Publications

Publication Highlights

CometChip enables high throughput screening of DNA double strand breaks. D. M. Weingeist, J. Ge, D. K. Wood, J. T. Mutamba, Q. Huang, E. A. Rowland, M. B. Yaffe, S. Floyd, and B. P. Engelward, Single-cell microarray enables high throughput evaluation of DNA double- strand breaks and DNA repair inhibitors, Cell Cycle, 12:907-915 (2013). News and Views by Nickoloff J.A., Assaying DNA double-strand break induction and repair as fast as a speeding comet, Cell Cycle, 12:1335-1336 (2013).

Imaging approaches for suppression of light-induced DNA damage. J. Ge, D. K. Wood, D. M. Weingeist, S. Prasongtanakig, P. Navasumrit, M. Ruchirawat, B.P. Engelward. Standard fluorescent imaging of live cells is highly genotoxic, Cytometry A, 83:552-560 (2013). Editorial by Tárnok A., Visualization can be harmful for live cells, Cytometry A., 83:521-522 (2013)

MIT study suggests that at low dose-rate, radiation poses little risk to DNA. In the news and on the MIT Homepage! (also featured by MIT as "Best of 2012") News of this study was dispersed to over 50 sites worldwide
W. Olipitz, D. Wiktor-Brown, J. Shuga, B. Pang, J. McFaline, P. Lonkar, A. Thomas, J. T. Mutamba, J. S. Greenberger, L. D. Samson, P. C. Dedon, J. C. Yanch, B. P. Engelward. Integrated molecular analysis indicates undetectable change in DNA damage in mice after continuous irradiation at ~ 400-fold natural background radiation. Environ Health Perspect. 120:1130-1136 (2012).

Novel technology for high throughput analysis of DNA damage In the news and on the MIT Homepage!
D. K. Wood, D. M. Weingeist, S. N. Bhatia and B. P. Engelward, Single cell trapping and DNA damage analysis using microwell arrays, Proc. Natl. Acad. Sci. USA, 107:10008-10013 (2010).

Burden of mutant cells is driven primarily by cell division in the pancreas In the news
D. M. Wiktor-Brown, H.-S. Kwon, Y. S. Nam, P. T. So, and B. P. Engelward, Novel integrated one- and two-photon imaging platform reveals extent of clonal expansion, Proc. Natl. Acad. Sci. U.S.A., 105:10314-10319 (2008).

Recombination mechanisms come to life with animations See Animations
Top 10 downloaded papers in DNA Repair for 2008-2011; Most highly cited article in 2012
T. Helleday, J. Lo, D. C. van Gent, and B. P. Engelward, DNA double-strand break repair: from mechanistic understanding to cancer treatment, DNA Repair, 6: 923-935 (2007).

Visualization of fluorescent recombinant cells reveals accumulation with age
D. M. Wiktor-Brown, C. A. Hendricks, W. Olipitz and B. P. Engelward, Age-dependent accumulation of recombinant cells in the mouse pancreas revealed by in situ fluorescence imaging, Proc. Natl. Acad. Sci. USA, 103:11862-11867 (2006).

Indirect induction of homologous recombination is transmissible
R. E. Rugo, K. H. Almeida, C. A. Hendricks, V. S. Jonnalagadda, and B. P. Engelward, A single acute exposure to a chemotherapeutic agent induces hyper-recombination in distantly descendant cells and in their neighbors, Oncogene, 24:5016-5025 (2005).

Chemical mechanisms of inflammation-induced sequence rearrangements
T. Kiziltepe, A. Yan, M. Dong, V. S. Jonnalagadda, P. C. Dedon, and B. P. Engelward, Delineation of the chemical pathways underlying nitric oxide-induced homologous recombination in mammalian cells, Chem. & Biol., 12: 357-369 (2005).

Fluorescence detection of recombination in vivo
C. A. Hendricks, Almeida, K. H., Stitt, M. S., Jonnalagadda, V. S., Rugo, R. E., Kerrison, G. F., and Engelward, B. P. Spontaneous mitotic homologous recombination at an enhanced yellow fluorescent protein (EYFP) cDNA direct repeat in transgenic mice, Proc. Natl. Acad. Sci. USA, 100: 6325-6330 (2003).

DNA repair enzymes can promote nitric-oxide-induced recombination
E. J. Spek, L. N. Vuong, T. Matsuguchi, M. G. Marinus, and B. P. Engelward, Nitric oxide induced homologous recombination in Escherichia coli is promoted by DNA glycosylases, J. Bacteriol., 184: 3501-3507 (2002).


 

Publications

J. Ge, D. K. Wood, D. M. Weingeist, S. Prasongtanakig, P. Navasumrit, M. Ruchirawat, B.P. Engelward. Standard fluorescent imaging of live cells is highly genotoxic, Cytometry A, 83:552-560 (2013).

D. M. Weingeist, J. Ge, D. K. Wood, J. T. Mutamba, Q. Huang, E. A. Rowland, M. B. Yaffe, S. Floyd, and B. Engelward. Single cell microarray enables high throughput evaluation of DNA double strand breaks and DNA repair inhibitors, Cell Cycle, 12:907-915(2013).

W. Olipitz, D. Wiktor-Brown, J. Shuga, B. Pang, J. McFaline, P. Lonkar, A. Thomas, J. T. Mutamba, J. S. Greenberger, L. D. Samson, P. C. Dedon, J. C. Yanch, B. P. Engelward. Integrated molecular analysis indicates undetectable change in DNA damage in mice after continuous irradiation at ~ 400-fold natural background radiation Environ Health Perspect. 120:1130-1136 (2012). PubMed

J. Yanch, B. Engelward. DNA damage after continuous irradiation: Yanch and Engelward respond. Environ Health Perspect. 120:a383-4 (2012). PubMed

N. Li, L. Yin, D. Thévenin, Y. Yoshiyuki, G. Limmon, J. Chen, V. T. K. Chow, D. M. Engelman, B. P. Engelward, Peptide targeting and imaging of damaged lung tissue in influenza-infected mice, Future Microbiology, 8:257-269 (2013).                                 

Y. Yamada, G. V. Limmon, D. Zheng, N. Li, L. Li, L. Yin, V. T. Chow, J. Chen, B. P. Engelward. Major shifts in the spatio-temporal distribution of lung antioxidant enzymes during influenza pneumonia. PLoS One 7:e31494 (2012). PubMed

J. Ge, D. Wood, D. Weingeist, S. N. Bhatia, B. P. Engelward, CometChip: single-cell microarray for high-throughput detection of DNA damage, Methods in Cell Biology, 112:247-267 (2013).

A. N. Moorthy, T. Narasaraju, P. Rai, R. Perumalsamy, K. B. Tan, S. Wang, B. Engelward and V. T. Chow. In vivo and in vitro studies on the roles of neutrophil extracellular traps during secondary pneumococcal pneumonia after primary pulmonary influenza infection,Front. Immunol., 4:56 (2013).

F. X. Ivan, K. S. Tan, M. C. Phoon, B. P. Engelward, R. E. Welsch, J. C. Rajapakse, V. T. Chow, Neutrophils infected with highly virulent influenza H3N2 virus exhibit augmented early cell death and rapid induction of type I interferon signaling pathways, Genomics, 2:101-112 (2012).

F. X. Ivan, J. C. Rajapakse, R. E. Welsch, S. G. Rozen, T. Narasaraju, G. M.Xiong, B. P. Engelward, V. T. Chow, Differential pulmonary transcriptomic profiles in murine lungs infected with low and highly virulent influenza H3N2 viruses reveal dysregulation of TREM1 signaling, cytokines, and chemokines. Funct. Integr. Genomics, 12:105-117 (2012). PubMed

M. W. Chao, M. Y. Kim, W. Ye, J. Ge, L. J. Trudel, C. L. Belanger, P. L. Skipper, B. P. Engelward, S. R. Tannenbaum, G. N. Wogan. Genotoxicity of 2,6- and 3,5-dimethylaniline in cultured Mammalian cells: the role of reactive oxygen species. Toxicol Sci. 130(1):48-59 (2012). PubMed

R. Rugo, J. T. Mutamba, T. Yee, R. Chaillet, J. Greenberger, and B. P. Engelward, Cell memory of a genotoxic insult is mediated by methyltransfereases, Oncogene, 30:751-756 (2011). PubMed PDF

D. M. Wiktor-Brown, M. R. Sukup-Jackson MR, S. A. Fakhraldeen SA, C. A. Hendricks CA, B. P. Engelward. p53 null fluorescent yellow direct repeat (FYDR) mice have normal levels of homologous recombination. DNA Repair (Amst).10:1294-1299 (2011). PubMed

J. T. Mutamba, D. Svilar, S. Prasongtanakii, X. H. Wang, Y. C. Lin, P. C. Dedon, R. W. Sobol, B. P. Engelward. XRCC1 and base excision repair balance in response to nitric oxide. DNA Repair (Amst) 10:1282-1293 (2011). PubMed

D. K. Wood, D. M. Weingeist, Y. Wu, S. N. Bhatia and B. P. Engelward, Single cell trapping and DNA damage an alysis using microwell arrays, Proc. Natl. Acad. Sci. USA, 107:10008-10013 (2010). PubMed PDF

B. P. Engelward, The flap about ATM & MRE11. Cell Cycle. 9:3148-3149. (2010). PubMed

W. Olipitz, S. Hembrador, M. Davidson, J. C. Yanch, and B. P. Engelward, Development and characterization of a novel variable low-dose rate irradiator for in vivo mouse studies, Health Phys. J., 98:727-734 (2010) PubMed PDF

Y. Niu, H. Wang, D. M. Wiktor-Brown, R. Rugo, H. Shen, S. Huq, B. P. Engelward, M. Epperly, and J. S. Greenberger, Irradiated esophageal cells are protected from radiation-induced recombination by MnSOD gene therapy, Rad. Research, 173: 453-461 (2010). PubMed PDF

M. W. Epperly, R. Rugo, S. Cao, H. Wang, D. Franicola, J. P. Goff, H. Shen, X. Zhang, D. M. Wiktor-Brown, B. Engelward, and J. Greenberger, Aging effects on hematopoietic and stromal cells in long-term bone marrow cultures derived from fluorescent-yellow direct repeat (FYDR) mice, In Vivo 23:669-677 (2009). PubMed

Gaige TA, Kwon HS, Dai G, Cabral VC, Wang R, Nam YS, Engelward BP, Wedeen VJ, So PT, Gilbert RJ. Multiscale structural analysis of mouse lingual myoarchitecture employing diffusion spectrum magnetic resonance imaging and multiphoton microscopy. J Biomed Opt., 13:6 (2009) PubMed PDF

Kwon HS, Nam YS, Wiktor-Brown DM, Engelward BP. Quantitative morphometric measurements using site selective image cytometry of intact tissue. J. R. Soc. Interface, 6 Suppl 1:S45-57 (2009) PubMed PDF

Wiktor-Brown DM, Kwon HS, Nam YS, So PT, Engelward BP. Integrated one- and two-photon imaging platform reveals clonal expansion as a major driver of mutation load. Proc Natl Acad Sci U S A. 105 (2008) PubMed PDF

Wiktor-Brown DM, Olipitz W, Hendricks CA, Rugo RE, Engelward BP. Tissue specific differences in the accumulation of sequence rearrangements with age. DNA Repair, 7:5 694-703 (2008) PubMed PDF

Kim KH, Ragan T, Previte MJR, Bahlmann K, Harley BA, Almeida KH, Stitt MS, Hendricks CA, Wiktor-Brown D, Engelward BP, So PT. Three-dimensional tissue cytometer based on high-speed multiphoton microscopy. Cytometry Part A, 71A:12 991-1002 (2007) PubMed PDF

Helleday T, Lo J, van Gent DC, Engelward BP. DNA double-strand break repair: From mechanistic understanding to cancer treatment. DNA Repair (Amst), 6: 923 (2007) PubMed PDF

Engelward BP, Roberts RJ. Open access to research is in the public interest. PLoS Biol. 5:e48 (2007) PubMed PDF

Wiktor-Brown DM, Hendricks CA, Olipitz W, Rogers AB, Engelward BP. Applications of fluorescence for detecting rare sequence rearrangements in vivo. Cell Cycle. 5:2715-9 (2006) PubMed PDF

Wiktor-Brown DM, Hendricks CA, Olipitz W, Engelward BP. Age-dependent accumulation of recombinant cells in the mouse pancreas revealed by in situ fluorescence imaging. Proc Natl Acad Sci U S A. 103: 11862-7 (2006). PubMed PDF

Nowosielska A, Smith SA, Engelward BP, Marinus MG. Homologous recombination prevents methylation-induced toxicity in Escherichia coli. Nucleic Acids Res. 34: 2258-2268 (2006). PubMed PDF

Li CQ, Pang B, Kiziltepe T, Trudel LJ, Engelward BP, Dedon PC, Wogan GN. Threshold effects of nitric oxide-induced toxicity and cellular responses in wild-type and p53-null human lymphoblastoid cells. Chem Res Toxicol. 19: 399-406 (2006). PubMed PDF

Koturbash I, Rugo RE, Hendricks CA, Loree J, Thibault B, Kutanzi K, Pogribny I, Yanch JC, Engelward BP, Kovalchuk O. Irradiation induces DNA damage and modulates epigenetic effectors in distant bystander tissue in vivo. Oncogene. (2006) PubMed PDF

R. E. Rugo, K. H. Almeida, C. A. Hendricks, V. S. Jonnalagadda, and B. P. Engelward, A single acute exposure to a chemotherapeutic agent induces hyper-recombination in distantly descendant cells and in their neighbors, Oncogene. 24:5016-25 (2005). PubMed PDF

V. S. Jonnalagadda, T. Matsuguchi, and B. P. Engelward, Interstrand crosslink-induced homologous recombination carries an increased risk of deletions and insertions, DNA Repair. 4:594-605 (2005). PubMed PDF

T. Kiziltepe, A. Yan, M. Dong, V. S. Jonnalagadda, P. C. Dedon, and B. P. Engelward, Delineation of the chemical pathways underlying nitric oxide-induced homologous recombination in mammalian cells, Chem Biol. 12:357-69 (2005). PubMed PDF

A. J. Ham,  B. P. Engelward, H. Koc, R. Sangaiah, L. B. Meira, L. D. Samson, and J. A. Swenberg, New immunoaffinity-LC-MS/MS methodology reveals that Aag null mice are deficient in their ability to clear 1,N6-etheno-deoxyadenosine DNA lesions from lung and liver in vivo, DNA Repair, 3:257-265 (2004).

O. Kovalchuk, C. A. Hendricks, S. Cassie, A. J. Engelward, and B. P. Engelward, In vivo recombination after chronic damage exposure falls to below spontaneous levels in Recombomice. Mol. Cancer Res. 2: 567-573 (2004). PubMed PDF

C. A. Hendricks and B. P. Engelward, Recombomice: The past, present, and future of recombination-detection in mice, DNA Repair, 3: 1255-1261 (2004). PubMed PDF

R.W. Sobol, M. Kartalou, K.H. Almeida, D. F. Joyce, B. P. Engelward, J. K. Horton, R. Prasad, L. D. Samson, and S. H. Wilson, Base excision repair intermediates induce p53 independent cytotoxic and genotoxic responses, J. Biol. Chem., 278: 39951-39959 (2003).

C. A. Hendricks, K. H. Almeida, M. S. Stitt, V. S. Jonnalagadda, R. E. Rugo, G. F. Kerrison, and B. P. Engelward, Spontaneous mitotic homologous recombination at an enhanced yellow fluorescent protein (EYFP) cDNA direct repeat in transgenic mice, Proc. Natl. Acad. Sci. USA, 100:6325-6330 (2003). PubMed PDF

B. Plosky, L. Samson, B. P. Engelward, B. Gold, B. Schlaena, T. Millasa, M. Magnottia, J. Schor, and D. A. Scicchitan, Base excision repair and nucleotide excision repair contribute to the removal of N-methylpurines from active genes, DNA Repair, 1: 683-696 (2002).

E. J. Spek, L. N. Vuong, T. Matsuguchi, M. G. Marinus, and B. P. Engelward, Nitric oxide induced homologous recombination in Escherichia coli is promoted by DNA glycosylases, J. Bacteriol., 184:3501-3507 (2002). PubMed PDF

C. A. Hendricks, M. Razlog, T. Matsuguchi, A. Goyal, A. L. Brock, and B. P. Engelward, The S. cerevisiae Mag1 3-methyladenine DNA glycosylase modulates susceptibility to homologous recombination, DNA Repair 1:645-659 (2002). PubMed PDF

E. J. Spek, T. L. Wright, M. S. Stitt, N. R. Taghizadeh, S. R. Tannenbaum, M. G. Marinus, and B. P. Engelward. Recombinational Repair is Critical for the Survival of Escherichia coli Exposed to Nitric Oxide, J. Bacteriol., 183:131-138 (2001). PubMed PDF

S. Smith and B. P. Engelward. In vivo Repair of Methylation Damage in Aag 3-Methyladenine DNA Glycosylase Null Mouse Cells, Nucleic Acids Res., 28:3294-3300 (2000). PubMed PDF

B. J. Glassner, G. Weeda, J. M. Allan, J. L. Broekhof, N. H. Carls, I. Donker, B. P. Engelward, R. J. Hampson, R. Hersmus, M. J. Hickman, R. B. Roth, H. B. Warren, M. M. Wu, J. H. Hoeijmakers, L. D. Samson, DNA repair methyltransferase (Mgmt) knockout mice are sensitive to the lethal effects of chemotherapeutic alkylating agents, Mutagenesis, 14:339-347 (1999). PubMed PDF

B. P. Engelward, J. M. Allan, A. J. Dreslin, J. D. Kelly, M. M. Wu, B. Gold, and L. D. Samson, A chemical and genetic approach together define the biological consequences of 3-methyladenine lesions in the mammalian genome, J. Biol. Chem., 273: 5412-5418 (1998). PubMed PDF

J. M. Allan, B. P. Engelward, A. J. Dreslin, M. D. Wyatt, M. Tomasz, and L. D. Samson, Mammalian 3-methyladenine DNA glycosylase protects against the toxicity and clastogenicity of certain chemotherapeutic DNA cross-linking agents, Cancer Res., 58: 3965-3973 (1998). PubMed

D. M. Wilson, III, B. P. Engelward, and L. Samson. Prokaryotic base excision repair, in J. A. Nickoloff and M. F. Hoekstra (eds.), DNA Damage and Repair: Biochemistry, Genetics, and Cell Biology, Humana Press, Inc., Totowa, NJ, Vol. I, pp. 29-64 (1998).

H. Jacobs, Y. Fukita, G. T. J. van der Horst, J. de Boer, G. Weeda, J. Essers, N. de Wind, B. P. Engelward, L. Samson, S. Verbeek, J. M. de Murcia, G. de Murcia, H. te Riele, and K. Rajewsky. Hypermutation of immunoglobulin genes in memory B cells of DNA repair-deficient mice, J. Exp. Medicine, 187: 1735-1743 (1998). PubMed PDF

B. P. Engelward, G. Weeda, M.D. Wyatt, J. L. M. Broekhof, J. de Wit, I. Donker, J. M. Allan, B. Gold, J. H. J. Hoeijmakers, and L. D. Samson. Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase, Proc. Natl. Acad. Sci. USA, 94: 13087-13092 (1997). PubMed PDF

B. P. Engelward, A. Dreslin, J. Christensen, D. Huszar, C. Kurahara, and L. Samson, Repair deficient 3-methyladenine DNA glycosylase homozygous mutant mouse cells have increased sensitivity to alkylation induced chromosome damage and cell killing, EMBO J., 15, 945-952 (1996). PubMed PDF

Z. Deng, K. Johnson, B. P. Engelward, S. Lane, D. F. Callen, L. D. Samson, M. T. Davisson, M. J. Siciliano, New regions of conserved synteny and linkage between human-chromosome 16P12-P13 and mouse chromosome-16 and chromosome 11, Cytogen. Cell Genet. 68: 180 (1995).

B. P. Engelward, M. S. Boosalis, B. J. Chen, Z. Deng, M. J. Siciliano, and LD. Samson, Cloning and characterization of a mouse 3-methyladenine/7-methylguanine/3-methylguanine DNA glycosylase cDNA whose gene maps to chromosome 11, Carcinogenesis, 14, 175-181 (1993). PubMed

T. A. Steitz, L. Beese, B. Engelman, and P. Freemont, and J. Warwicker. Structural studies of three DNA binding proteins: catabolite gene activator protein, resolvase, and the Klenow fragment of DNA polymerase I, NATO ASI, Ser., Ser. A, 137, 185-189 (1987).

J. Warwicker, B. P. Engelman, and T. A. Steitz, Electrostatic calculations and model-building suggest that DNA bound to CAP is sharply bent, Proteins, 2, 283-289 (1987).