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We present a combined experimental and numerical investigation of a sphere settling in

a linearly stratified fluid at small Reynolds numbers. Using time-lapse photography and

numerical modelling, we observed and quantified an increase in drag due to stratification.

For a salt stratification, the normalized added drag coefficient scales as Ri0.51, where

Ri = a3N2/(νU) is the Richardson number, a is the particle radius, U its speed, ν the

kinematic fluid viscosity, and N the buoyancy frequency. Microscale Synthetic Schlieren

revealed that a settling sphere draws lighter fluid downwards, resulting in a density wake

extending tens of particle radii. Analysis of the flow and density fields shows that the

added drag results from the buoyancy of the fluid in a region of size (ν/N)1/2 surrounding

the sphere, while the bulk of the wake does not influence drag. A scaling argument is

provided to rationalize the observations. The enhanced drag can increase settling times

in natural aquatic environments, affecting retention of particles at density interfaces and

vertical fluxes of organic matter.
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1. Introduction

The process of an object settling in a stratified fluid occurs ubiquitously in nature,

with examples being the settling of marine snow aggregates through thermoclines and

haloclines in oceans and lakes (MacIntyre et al. 1995), and dust in the atmosphere (Kellog

1990; Turco et al. 1990). Despite this ubiquity, the influence of stratification on settling

has received little attention and remains poorly understood. Although conceptually sim-

ple, the problem is somewhat paradoxical: while stratification tends to suppress vertical

fluid motion (Yih 1980), the settling process demands it.

The problem of particle motion in a homogeneous fluid is one of the oldest in fluid

mechanics. The resistance to motion is described by a drag law, via a drag coefficient CD

that depends only on the particle’s Reynolds number. For a sphere of radius a moving

at speed U in a fluid of kinematic viscosity ν, the Reynolds number is Re = Ua/ν and

a large body of experimental, theoretical and numerical work has established the depen-

dence of CD on Re (White 2005). The small Reynolds number regime, which is relevant

to this paper, is reviewed by Leal (1980).

The presence of stratification significantly alters the problem of particle motion in a

fluid. For a given stratification agent (e.g. salt or temperature) the dynamics depend on

both Re and Fr = U/(Na), where N = [−(g/ρ0)dρ/dz]1/2 is the buoyancy frequency, ρ0

a reference fluid density, g the acceleration of gravity, and dρ/dz the background density

gradient. Furthermore, there is a distinct asymmetry between motion parallel and per-

pendicular to isopycnals (i.e. surfaces of constant density); since fluids are often vertically

stratified, this corresponds to horizontal and vertical motion, respectively. Considerable

attention has been devoted to horizontal motion, motivated by the design and opera-
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tion of underwater vehicles and atmospheric flow past topography (Smith 1979, 1980;

Greenslade 1994; Vosper et al. 1999). The tendency of stratification to suppress vertical

motion (Yih 1980) drives flow primarily around, rather than over, a horizontally-moving

three-dimensional body, while a two-dimensional body blocks a horizontal layer of fluid,

the length of which scales linearly with the Richardson number Ri = Re/Fr2 (Tritton

1988). For moderate to high Re (> O(103)), horizontal motion can generate internal

waves, resulting in enhanced drag (Lofquist & Purtell 1984; Greenslade 2000; Scase &

Dalziel 2004).

Considerably less work exists on vertically-moving bodies in stratified fluids. The

simplest configuration, a two-layer fluid, was first investigated by Srdić-Mitrović et al.

(1999), who measured the drag on a sphere settling through a thin density interface for

1.5 < Re < 15. Their study revealed up to an order of magnitude increase in drag over

the homogeneous case for 3 < Fr < 10. The added drag resulted from the buoyancy of

a tail of light fluid dragged down by the sphere. For the same configuration, Abaid et al.

(2004) found a regime in which the sphere ‘levitates’, briefly reversing direction after

crossing the interface. For a body smaller than the vertical extent of the stratification,

consideration of a continuous stratification is more appropriate than a sharp interface;

the simplest case being a linear stratification. Torres et al. (2000) numerically investi-

gated the case of a sphere in the parameter regime 25 6 Re 6 100 and 0.2 6 Fr 6 200,

finding CD to strongly increase with Fr−1 for Fr < 20. The added drag was due to a

rear buoyant jet, predicted by Eames et al. (2003) for an inviscid and non-diffusive fluid,

associated with the return of isopycnals to their neutral density position. The existence of

this jet, and the associated suppression of rear vortices, was supported by shadowgraph

experiments at Re ∼ 800 (Ochoa & Van Woert 1977). An increase of CD with Fr−1 was
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also observed by Higginson et al. (2003) for the related problem of a freely-rising hori-

zontal grid of bars at 1000 6 Re 6 3000 and 0.03 6 Fr 6 0.22, and rationalized in terms

of the buoyancy of displaced fluid in the wake of the grid. Although internal waves can

exist for moderate to high Re (Warren 1960), in the aforementioned studies they were

found not to contribute to drag. While a theoretical analysis (Zvirin & Chadwick 1974)

suggests that stratification enhances drag even at Re << 1, predicting a dependence

of CD on Ri1/3, there is a dearth of quantitative experimental data at small Reynolds

numbers. Thus it still remains unclear whether settling particles experience added drag

at Re = O(1) and, if so, how this drag scales with stratification.

Here we present time-lapse photography, Microscale Synthetic Schlieren experiments

and numerical simulations to quantify and rationalize the drag of small spheres settling

in a salt-water stratification, and propose an empirical drag law for a linearly stratified

fluid. The article is structured as follows. In section 2 we provide a formulation for the

stratified drag coefficient and in section 3 we describe the experimental and numerical

methods to measure it. Results are presented in section 4 and discussed in section 5,

along with a scaling argument to support our findings.

2. Formulation of stratified drag coefficient

The drag force FD on a sphere in a homogeneous fluid can be written as

FD = −6πµaU − ρV

2
dU

dt
− 6a2ρ

√
πν

∫ t

−∞

(
dU

dt

)
t=s

ds√
t− s

, (2.1)

where V is the volume of the sphere, ρ the density of the fluid and µ its dynamic

viscosity. The first term on the right is the Stokes drag for steady settling at speed U ,

the second is the added mass drag, arising because an accelerating sphere spends energy
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in accelerating the surrounding fluid, and the third is the Basset history drag, due to

diffusion of vorticity from an accelerating sphere as the boundary layer forms. The latter

two terms are negligible under steady conditions. To adopt a consistent formulation of

FD across all Re, it is customary to write FD = CH
D

1
2ρU2πa2, where the homogeneous

drag coefficient CH
D is a function of Re. For Re << 1, CH

D = 12/Re. While the latter

relation is somewhat misleading, since FD is independent of Re in this regime, empirical

extensions of this formulation prove useful to bridge the small and moderate Re regimes.

A widely used empirical relation is

CH
D =

12
Re

+
6

1 +
√

2Re
+ 0.4, (2.2)

which holds for 0 < Re < 2× 105 with less than 10% error (White 2005).

The problem of a sphere settling in a linearly stratified fluid is illustrated in figure

1(a). Adopting the formalism for a homogeneous fluid, under quasi-steady conditions

(defined below) we write the drag force in a stratified fluid as FD = CS
D

1
2ρU2πa2, where

the unknown stratified drag coefficient CS
D captures the influence of stratification. For a

given stratifying agent, we expect CS
D to depend on Re and Fr. In general, CS

D will also

depend on the Prandtl number Pr = ν/D, where D is the diffusivity of the stratifying

agent. Here we focus on salt stratifications (Pr = 700) and briefly address temperature

stratifications (Pr = 7).

Settling in a stratified fluid is an inherently unsteady process, because the density con-

trast between particle and surrounding fluid, hence the particle speed, decreases during

settling: eventually the particle comes to rest at its depth of neutral buoyancy. We will

see, however, that settling is quasi-steady for the parameter regime explored here, as

added mass and Basset terms are negligible. Then, U is set by the balance of drag and



6 K.Y. Yick, R. Stocker, T. Peacock and C.R. Torres

buoyancy forces:

CS
D

1
2
ρU2πa2 =

4
3
πa3∆ρ g, (2.3)

where ∆ρ = ρP − ρ is the density contrast and ρP the particle density. This yields

CS
D =

8ga

3U2

∆ρ

ρ
, (2.4)

which enables CS
D to be determined from measurements of ρ(z) and U(z). To highlight the

effect of stratification, one can normalize CS
D by the locally homogeneous drag coefficient

CH
D from equation (2.2), here representing the drag coefficient the sphere would have if

the entire water column had the density and viscosity of the fluid at that depth. The

normalized drag coefficient

CN
D =

CS
D

CH
D

(2.5)

reveals whether stratification does (CN
D 6= 1) or does not (CN

D = 1) affect drag.

3. Methods

3.1. Drag measurement by time-lapse photography

Experiments were performed in a 30 cm high, 51 cm long and 26 cm wide plexiglas tank,

with 0.54 cm thick walls. The tank was covered with a lid to eliminate convection in the

fluid due to evaporation. An initial set of experiments was performed in homogeneous

salt-water solutions of densities 1000, 1019 and 1035 kg m−3, measured with an Anton-

Parr DMA38 densitometer. For all other experiments, the tank was filled with linearly

stratified salt water using a double-bucket system (Oster 1965), and left to stand for at

least five hours to dissipate any residual flows. To achieve larger density gradients, in some

experiments the tank was first partially filled with fresh water, followed by linearly strat-
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ified salt water up to a density ρS , and finally with homogeneous salt water of density ρS .

Spherical density floats (American Density Floats) with densities ranging from 1010.0

to 1130.0 kg m−3 in intervals of 10.0 kg m−3 were released into the tank to measure

dρ/dz. Regular vertical spacing of the floats confirmed the linearity of the density profile

ρ(z). The density gradient was determined from a linear fit to ρ(z) and used to compute

N , taking ρ0 = 1000 kgm−3. The small size of the floats (diameter = 7 mm) and their

location far from the settling path (> 20 cm) ensured they did not affect the density

field. There was no discernible motion of the floats, demonstrating the absence of any

convection in the tank.

Polystyrene spheres of radius a = 196 and 390 µm (Duke Scientific; coefficient of vari-

ation for a: 3% ) and density ρP = 1050 kg m−3 were used in the experiments. To ensure

the accuracy of ρP , we confirmed that the polystyrene spheres and the 1050 kg m−3

density float came to rest at the same depth. We measured the temperature of the fluid

at the depth of each observation by a needle thermometer located far from the settling

path. The temperature and the corresponding density were used to calculate the local

dynamic viscosity µ (Fofonoff & Millard 1983), including the effect of salinity on viscos-

ity. Before release, particles were mixed with a small amount of fluid from the surface

of the tank and a minimal amount of soap as a wetting agent to prevent sticking. To

ensure settling through the observation window, a single particle was released using a 1

ml pipettor through a partially submerged conical injector (a 1 ml pipette with its tip

cut off) inserted in a 7 mm wide hole in the lid.

To avoid wall effects, the settling path was more than 5 cm (> 125a) from the nearest
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wall of the tank, which corresponds to a less than 1% change in drag coefficient for a

homogeneous fluid (Clift et al. 1978). The spheres settled in front of a black background

and were illumintated by a fiber-optic light source. A ruler placed to the side of the

settling path, and at the same distance from the camera, was used to calibrate vertical

distances, and set vertical by use of a plumb line. Images were captured over a 3 cm tall

observation window at 3 to 12 frames/s using a JAI CV-M4+CL CCD camera controlled

by Digiflow (2006) and spheres were subsequently tracked with Matlab (The Mathworks,

Natick, MA). A particle appeared as a light spot on a dark background, and the centre

of the spot was taken as the position of the particle. The time series of vertical position

was smoothed by a three-point moving average, before computing the particle velocity

U(z) using a four-point centre-difference approach (Dalziel 1992).

For each experiment, characterized by a given combination of N , a and ∆ρ, ten repli-

cate runs were performed to reduce errors associated with such factors as variability in

particle size and injection conditions. At each vertical location, the mean velocity was

computed as the average over these ten runs, as shown in figure 2(a). The mean velocity

profile, in combination with ρ(z), determined Re, Fr, Ri = Re/Fr2, and CN
D , which

all varied over the vertical length of the observation window since ρ(z) increased with

depth. Experiments were repeated for 0.01 6 Re 6 1.57 and 0.09 6 Fr 6 6.75 (figure

2(b)) by varying N and a. As a validation of our averaging procedure, two sets of ten

runs were performed in two adjacent observation windows along the settling path, for

a = 196 µm and N = 1.69 s−1. The two resulting curves in (Re, Fr−1) space (curves

1 and 2 in figure 2(b)) are a smooth continuation of each other. For all the settling

experiments performed, calculation of dU/dt showed that the added mass and Basset

force terms (equation 2.1) contributed less than 1% of the total drag force, justifying our
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earlier assumption of quasi-steady settling.

3.2. Wake visualization by Microscale Synthetic Schlieren

To visualize the effect of the settling sphere on the fluid density field, we performed exper-

iments using Microscale Synthetic Schlieren (Yick et al. 2006). Synthetic Schlieren is the

digital implementation of an optical technique to measure density perturbations using

the relation between the density and refractive index of salt-stratified fluid. A detailed

description of Microscale Synthetic Schlieren, along with its application to spheres as

small as a = 78 µm, is presented in Yick et al. (2006). Our experiments were performed

in a 48 cm high, 6.3 cm long and 2.5 cm wide plexiglas tank, with 0.54 cm thick walls.

A stratification was established and measured as described in section 3.1. A three-stage

micromanipulator mounted on top of the tank facilitated the accurate deposition of the

sphere at the centre of the tank through a conical injector (as above) and subsequent

passing through the observation window. The distance between the settling path and

the closest wall (> 32a) corresponded to a less than 5% change in drag coefficient for a

homogeneous fluid (Clift et al. 1978): as will be seen below, this is negligible compared

to the effect of stratification.

A 2×2 cm mask consisting of a random pattern of 35 µm dots was printed on trans-

parency film using a high-resolution image setter (Fineline Imaging, Colorado Springs,

CO). The pattern was mounted 8.3 cm behind the back wall of the tank, and imaged

at 20 frames/s using a PCO 1600 CCD camera, operating at a resolution of 800×600

pixels. The camera was mounted on a Nikon SMZ 1000 stereomicroscope fitted with a

P-Achro 0.5× objective, positioned 18.9 cm in front of the mask (the maximum working

distance). The apparent displacements of the mask caused by density perturbations due



10 K.Y. Yick, R. Stocker, T. Peacock and C.R. Torres

to the settling sphere were determined by image analysis using Digiflow (2006).

Two forms of processing were used. The first, known as qualitative Synthetic Schlieren,

consists simply in subtracting the reference image from each subsequent image and pro-

vides a proxy for the relative magnitude of density perturbation gradients. The second,

quantitative Synthetic Schlieren, uses cross-correlation algorithms to compute the ap-

parent displacements of the mask and inverts them to obtain the associated gradients

in density perturbation. Details of the processing are given in Yick et al. (2006). Radial

density perturbation gradients ∂ρ′/∂r were then integrated along r at a given vertical

position z, and this was repeated for each of the 600 vertical positions (i.e. 600 vertical

pixels) in an image, yielding the density perturbation field ρ′. This was added to the

background density field, enabling calculation of isopycnals by contouring the total den-

sity field in Matlab.

3.3. Numerical model

Numerical simulations were performed for comparison of the drag coefficient with ex-

perimental data and to obtain high resolution information on the density and flow fields

over a wide range of parameters. Simulations were carried out in the parameter regime

0.05 6 Re 6 2.1, 0.02 6 Fr 6 200, and 7 6 Pr 6 700. The model was adapted from an

earlier one (Torres et al. 2000; Larrazábal et al. 2003) and is described here only briefly.

It considers flow of a linearly stratified fluid at constant velocity U past a stationary

sphere (figure 1(a)), and uses finite-differences to solve the nondimensional equations

∂u
∂t

+ u · ∇u = −∇p− ρ′

Fr2
j +

1
Re

∇2u, (3.1)
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∂ρ′

∂t
+ u · ∇ρ′ = w − 1 +

1
RePr

∇2ρ′, (3.2)

∇2p = − 1
Fr2

∇ · (ρ′j)−∇ · [(u · ∇)u] +
1

Re
∇2P − ∂P

∂t
, (3.3)

obtained by rescaling lengths by a, velocities by U , pressure perturbations by ρ0U
2, and

density perturbations by −a (dρ/dz). Here u = (u, w) is the fluid velocity in the radial

and vertical direction, respectively, p the pressure, j the vertical unit vector, positive

upwards, and P = ∇ · u. Equation (3.3) replaces the incompressibility condition: when

discretizing ∂P/∂t as (Pn+1 − Pn)/∆t (n refers to the integration time t = n∆t and

∆t is the integration step), incompressibility was enforced by setting Pn+1 = 0. The

boundary conditions on the surface of the sphere were u = 0 and zero density flux,

enforced by requiring (∂ρ′/∂z) z + (∂ρ′/∂r) r = z. The surface boundary condition for

pressure was obtained from equation (3.1) by setting u = 0. Far from the sphere, all phys-

ical quantities tended to their unperturbed values: u = (0, 1) at the upstream (lower)

boundary, ∂u/∂z = 0 at the downstream (upper) boundary, and ρ′ = ∂p/∂n = 0 at both.

To improve accuracy near the sphere surface while simplifying the implementation of

boundary conditions, equations (3.1)–(3.3) were written in curvilinear coordinates (ξ, η)

and solved on a curvilinear grid (figure 1(b)), as described in Torres et al. (2000). The

external boundary of the grid was elliptic, with axes lengths of 80 (vertical) and 40 (hor-

izontal). The grid consisted of 65×91 or 195×91 (ξ × η) mesh points, non-uniformly dis-

tributed with a higher mesh density near the sphere and a smallest grid size of 8.2×10−4.

The grid ensured that the density boundary layer δρ = O((RePr)−1/2) was accurately

resolved: for Pr = 700 and Re = 1, δρ = 0.038 was covered by 16 grid points. This also

ensured resolution of the momentum boundary layer, which was always thicker than the
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density boundary layer since Pr > 1.

For the small Reynolds number stratified regime investigated here, the GMRES (Gen-

eralized Minimal RESidual method) was found to be superior in solving the Poisson

equation for pressure (3.3) compared to the Successive Overrelaxation Method (Lar-

razábal et al. 2003) used in a previous version of the code (Torres et al. 2000). The

solution procedure was then as follows: given u and ρ at time t = n ∆t, p was obtained

from equation (3.3) using GMRES and substituted into equations (3.1) and (3.2). So-

lution of the latter two equations yielded updated values of u and ρ at t = (n + 1) ∆t.

Equations (3.1)–(3.3) constitute a time-dependent problem, but here we were interested

in steady solutions. Therefore, the cycle was repeated starting from a rest configuration

u = ρ′ = 0 until the convergence criterion |fn+1 − fn|max < 10−4 was satisfied, where f

represents any one of u, w, p or ρ. The time step was ∆t = 0.0025 or 0.0001 and steady

state was typically reached within t = 30. Extensive convergence tests on time step and

mesh size were carried out by Larrazábal et al. (2003).

The drag coefficient CS
D was computed as the sum of the pressure (CS

P ) and viscous

(CS
V ) drag coefficients:

CS
P = − 1

1
2ρU2πa2

∫
S

pn · j dS, (3.4)

CS
V =

1
1
2ρU2πa2

∫
S

µn ·
(
(∇u) + (∇u)T

)
· j dS, (3.5)

where n is the unit vector normal to the sphere surface S, positive outward. Drag co-

efficients were normalized by their homogeneous counterparts to obtain the normalized

drag coefficients CN
D , CN

P and CN
V .
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4. Results

We begin by reporting experimental results for particles released in homogeneous salt-

water solutions. Unless otherwise noted, all results are expressed in dimensionless form as

described in section 3.3. Using the measured terminal settling velocity U , CH
D was com-

puted from a balance of buoyancy and drag (equation 2.4, for CH
D instead of CS

D). This

was repeated for four fluid densities. Results are reported as a function of Re in figure 3

and compared to the prediction from equation (2.2). The good agreement validates our

procedure for measuring settling velocity, ensuring that drag coefficients can be reliably

determined. A validation of the numerical model was performed by computing CS
D for

various Re and Fr = 200. At this high value of Fr, stratification is unimportant and as

one would expect the calculated values of CS
D tend to CH

D (figure 3).

We proceeded to measure drag in a linearly stratified fluid and present results in terms

of the normalized drag coefficient CN
D . This is shown as a function of Fr−1 and Ri in fig-

ures 4(a,b), respectively. The choice of Fr−1 as the independent parameter is appropriate

at moderate Re (Torres et al. 2000; Higginson et al. 2003), while Ri is suggested by the

theoretical analysis of Zvirin & Chadwick (1974). Three important conclusions emerge.

The first is that CN
D > 1, demonstrating that a linear stratification does increase drag at

small Re; indeed, our experiments reveal that stratified drag can be more than three-fold

greater than its homogeneous counterpart. Secondly, CN
D increases monotonically with

both Fr−1 and Ri, showing that stronger stratifications result in larger drag. Thirdly, the

data collapses considerably better when plotted against Ri than against Fr−1, implying

that Re and Fr affect CN
D only through the combination Ri = Re/Fr2 at small Re. We

found a fit of the form 1 + α Riq appropriate to describe the dependence of CN
D on Ri,
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with the best fit for the experiments given by CN
D = 1 + 1.95 Ri0.62.

Drag coefficients were also computed numerically. We performed two sets of simula-

tions (Re = 0.05 and 0.5) at Pr = 700 to model a salt stratification (the data set for

Pr = 7 represents a temperature stratification and will be discussed later). Numerical

results (figure 4) confirm that CN
D > 1 and there is good quantitative agreement with

the experiments. Furthermore, numerical results likewise reveal the clear dependence of

CN
D on Ri by successfully collapsing data for two different Re. A best fit to the combined

numerical data for Re = 0.05 and 0.5 yields CN
D = 1 + 1.91 Ri0.41 (CN

D − 1 ∼ Ri0.39 for

Re = 0.05; CN
D −1 ∼ Ri0.43 for Re = 0.5). This is a slightly weaker dependence compared

to the experiments, but the difference in CN
D predicted from the two fits is < 15% over

the experimental parameter range.

Numerical results further reveal that both the pressure and viscous components of

drag increase with Ri (figures 4(c,d)). For Ri = 0, CN
P = 1/3 and CN

V = 2/3, as expected

for Stokes flow. The scaling of CN
P − 1/3 and CN

V − 2/3 with Ri is similar to CN
D − 1,

with a slightly larger exponent for CN
P . To understand the origin of pressure and viscous

drag increase, in figures 5(a,b) we plot the pressure and the vertical component of the

tangential shear stress along the surface of the sphere, respectively, corresponding to the

integrands in equations (3.4)–(3.5). An increase in Ri induces a larger front-aft pressure

difference (figure 5(a)), resulting in increased pressure drag, and enhances shear stresses,

particularly at the equator (figure 5(b)), accounting for the larger viscous drag.

Further detail on the nature of the wake behind a settling sphere was obtained using

Microscale Synthetic Schlieren. Figure 6 shows a qualitative Synthetic Schlieren image
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for an a = 390 µm sphere settling in a stratification with N = 1.31 s−1 (corresponding to

Re = 2.1, Fr = 10.2, Ri = 0.02). As described by Yick et al. (2006), due to the limited

depth of focus of the microscope, the position of the sphere is known to within one sphere

radius. Several features of the wake are immediately apparent. It is symmetric about the

central axis, as one would expect from radial symmetry, and is of considerable length

(> 22 mm), revealing that the stratification remains perturbed far downstream of the

sphere. The wake structure becomes more complex near its end, in the form of a pair of

faint white lobes.

Quantitative processing of this data yields the density field in the wake of the sphere

(figure 7(a)). Isopycnals are dragged down by as much as five sphere radii. Vertical isopy-

cnal displacement diminishes with distance z downstream of the sphere, as isopycnals

return to their neutral buoyancy position. As the viscous force resisting this retreat de-

creases with both z and r, retreating isopycnals overshoot on the rim of the wake at

z ∼ 20, creating a toroidal structure akin to that of a laminar buoyant jet (Tenner &

Gebhart 1971). This mild overshoot, which is responsible for the white lobes in figure 6,

is locally damped by viscosity and does not trigger internal waves.

Several key features of the wake are confirmed by the numerical density field, shown

in figure 7(b). The wake length is similar for experiments and numerics, and in both

cases isopycnals overshoot without radiating internal waves. The deformation of numer-

ical isopycnals is somewhat sharper compared to experiments, for reasons that we could

not determine. Several possibilities were tested and discounted, including the resolution

of the camera, random dot pattern, Schlieren processing and numerical grid. It is inter-

esting, however, that drag coefficients are in good agreement (figure 4). Added drag will
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later be rationalized in terms of the buoyancy of fluid in the immediate vicinity of the

sphere. In this region, isopycnal distortion in experiments and numerics is comparable.

Taking a closer look at the numerical results in the vicinity of the sphere, we see

that isopycnals are strongly compressed in front of the sphere (figure 8(a)), resulting in

an increased pressure gradient (figure 5(a)) and hence pressure drag (figure 4(c)). As

the sphere descends, isopycnals make way and tilt (figure 8(b)), causing baroclinic gen-

eration of vorticity, which enhances shear stresses (figure 5(b)) and thus viscous drag

(figure 4(d)). At the rear, isopycnals detach from the sphere, however without gener-

ating the buoyant jet (figure 8(c)) characteristic of higher Re (Torres et al. 2000). On

the larger scale, simulations predict that wake length and isopycnal deflection decrease

with increasing Ri (figure 9), since enhanced buoyancy more effectively opposes vertical

motion and more rapidly restores isopycnals. These features of the numerical solution

are supported by further experimental observations. As shown in figure 10(a), the only

region where Synthetic Schlieren detected vertical pattern displacements (corresponding

to vertical density gradients) was ahead of the sphere, in contrast to the strong horizontal

pattern displacements that were detected in the wake (figure 10(b)). Furthermore, the

length of the wake and the magnitude of isopycnal distortion both clearly diminished as

Ri increased (figure 10(b,c)).

5. Discussion

The primary result of this study is that stratification increases hydrodynamic drag on

a sphere settling at small Re: both experiments and numerical simulations revealed that

CN
D > 1. For a given stratifying agent (i.e. Pr), the drag increase is best characterized

by Ri = Re/Fr2. The latter arises naturally when considering the relative importance of



Enhanced Drag of a Sphere Settling in a Stratified Fluid 17

buoyancy and viscous forces, which can be expressed as
∫

VF
g ∆ρ dV/

∫
SF

µ(∂w/∂r) dS,

where VF and SF are the volume and surface area of a fluid element; assuming that

lengths scale with a, speeds with U and density contrast with a (dρ/dz), this ratio scales

like Ri. The experimentally and numerically determined drag coefficients are in good

quantitative agreement (figure 4(b)), reaching up to 3.4 times the homogeneous value

for 0 < Ri < 2. To further increase Ri while maintaining Re small, N would have to be

increased beyond our maximum value of 2.92 s−1; such large values are rare in nature.

Considering both experimental and numerical results, our study suggests that the nor-

malized drag coefficient scales as CN
D − 1 ∼ Riq, where q = 0.51 ± 0.11, in contrast to

the theoretical prediction q = 1/3 for Ri << 1 (Zvirin & Chadwick 1974).

The observed added drag due to stratification at small Re complements earlier studies

at higher Re (Srdić-Mitrović et al. 1999; Torres et al. 2000; Higginson et al. 2003) and

it is worthwhile to assess whether previously proposed mechanisms can account for our

findings. For a linear stratification at 25 6 Re 6 100, Torres et al. (2000) found that

the increase in drag of a settling sphere was related to a rear buoyant jet; the current

numerical studies, however, reveal no sign of such a jet (figure 8(c)), consistent with

the increased importance of viscous forces, which prevent a rapid retreat of isopycnals.

For a step-wise stratification at 1.5 < Re < 15, Srdić-Mitrović et al. (1999) found that

the increased drag on a sphere was accounted for by the buoyancy in the entire wake

of dragged-down fluid. In our case, integration of the buoyancy over the entire wake in

figure 7(a) results in a force (13.0×10−8 N) far larger than the measured increase in drag

(1.5 × 10−8 N). That drag does not depend on the entire wake is further supported by

the numerical results in two manners. Firstly, two wakes can have significantly different

size (figure 11), hence buoyancy, and yet the same drag coefficient (figure 4). Secondly,
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a force balance on the wake that ignores the contribution of the sphere yields a scal-

ing argument that successfully predicts its width W . The balance between viscous and

buoyancy forces suggests (µU/W ) W 2 ∼ g∆ρW 3, where ∆ρ ∼ N2ρ0W/g and vertical

isopycnal deflections are assumed to also scale with W . This yields W/a ∼ Ri−1/3, which

is borne out by the numerical results in figure 13(a), where W was taken as the distance

from the axis of symmetry to the point where vertical isopycnal deflection decreased to

0.1a.

Instead, we propose that it is the buoyancy of a localized fluid region around the sphere

that determines the added drag. This is related to the work by Higginson et al. (2003)

at higher Re (∼ O(103)), where added drag on a rising grid of bars was found to derive

from the buoyancy of fluid in the drift volume. In our case, the fluid volume affecting

drag can be identified by considering the vertical velocity field w (figure 12(b)), which

reveals that the wake is composed of two distinct regions: a lower one surrounds the

sphere and descends at nearly its same speed (w ∼ −1), dragged down by viscous shear

forces; the upper one ascends slowly (w > 0), due to isopycnals retreating under the

effect of buoyancy. It is then reasonable to hypothesize that the buoyancy of the fluid

immediately adjacent to the sphere is responsible for the added drag, while the rest of

the wake is simply a remnant of the sphere’s passage.

Here we rationalize the added drag by a scaling argument based on the buoyancy

of a fluid region dragged down by the sphere. For clarity, a dimensional formulation

is adopted. Assuming a spherical shell of width δ, the volume of this region scales as

πa2δ, while its density contrast is ∆ρ = H dρ/dz, where H is the maximum distance an

isopycnal is dragged down. The normalized drag coefficient can then be written as the
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ratio of this buoyancy force and the homogeneous drag force,

CN
D − 1 ∼ πa2δg∆ρ

CH
D

1
2ρU2πa2

∼ 1
Fr2

1
CH

D

δ

a

H

a
, (5.1)

where δ/a and H/a are still to be determined.

We propose that δ ∼ (ν/N)1/2, the natural length scale in a viscous and buoyant flow

(Basak & Sarkar 2006; Blanchette et al. 2008), resulting in δ/a ∼ (Fr/Re)1/2. This was

indeed the scaling of the extent of the fluid shell around the sphere in our numerical

data (figure 13(b)), for which δ was operationally defined as the thickness of the region

where ∆ρ was > 5% of its maximum value, which occurred at the sphere surface. On the

other hand, despite considering several possibilities, we were unable to find an a priori

scaling for H. At higher Re (∼ O(103)), H/a ∼ Fr as a result of a balance between

kinetic and potential energy (Higginson et al. 2003), yet this is not applicable in our

regime where viscous dissipation is important. Hence, we resorted to an empirical scal-

ing, by computing H from simulations as the maximum isopycnal deflection immediately

upstream of the sphere (z = −a). Figure 13(c) shows that H/a ∼ Fr1/2, in line with

our earlier observation that isopycnal deflection decreases with increasing stratification.

The residual Re dependence in figure 13(c) is very weak (∼ Re1/10) and will be neglected.

With the aforementioned scalings, and using CH
D ∼ 1/Re (appropriate for small Re),

equation (5.1) reduces to CN
D − 1 ∼ Ri1/2. This compares favourably with our result

CN
D − 1 ∼ Riq, where q = 0.62 from experiments, q = 0.41 from numerics, for an average

of q = 0.51. These results suggest a new expression for the drag coefficient in a salt-

stratified ambient,

CS
D =

(
12
Re

+
6

1 +
√

2Re
+ 0.4

)
(1 + αRi1/2), (5.2)
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where α = 1.9 (α = 1.95 and 1.91 in experiments and numerics, respectively). This

rationalization of the added drag also applies to the moderate Re regime, where the

dragged-down region scales with the drift volume (∼ a3), H/a ∼ Fr (Higginson et al.

2003), and CH
D ∼ Re0; resulting in CN

D − 1 ∼ Fr−1, which is verified by analysis of the

data in Torres et al. (2000) and is in agreement with Higginson et al. (2003).

In general, the problem of a sphere settling through a stratified fluid further depends

on Pr. While our study focused on salt-stratifications (Pr = 700), the case of a ther-

mal stratification (Pr = 7) is also of relevance in aquatic environments. For this case,

simulations show a smaller increase in drag due to stratification (figure 4) and a weaker

dependence on Ri (q = 0.29). This can be rationalized by considering that stronger dif-

fusion more effectively counteracts the accumulation of buoyancy forces by more rapidly

smoothing out isopycnal deflections. This is shown in figure 14, which compares the wake

for Pr = 7, 100 and 700: isopycnal deflections decrease with Pr (see also figure 13(c))

and the wake becomes shorter and wider (see also figure 13(a)).

The observed added drag implies that a sphere settles more slowly in a stratified fluid

than predicted using homogeneous-fluid formulations. Figure 15(a) shows the experimen-

tal trajectory of an a = 196 µm sphere in a stratification with N = 1.69 s−1, compared

to its expected trajectory in a homogeneous fluid. The distance traveled over 100 s is

roughly half in the stratified case, and is predicted to within 10% by our drag coefficient

formulation (5.2). How important is this effect in natural stratified environments? Some

of the strongest aquatic stratifications are found in inlets, fjords and river outflows, where

freshwater overlying saltier water can result in N being as large as 0.2 s−1 (Farmer &

Armi 1999, figure 2A). While freshwater lakes can be nearly as strongly stratified due to
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temperature (Patterson et al. 1984; King et al. 1999), the corresponding Prandtl number

is much smaller and the influence of stratification therefore reduced. Heading further

out into the ocean, density gradients are generally weaker, reaching maximum values on

the order of N ∼ 0.02 s−1. The role of salt-stratifications was investigated by plotting

the ratio of stratified to homogeneous travel time (figure 15(b)); these were found by

integrating the settling speed U , determined numerically from equation (2.3) using the

stratified (equation 5.2) and homogeneous (equation 2.2) drag coefficients. This proce-

dure was repeated for a range of particle sizes up to a = 2500 µm and three values of

the density contrast ∆ρ = 1, 5 and 20 kg m−3, representative of biological matter. The

effect of stratification increases with particle size, as expected from the Ri dependence.

In the open ocean we predict the increase in settling time due to stratification is < 6%,

rising significantly to 66% for strongly stratified fjords and inlets. This suggests that the

effect of stratification on settling time needs to be accounted for in strongly stratified

natural water bodies. We expect this effect to be compounded by hindered settling due

to particle-particle interactions in particle clouds (Bush et al. 2003; Blanchette & Bush

2005).

6. Conclusions

We have presented a combined experimental and numerical investigation of the fluid

mechanics of a sphere settling in a linearly stratified fluid at small Reynolds numbers. This

study provides the first experimental evidence of stratification-induced enhanced drag in

a continuously stratified fluid at small Re, further supported by numerical simulations.

The increase in drag is governed by a single dimensionless parameter, the Richardson

number, expressing the relative importance of buoyancy and shear forces. The normal-

ized drag coefficient CN
D was found to scale like 1+1.9 Ri0.51, with a small discrepancy in
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the exponent (±0.1) between numerics and experiments. Microscale Synthetic Schlieren

revealed that a particle’s signature lingers long after it has passed, producing an extended

wake in which density is perturbed. Careful analysis of the flow and density fields showed

that only a minor portion of the wake is responsible for the added drag, enabling us to

rationalize observations via a scaling argument. The added drag decreases with Pr, as

diffusion increasingly counteracts buoyancy. This effect is relevant to strongly stratified

aquatic environments (e.g. inlets and fjords, and to a lesser extent the open ocean and

lakes), where it can enhance retention of biological material at density interfaces (MacIn-

tyre et al. 1995) and colonization of marine snow aggregates by microorganisms (Stocker

et al. 2008), ultimately affecting vertical fluxes of matter in biogeochemical cycles.
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Larrazábal, G., Torres, C.R. & Castillo, J. 2003 An efficient and robust algorithm for

2D stratified fluid flow calculations. Appl. Num. Math. 47, 493–502.

Leal, L.G. 1980 Particle motions in a viscous fluid. Ann. Rev. Fluid Mech. 12, 435–476.

Lofquist, K.E.B. & Purtell, L.P. 1984 Drag on a sphere moving horizontally through a

stratified liquid. J. Fluid Mech. 148, 271–284.

MacIntyre, S., Alldredge, A.L. & Gotschalk, C.C. 1995 Accumulation of marine snow

at density discontinuities in the water column. Limnol. Oceanogr. 40, 449–468.

Ochoa, J.L. & Van Woert, M.L. 1977 Flow visualization of boundary layer seperation in a

stratified fluid. Unpublished report, Scripps Insititution of Oceanography 28.

Oster, G. 1965 Density gradients. Sci. Am. 213, 70.

Patterson, J.C., Hamblin, P.F. & Imberger, J. 1984 Classification and dynamic simulation

of the vertical density structure of lakes. Limnol. Oceanogr. 29, 845–861.

Scase, M.M. & Dalziel, S.B. 2004 Internal wave fields and drag generated by a translating

body in a stratified fluid. J. Fluid Mech. 498, 289–313.

Smith, R.B. 1979 The influence of mountains on the atmosphere. Advances in Geophysics, Vol.

21. New York: Academic Press.

Smith, R.B. 1980 Linear theory of stratified hydrostatic flow past an isolated mountain. Tellus

32, 348–364.
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Figure captions

Figure 1. (a) Schematic of a sphere settling in a linearly stratified fluid. (b) The nu-

merical grid in the region close to the sphere.

Figure 2. (a) The settling velocity U versus depth z for ten replicate experiments (faint

lines), along with the mean (bold line), for a = 390 µm and N = 2.92 s−1. (b) The param-

eter regime explored experimentally, shown in terms of Re and Fr−1. Each experiment

is represented by a continuous curve, because a particle samples decreasing Re and Fr

as it settles into progressively denser fluid. Curves at larger Fr are shorter because in a

weaker stratification U (and thus Re and Fr) varies less over a given vertical window.

All experiments were conducted at Pr = 700 (salt stratification). Two sphere sizes were

used: a = 196 µm (experiments 1,2,3,5,6,9,10) and a = 390 µm (experiments 4,7,8,11).

Figure 3. The homogeneous drag coefficient CH
D measured experimentally (circles)

and computed numerically (triangles), compared with the prediction from equation (2.2)

(continuous line), as a function of Re.

Figure 4. The normalized drag coefficient CN
D as a function of Fr−1 for experiments

(solid blue lines) and numerical simulations (symbols). The bars represent upper and

lower bounds of experimental values. (b) CN
D as a function of Ri for experiments (solid

blue lines) and simulations (symbols). Dashed lines represent power law fits, performed

separately for the experiments and each set of simulations, and color-coded accordingly.

Inset: detail of CN
D − 1 vs. Ri in log-log scale. (c, d) The numerical pressure drag coeffi-

cient CN
P and viscous drag coefficient CN

V vs. Ri, along with best fit power laws (dashed

lines). In all panels, dotted lines represent the theoretical prediction for homogeneous
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Stokes flow (Ri = 0): CN
D = 1, CN

P = 1/3 and CN
V = 2/3.

Figure 5. (a) Pressure and (b) vertical component of the tangential shear stress, along

the surface of a settling sphere for Re = 0.05 and different Ri. Ri = 0.29, 0.43, 0.61,

0.84, 1.12, 1.45 from top to bottom in panel (a), and from bottom to top in panel (b).

θ = −π/2 is the front of the sphere (figure 1).

Figure 6. Qualitative Synthetic Schlieren visualization of the wake of an a = 390 µm

sphere for N = 1.31 s−1. The intensity is correlated with the magnitude of the density

perturbation gradient. The figure is a composite of two frames (top and bottom) and the

position of the sphere, added in postprocessing, is accurate to within one sphere radius.

Adapted from Yick et al. (2006).

Figure 7. Dimensionless density field ρ − ρ(0) in the wake of a settling sphere for

Ri = 0.02 (Re = 2.1, F r = 10.2) obtained from (a) Microscale Synthetic Schlieren and

(b) numerical simulation.

Figure 8. (a, b) Numerical isopycnal distortion at two locations around the sphere.

Colorbars show ρ − ρ(0). (c) Numerical velocity field behind the sphere. For all cases,

Ri = 0.29 (Re = 0.05, F r = 0.42).

Figure 9. Numerical density field ρ − ρ(0) in the wake of a settling sphere for (a)

Ri = 0.29 (Re = 0.05, F r = 0.42) and (b) Ri = 1.45 (Re = 0.05, F r = 0.19). Higher Ri

corresponds to a shorter wake and smaller isopycnal deflections.
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Figure 10. (a) Horizontal and (b,c) vertical pattern displacements generated by an

a = 390 µm settling sphere, detected using Microscale Synthetic Schlieren. Colorbar

units are in pixels. (a,b) N = 1.31 s−1 (Ri = 0.02, Re = 2.1, F r = 10.2); (c) N = 2.50

s−1 (Ri = 0.89, Re = 0.15, F r = 0.4). The position of the sphere, added in postprocess-

ing, is accurate to within one sphere radius. Note the different colorbar scale in (b) and

(c).

Figure 11. Numerical density field ρ−ρ(0) in the wake of a settling sphere for Ri = 0.43

obtained from (a) Re = 0.05, F r = 0.34 and (b) Re = 0.5, F r = 1.08. Note the strong

difference in the wake structure, except in the region closest to the sphere.

Figure 12. (a) The width of the wake W as a function of Ri−1/3. (b) The length scale

δ of the fluid region responsible for the added drag, as a function of (Fr/Re)1/2. (c) The

maximum isopycnal deflection H as a function of Fr1/2. W , δ and H were computed

from numerical simulations as described in the text and nondimensionalized by a.

Figure 13. (a) Density contrast ∆ρ and (b) vertical fluid velocity w in the wake of a

settling sphere for Ri = 0.29 (Re = 0.05, F r = 0.42). The long wake (panel a) comprises

two distinct regions (panel b): the lower one travels at a speed comparable to that of the

sphere (w ∼ −1).

Figure 14. Numerical density field ρ−ρ(0) for (a) Pr = 7, (b) Pr = 100, (c) Pr = 700.

In all panels, Ri = 1.25 (Re = 0.05, F r = 0.2).

Figure 15. (a) Trajectory of an a = 196 µm sphere settling in stratified fluid with
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N = 1.69 s−1, determined experimentally (solid line) and predicted using the stratified

drag coefficient from equation (5.2) (dashed line). Also shown is the trajectory of the

same particle assuming a locally homogeneous drag formulation, equation (2.2) (dotted

line). (b) The ratio of travel times computed using a stratified drag coefficient versus a

locally homogeneous one, as a function of particle size a, density contrast ∆ρ and strat-

ification N .
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Figure 10.
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Figure 12.
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Figure 15.


