MIT 20.180 Assignment 5 Spatial Programming

Released: 25 April 2006 Due: 5p 4 May 2006

Figure 1. Pattern of expression of eve, a transcriptional repressor, early during *Drosophila melanogaster* development. Image courtesy of http://www.sdbonline.org/fly/aimain/tile1.htm

Biological systems, both natural and engineered, can require the precise regulation of gene expression and biological activity in both space and time. For example, Figure 1 shows the spatial localization of the transcriptional regulator *even-skipped* (or *eve*) during the development of a fruit fly. In class, we've begun to explore the possibility of developing languages that would let us program spatiotemporal patterns. For example, Daniel Coore invented a "growing point language" for producing line-based patterns [http://www.swiss.csail.mit.edu/projects/amorphous/papers/coore-phdthesis.ps].

For the last 20.181 assignment you will:

- A. Write a pseudocode program that produces a given pattern.
- B. Visually depict (i.e., sketch) the operation / workings of three of the low-level commands needed to produce the pattern from A.

You are strongly encouraged to work on parts A and B of this assignment simultaneously.

A. (50%) Write a pseudocode program that produces a given pattern.

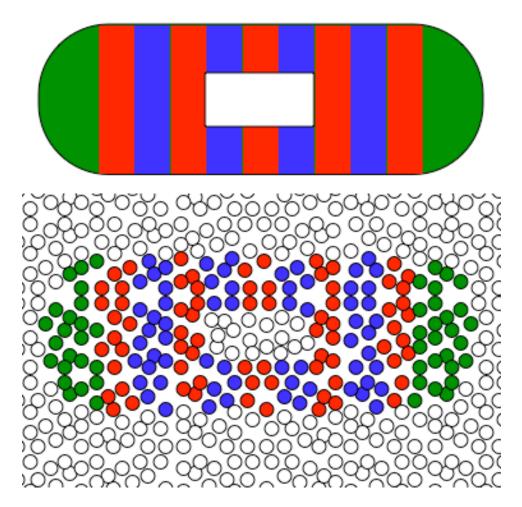
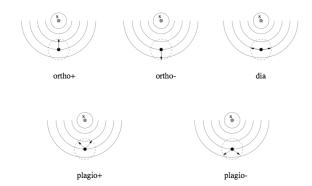


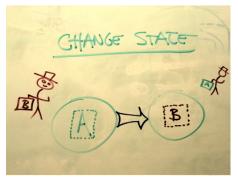
Figure 2. Write a program that automatically produces the given, idealized pattern (top) when the program executes across a field of randomly spaced, asynchronous cells (bottom).


Guidelines:

- (a) Each cell must run the same program.
- (b) If you want, you may use external conditions to establish gradients, initialize the entire field of cells, or begin pattern formation at one or more points simultaneously.
- (c) In your pseudocode, please use defined names of your own choosing to refer to cell state (e.g., color), actions (e.g., produce_signal), and intercellular signals (e.g., top_boundary).
- (d) Summarize in a list the total number of states, actions, and signals needed to produce this pattern.

B. (50%) Visually depict (i.e., sketch, draw, et cetera) the operation and/or workings of three of the low-level commands needed to produce the pattern from A.

Guidelines:


- (a) Use whatever media/medium is best for you (e.g., pencil and paper, an electronic drawing program). You can submit hard or electronic copies of your work.
- (b) In your depictions, attempt to explore and communicate how the low-level command works. Please see the examples below.
- (c) Your depictions can be "serious" or "playful," "realistic" or "fantastical," Whatever most helps you and others understand and describe what is happening.
- (d) You should depict three different low-level commands.

Tropisms. Taken from Figure 2-1, Daniel Coore (1999)

Tropisms. Drew Endy (2006)

Change of State. Drew Endy (2006)