profile was left to diffuse for ten hours. This produced

the desired effect of widening the strong stratification layer and increasing the peak value

of N in this layer. As shown in figures 9(a) and (b), Nmax rose to 1.94 s−1, and the layer

thickness increased to around 4 cm.

In figure 9(c) we present an experimental Synthetic Schlieren visualization for a wave

beam with ω/N1 = 0.87 propagating in the stratification in figure 9(b). As before, the

phase of the oscillation was chosen arbitrarily once the system had achieved a peri-

odic state. For this configuration, two distinct wave beams are scattered back into the

N1 medium. The second wave beam, which emerges from the strong-stratification layer

around x = 0.25 m, is significantly stronger than the first, which is reflected around

x = 0.08 m. There is also significant activity in the N2−layer all the way to x = 0.4 m,

corresponding to horizontal ducting of the wave beam.

This arrangement can also be reasonably approximated as a two layer system, with

an upper semi-finite layer where N1 = 0.89 s−1 and a 4 cm-thick layer with N2 ≈

1.62 s−1, separated by a sharp interface. This gives Te = 0.72, which is reasonable for

ducting and causes the second reflected beam to be significantly stronger than the first,

consistent with experimental observations. Because of the thicker layer and stronger

stratification compared to the previous experiment (L∗/Lh > 2), distinct scattered wave

beams were produced. The Fourier decomposition method was also used to obtain a more

rigorous comparison of experiment and theory for this configuration. The corresponding



Internal wave beam propagation in nonuniform stratifications 17

theoretical result is presented in figure 9(d), which is in agreement with the experimental

results in figure 9(c). The level of agreement is further demonstrated by the plot in

figure 9(e), which presents the amplitude envelope for ρ′z for the horizontal cross section

indicated in figures 9(c) and (d).

In making the quantitative comparisons between laboratory experiments and theory,

it was found that molecular viscosity provided significant damping in regions of strong

stratification, due to the finer vertical wavelengths. This is understood by considering

the viscous decay of a linear plane wave along its direction of propagation η, which is

accounted for by the viscous decay factor e−αη, where α = νk3N3

2ω3
√

N2−ω2 (Lighthill 1978).

For the experimental results presented in figures 8(c) and 9(c), the decay coefficient α was

roughly 1.55 and 1.86 times greater in the N2 layer than in the N1 region, respectively.

6. Discussion

The methods developed and implemented herein provide a means to investigate the

effect of a nonlinear density stratification on the propagation of a linear internal wave

beam. These methods can be useful for investigating geophysical scenarios. There are

many such scenarios to consider (e.g. Alexander et. al. 1995, Lien & Gregg 2001, Wal-

terscheid et. al. 2001, Cole et al. 2009), and we choose the example of a semidiurnal

wave beam at the Keana ridge in the Kauai channel of the Hawaiian islands (Martin

et. al. 2006). As shown in figure 10(a), which is reproduced from Martin et al. (2006),

the wave beam originated from the northern side of the ridge peak and struck the ocean

surface 20 km south of the ridge peak. The physical quantity presented is the horizontal

kinetic energy EK = 1
2ρ0 < u2 + v2 >, where v is the additional transverse horizontal

velocity component required by background rotation. Directly atop the ridge, EK has a

maximum that extends for a horizontal distance of σ ∼ 25 km, although this quantity
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actually rises to a maximum and returns to zero over roughly twice this distance. Since

EK is quadratic in the perturbation velocity, it emphasizes stronger activity along the

center of a wave beam, so a reasonable width for the oceanic wave beam is 2σ ∼ 50 km.

There appears to be no wave beam reflected back down from the surface.

Before investigating the role of stratification in this scenario, it is worth assessing

whether the wave beam can be considered linear. At a depth of 500 m, the maximum

value of EK in the wave beam is roughly 25 Jm−3, corresponding to u, v ∼ 0.1 ms−1. For

semidiurnal waves with 10−3 < k < 10−4 m−1, consistent with the scale of the topogra-

phy and the width of the wave beam, the horizontal and vertical momentum equations

require that the values of uk
ω and ∆N2

N2
0

both exceed 0.1. This implies that advection terms

in the momentum equations and perturbations of the background stratification could be

sufficiently large that nonlinearity is significant. With this in mind, we nevertheless pro-

ceed to discuss what linear theory can say.

A time-averaged and an individual density profile obtained from the Keana ridge at the

time of the data in figure 10(a) are presented in figures 10(b) & 10(c), respectively. The

averaged profile was calculated from thirty individual profiles taken at twenty-four hour

intervals. The individual profile follows the same general trend as the averaged profile,

but has small scale features. Some of these features are strong, which is perhaps another

indication of nonlinearity. These density profiles were used as the basis of simulations of

a 50 km-wide wave beam. Background rotation was included by replacing (N2/ω2 − 1)

by (N2 − ω2)/(ω2 − f2) in (3.2), where f is the Coriolis parameter. This acts to reduce

the propagation angle of the wave beam, thereby affecting transmission and reflection†.
† For a sharp density-gradient interface between two regions of constant stratification N1

and N2, the effect of background rotation may simply be accounted for by using the rotational

dispersion relation (Peacock & Weidman 2005) to calculate the angles θ1 and θ2 for transmission

and reflection coefficients such as (2.5).
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Since a wave beam typically contains at least one, and perhaps several, spatial oscillations

(Thomas & Stevenson 1972), simulations were run for different dominant horizontal

wavelengths of 10 km, 15 km, 25 km and 50 km, as well as a mixed wave beam containing

equal energy flux for these wavelengths. In each case, the magnitude of the perturbation

velocity u was chosen to reproduce the magnitude of EK in the field data in figure 10(a).

The results of the calculations for an internal wave beam with a 15 km dominant

wave length are presented in figure 11, which also presents the calculated N -profiles. The

quantity EK increases as the beam rises through the stratification, consistent with the

ocean observations. The averaged N -profile in figure 11(a) distorts the wave beam that

originates from x = 10 km in figure 11(b), but ultimately there is a strong wave beam

reflected back down from the surface. In contrast, the extra features in the individual

stratification in figure 11(c) significantly distort the wave beam in figure 11(d), greatly

weakening the reflected beam and creating a second site of surface activity, consistent with

the field data in figure 10(a). Qualitatively similar behavior, albeit to varying degrees,

was observed for the other simulations with different dominant wavelengths, suggesting

that scattering by small scale features could have played a key role in the fate of the

oceanic wave beam. This interpretation is in line with previous theoretical results for

plane wave scattering by perturbations of the stratification (Barcilon et. al. 1972). It is

also interesting to note that the field data, like the simulations, has vertically periodic

structures with a scale of 100 m that are consistent with scattering by the stratification.

Another aspect of the wave beam worth considering is its stability. Even at a depth of

500 m linear scaling arguments suggest that 0.1 < ∆N2

N2
0

< 1. In support of this, values of

N approaching zero exist at a few points in the profiles in figure 11(c). This suggests that

the wave beam was susceptible to gravitational instability. In figure 12 we plot the mini-

mum value of the net stratification, N2
min = N2

0 + ∆N2
min, for the wave beam dominated
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by 15 km wavelengths. The result shows that the likelihood of gravitational instability

increases significantly as the wave beam propagates upwards, reaching a maximum in the

vicinity of the reflection site. For all the wave beams of various dominant wave lengths

that we simulated, gravitational instability set in at some depth, this being shallower for

wave beams comprising longer wave lengths. Therefore, in addition to scattering, it is

likely that the wave beam became gravitationally unstable.

While instability may have been a significant cause of dissipation, we remark that the

quantitative comparisons between experiment and theory in figures 8 and 9 revealed that

theoretical scattered wave beams are considerably weaker if the viscous equation (3.8)

is used rather than its inviscid counterpart (3.2). By analogy, pre-existing turbulent

dissipation (Thorpe 2007) can also damp an oceanic wave beam. Recalling that the

viscous decay factor for a linear plane wave is e
− νk3N3

2ω3
√

N2−ω2
η
, where η is the propagation

distance, a back-of-the-envelope calculation shows that a turbulent viscosity of νT ∼ 10−3

m2s−1 is sufficient to cause an order of magnitude decay of a 15 km wave traveling 20

km in a stratification N0=0.02 s−1. This value of turbulent viscosity is within reason

(Gill 1982), suggesting that the Hawaiian wave beam would also have been significantly

damped by pre-existing upper-ocean conditions.

Finally, we note that ducting of plane internal waves in the presence of evanescent

layers has been previously recognized in both the ocean (Eckart 1961) and atmosphere

(Fritts & Yuan 1989, Walterscheid et. al. 2001). For the simple case of a constant-N

layer (in which waves can propagate) between two evanescent layers, the two evanescent

layers hinder energy from entering the constant-N layer; once inside, however, any energy

has great difficulty escaping. The results in this paper demonstrate that stratifications

with layers of relatively stronger N , but not necessarily with any evanescent layers, can

support ducting too.
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7. Conclusions

The propagation of an internal wave beam in a nonuniform stratification has been in-

vestigated using Fourier methods. When changes in the stratification occur on a relatively

large scale, the wave beam retains its identity, adjusting continuously to the surrounding

stratification. The changing stratification may significantly amplify or reduce the mag-

nitude of physical quantities associated with the beam. If changes of the stratification

occur on a relatively short scale, however, the wave beam is scattered. This process can

be reasonably modeled using sharp density-gradient interfaces if changes in stratification

occur on length scales an order of magnitude smaller than the smallest vertical wave

length in the wave beam. For complicated stratifications, multiple transmitted and re-

flected beams, and internal wave beam ducting, can occur. This has been demonstrated

in laboratory experiments, for which there was very good agreement with viscous, linear

theory.

This work provides insight into geophysical wave beams. The complexity of the phys-

ical environments means that detailed and comprehensive field data is required to un-

ambiguously identify the roles of scattering, instability and pre-existing turbulence in

any particular situation. In such studies there are other candidate mechanisms, which

lie beyond the scope of this paper, that could contribute to the understanding of field

observations. The influence of background shear, for example, alters a wave beam slope,

causes an exchange of energy with the mean-flow and promotes instability (Koop 1981,

Koop & McGee 1986). The nonlinear generation of solitary waves (Gerkema 2001, Aky-

las et al. 2007) could also be important. With all these processes, typically one cannot

expect a geophysical wave beam to remain intact as it propagates through a complex

stratification.
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Appendix A. Richardson number for a wave beam

For an upward-propagating wave beam,

(
∂u

∂z
,
∂ρ′

∂z
) = Re(e−iωt

∫ ∞

0

−k2(cot θ,
iρ0N

2

gω
)Ψ cot θeik(x−z cot θ)dk). (A 1)

Thus

Ri =
N2

cot4 θ(A2 + B2)
1− f sin γ

cos2 γ
, (A 2)

where
∫∞
0
−ik2Ψeik(x−z cot θ)dk = A(x, z) + iB(x, z), tan φ = A

B , f = cot θ
N sin θ

√
A2 + B2

and γ = ωt + φ. The value of γ at which Ri is minimum satisfies

sin γ =
1
f
±

√
1
f2
− 1. (A 3)

Now f < 1, as otherwise the numerator in (A 2) can be negative, corresponding to

gravitational instability. Therefore, the relevant minimum is

Rimin =
1

2 cos2 θ

1

1−
√

1− f2
. (A 4)

This is greater than 1/2 for f < 1 and cos θ < 1, and thus shear-driven instability, which

requires Ri < 1/4, cannot occur.
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Figure 1. A sketch of the ray paths (solid black lines) for plane wave transmission from N1 to

N2 across a sharp density-gradient interface (dotted black line). Refraction focuses energy flux

from cross section L1 to L2.
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Figure 2. Wave beam transmission across a sharp density-gradient interface. (a) u. (b) w.

(c) ∆N2. (d) e. The frequency ratios are ω/N1 = 0.94 and N2/N1 = 3.2. Arrows specify the

direction of energy propagation. The maximum value in each figure is scaled to unity, and the

spatial scales have been nondimensionalized by the dominant wavelength, λ0, in ψI(k). The

dominant wavelength is defined as λ0 = 2π/k0, where ψI(k) is maximum at k = k0.
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Figure 3. The N2-profile (3.1) considered for studying plane wave propagation across a

finite-width transition region.
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Figure 4. The transmission coefficient Te for plane waves passing from N1 to N2 across a

finite-width transition region. (a) Lk = 0.1. (b) Lk = 1. From right to left, the black line

contours correspond to Lkmin(cot θ1, cot θ2) = 0.5 and 1, respectively.
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Figure 5. Filtering of an internal wave beam by a finite-width transition region. (a) The hori-

zontal velocity field u at an arbitrarily chosen phase. The maximum value is scaled to unity, and

the spatial dimensions are scaled by the interface length-scale L. (b) The plane wave reflection

and transmission coefficients as a function of Lk. (c) The energy spectrum |E(k)| = k|Ψ|2 cot θ

for the incident (I), transmitted (T) and reflected (R) wave beams. The values of ω/N1 and

N2/N1 are 0.94 and 10 respectively.
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Figure 6. (a) Wave beam transmission across an N2-layer, which can be related to the

finite-depth scenario in figure (b), as indicated by the light grey lines. (b) Wave beam trans-

mission across a sharp density-gradient interface between an N1−medium and a finite-depth

N2−layer. Solid black lines are ray paths that bound the wave beam and the dotted black lines

are the interfaces. The first two emerging wave beams are numbered 1 and 2, respectively. The

horizontal distance a ray travels between encounters with an interface is L∗ = 2H cot θ2.
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Figure 7. Cumulative energy ec in reflected wave field (normalized by the energy flux in the inci-

dent wave beam) as a function of x/Lh for varying L∗/Lh. The parameter values are ω/N1 = 0.5,

N2/N1 = 2.8.
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Figure 8. (a) Measured density profile. (b) Corresponding N profile. (c) Experimental ∆N2

field obtained using Synthetic Schlieren for ω/N1 = 0.82. (d) Theoretical ∆N2 field obtained

by numerically solving equation (3.3). Regions with values outside the limits of the colorbar

or where experimental data was not reliable due to strong stratification are grey. The arrows

indicate the direction of local energy propagation, and the dashed lines indicate the horizontal

section where the experimental and theoretical solutions are compared in (e). (e) Theoretical

(solid) and experimental (dotted) amplitude envelope of ∆N2 for the horizontal sections marked

in (c) & (d).
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Figure 9. (a) Measured density profile. (b) Corresponding N profile. (c) Experimental ∆N2

field obtained using Synthetic Schlieren for ω/N1 = 0.87. (d) Theoretical ∆N2 field obtained

by numerically solving equation (3.3). Regions with values outside the limits of the colorbar

are grey. The arrows indicate the direction of local energy propagation, and the dashed lines in

(c) & (d) indicate the horizontal section where the experimental and theoretical solutions are

compared in (e). (e) Theoretical (solid) and experimental (dotted) amplitude envelope of ∆N2

for the horizontal sections marked in (c) & (d).
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Figure 10. (a) The quantity Ek reveals the existence of an internal wave beam generated at the

Keana Ridge (image reproduced from Martin et. al. 2006). (b) A time-averaged average density

profile from the Keana ridge at the time of the data in (a). (c) An individual density profile

from the Keana ridge during the time of the data in (a).
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Figure 11. (a) The stratification for the time-averaged density profile in figure 10(b). (b) The

quantity Ek for a simulated wave beam dominated by a 15km horizontal wavelength propagating

through the stratification shown in (a). (c) The stratification for the individual density profile

in figure 10(c). (d) The quantity Ek for a simulated wave beam dominated by a 15km horizontal

wavelength propagating through the stratification shown in (c).
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Figure 12. (a) The stratification for the time-averaged density profile in figure 10(b). (b)

N2
min for the wave beam in figure 11(b). N2

min < 0 indicates gravitational instability.


