Interdisciplinary Product Design Education

STEVEN D. EPPINGER, CHARLES H. FINE, AND KARL T. ULRICH

Abstract—International competition has increased the demands on firms' product design functions. Development teams are expected to create superior products faster than ever. Educational programs must respond to this need by training design professionals who can develop world-class products. This article presents an approach to experiential education which has succeeded at Massachusetts Institute of Technology (MIT) in motivating both engineering and management students to orient their academic studies and career plans towards design activities. Our course emphasizes that product development is an interdisciplinary function requiring skills that span traditional departmental boundaries.

INTRODUCTION AND BACKGROUND

The world of product design and development has become increasingly competitive, and the traditional university approach to engineering and management education must be upgraded to prepare design professionals to make rapid and significant contributions in this new environment. In this paper, we consider the demands of modern design practice in order to specify a model for educating design professionals. In the introduction we describe the motivation for a new way of teaching design, and outline some of the difficulties in meeting this challenge. The remainder of the paper describes a course that we teach at MIT which addresses some of the issues we raise. This paper does not report on results of a research project, but rather was written as a way of distributing the results of our experience in product design education to educators and practitioners.

The Changing World of Product Design and Development

The world of product design is becoming more competitive. Currently, U.S. automobile manufacturers design new vehicles with...
an average lead time of 62 months, while the lead time for Japanese firms is only 43 months [4]. In 1978, tablobject copiers had manufacturing costs of $1500. Today, copiers with similar performance characteristics can be made for $200 [6]. In contrast to a decade ago, customers now expect television sets that never require adjustment or repair over a 10 year lifetime. These differences are not only the result of new technology and movement along the product life cycle, but are also the result of improved design and manufacturing practices by a set of world-class firms. Several companies have recognized the importance of interdisciplinary skills and cross-functional teams [3]. Other firms are simply watching design methodology evolve.

As educators, our responsibility is to train design professionals that can participate in and lead these product development teams. As researchers, our goal is to understand the factors that lead to design success and quality among world-class firms, and to provide tools and insight for further improvement. In our classrooms, as in our industrial community, we must foster the discussion of the engineering and management issues relating to product development.

Educational Needs

The attributes of design professionals that make them valuable participants in product development teams—interdisciplinary skills in engineering and management, the ability to work effectively with team members, and the ability to generate novel ideas—are usually acquired only incidentally in university programs in engineering and management. This is primarily because the traditional engineering and management curricula are not structured to develop these attributes; instead they develop the skills necessary to analyze problems in very specific situations. Our challenges as university faculty involved in design education are 1) to attract, excite, and motivate the very best students to pursue careers in design; 2) to educate design professionals that understand both the human and technical dimensions of product development; and 3) to teach fundamental material from several relevant, but diverse, disciplines.

Universities are organized into schools and departments. These departmental boundaries usually define a shared methodological approach to problem solving in a particular domain—mechanical engineers solve problems involving the transfer of materials, forces, and energy using the tools of engineering science; computer scientists solve information processing problems using the tools of mathematics; and behavioral scientists investigate questions of human interaction using the tools of psychology and sociology. This decomposition is an effective way to build a community of people that share common interests, and it provides a convenient organizational scheme for educating students. Unfortunately, just as functional organization schemes in industry make product development difficult [1], the departmental framework in academia makes design education difficult.

The activity of designing products requires basic skills in marketing, engineering analysis, process technology, manufacturing management, organizational behavior, and industrial design. These skills must be augmented by an ability to synthesize and organize. In order to properly educate design professionals who will create world-class products, faculty from diverse disciplines must work together in ways that are unfamiliar within the organization of the university.

Of the leading mechanical engineering departments in the country, only a few have graduate courses that are intended to prepare students to develop new products. Most existing design courses in North American mechanical engineering departments focus on the design of capital equipment and the use of machine elements, but rarely deal with the design of high-volume discrete goods like consumer appliances and automobiles. Rabins [8] articulates this deficiency and the need for change.)

Many management schools in the United States offer courses in product development; but most are focused primarily on marketing issues and do not treat the important dimensions of product design and manufacturing. Boston University, a notable exception, offers a course on product design and operations strategy, where management students study the relationships between design and manufacturing strategy, using both industry projects and written cases. Our course attempts to integrate these management aspects both with the technological dimensions of product design and manufacturing and with material on teamwork and group problem solving.

Most industrial design departments offer courses in product development. Although these courses often cover some technical and managerial topics such as materials selection and marketing, their focus is on the ergonomic and aesthetic dimensions of product development.

Interdisciplinary Programs

We are familiar with efforts by faculty at a few other universities to address some of the concerns we have expressed. Although there are undoubtedly others, we know of interdisciplinary design courses at Stanford University, the University of Michigan, and Carnegie-Mellon University, in addition to a few existing courses at MIT. Knowledge of these programs was useful to us in defining our interdisciplinary design course. While each school has taken a slightly different approach, these programs and ours share two very important characteristics: 1) they take a multi-disciplinary approach using students from several departments; and 2) they use a project-based team experience as the central focus for learning.

At Carnegie-Mellon University and at the University of Michigan, faculty from the management, engineering, and arts schools have teamed up to teach product design. This method attracts students from all three disciplines who approach their design projects with very different skills and objectives. The results include realistic working prototypes of new products.

Stanford University has a number of interdisciplinary courses in product design offered through the mechanical engineering department. These are project-based courses emphasizing a range of topics from design for manufacturability to electronic technology and human factors. Many of the classes have students working with industrial companies to design products specifically for their operations.

History of MIT Engineering School/Management School Design Course

In 1984, one of us (Fine) from the MIT Sloan School of Management collaborated with Professor Warren Seering of the MIT Department of Mechanical Engineering to coordinate joint design projects between the schools of management and engineering. As a result, six management students began product-redesign Master's theses in 1984, that were augmented by the engineering efforts of mechanical engineering graduate students as part of a short module in Seering's advanced engineering design projects course. During this six-week period, graduate students in engineering and in management worked together to address product-problems in local companies. Basically, the engineering students provided technical support to the management students who were writing theses about product redesign. The format was continued the next time Seering's course was taught, in 1987.

While most of the projects were successful, as judged by the industry clients, we observed a sharp distinction between the aims of the management and engineering students. We learned in this
experiment that all of the students were not similarly motivated, as they should be in a product development team. In our 1988 version of the course, for all of the students, the course projects formed the basis of theses required for graduation.

Our Approach

Beginning the 1988–89 academic year, we have offered a course on product design in the context of manufacturing firms. With our collective experience in economic models of manufacturing, technology and quality improvement, manufacturing strategy, manufacturing automation, computer-aided design, and design theory, we were interested in combining our different educational and research perspectives to meet an educational need. The central message of this course thus became that world-class design requires: 1) considering the manufacturing issues early in the design process; 2) collecting opinions and views from team members representing various disciplines; 3) evaluating the competition through benchmarking; and 4) continuous improvement through product and process changes.

In order to gather an interdisciplinary group of students, we recruit from the second-year class of MIT's Sloan Master's program and the senior class in the Department of Mechanical Engineering. In the fall term, we schedule lectures and workshops for the students, we group students into teams, and we match student teams with product redesign projects at local companies. Although we hold no formal class meetings in the spring, the students continue to meet in their project groups, with their industrial sponsors, and with the faculty members supervising their project. The project teams present final reports and, in some cases, engineering drawings and hardware, to their sponsors. Each student writes a Bachelor's or Master's thesis, which is due at the end of the spring semester.

This course requires significant amounts of organizational effort, primarily because we drew upon varied resources to achieve comprehensive coverage of the areas we consider relevant to design. In addition to our own lectures on topics such as fabrication techniques, engineering materials, and cost accounting, guest lecturers give presentations on subjects such as teamwork and team building, consulting skills, and design theory and methodology. Only about half of the class meetings were used for lectures. The remaining sessions are conducted in laboratory or workshop mode, where students work in teams on their projects or on hardware exercises used to illustrate certain design concepts.

We divide our class into teams, each with one or two management students and up to four engineering students. For each student, his/her portion of the project forms the basis for the (Master's or Bachelor's) thesis required for graduation. In previous years, management students used this project for the thesis, while engineering students received only course credit. This format was problematic because teams had members who differed widely on the amount of effort they were willing to contribute. With our new requirement that all participating students use the course project for their thesis, students are highly motivated and willing to invest significant time in the work. However, the teams display less unity of purpose in the second semester, because each student ultimately has to write an individual thesis.

Each project involves the redesign of an existing product, rather than a clean-sheet design of a new product. Experience suggests that the latter causes students to focus primarily on concept generation and proof, excluding the important marketing and manufacturing issues. Redesign provides ample technical challenges and opportunities while pushing students to keep the business issues in the foreground.

We match each of the student groups to a local industrial sponsor which provides the specific product to be redesigned. The student teams act as design consultants to their sponsors, who in turn agree to make data and personnel available to the students. As initially presented to the students, projects are outlined only in broad terms; the student teams define clearly the problems on which they will work, as well as the components to be tackled by each team member. In approaching their problems, the student teams first conduct background research into the clients' markets and products. They are then asked to write problem statements that identify their sponsors' needs and motivations for redesign. Once specific problems are defined, we challenge the teams to find ways they can contribute to the ongoing efforts of these companies. After participating in these steps, the students are well positioned to propose thesis topics. Each team identifies the individual thesis projects that collectively meet the team's common goals.

Design Project Examples

In this section, we illustrate the scope of the student experiences. We describe each of the products that were redesigned in one year's class, and list some of the individual thesis projects.

Medical Equipment Cart

A local instrument manufacturer produces complex equipment used for medical diagnosis. One component of their system is the cart that carries the instrumentation through a hospital or clinic. The manufacturer originally designed the cart early in the development of the instrument system. Since then, the cart design has evolved to meet the changing requirements of the medical equipment system, but has never been carefully evaluated for cost. (The company has placed a great deal of engineering effort on the development of the instrumentation, but not on the development of the cart on which it rides.) The student team was asked to reduce the manufacturing cost of the cart by 25%. Thesis work related to this project included:

- combine similar components in the design to reduce the number of different parts required for the assembly;
- investigate the use of alternative fastening technologies to eliminate some parts and reduce assembly time;
- redesign the product to reduce the materials cost.

Industrial Camera

A manufacturer of photographic equipment markets an industrial camera as a component for OEM's to build into larger products. This sponsor was preparing to offer an improved product at the time of their patent expiration, to discourage foreign competition. The client company had a group of engineers working to redesign this product, and was very interested to see what ideas a group of MIT students could contribute. Thesis work related to this project included:

- design a new electrical switch and timer for improved reliability of the product;
- calculate (estimate) the cost of poor quality to the consumer and to the manufacturer;
- evaluate the client's use of design as a strategic competitive tool.

Pressure Relief Valves

A local valve company offers an extensive selection of pressure-relief valves; however, it feels that its market position would be stronger if it could offer a more limited selection of better-performing valves. The smaller product line would allow the production of larger quantities of each valve. The students worked to improve the product performance by combining the best characteristics of many valves into one superior design. Thesis work related to this
project included:
- develop a fluid flow model to predict certain aspects of valve performance;
- combine the best features of two different designs into one new design;
- develop a mathematical model which will show the relationships between design parameters and product performance.

Baby Toy

A baby products manufacturer has safety and cost as its greatest concerns. One of their best-selling infant products is a soft plastic, water-filled toy with floating trinkets inside. The students were asked to redesign the toy to alleviate the false consumer perception that the small objects may come out of the toy. Thesis work related to this project included:
- develop a new manufacturing process technology that eliminates seams in a molded assembly;
- analyze the firm's marketing strategy and pricing policy;
- design and build a machine to test finished products for a particularly important aspect of quality.

DISCUSSION

The amount of time required by a company to bring a product from concept to market is a key correlate of industrial success. Success in the time-to-market domain seems to require effective teamwork both within and among the management and engineering ranks. The principal educational goal of our course is to teach management and engineering students how to work in teams and how to draw upon their different educations and experiences to efficiently bring high-quality, low-cost products to market quickly. On the basis of our own observations, we believe our experience with this course has been a success in interdisciplinary and experiential design education. We attribute this success to 1) the scope and duration of the projects, 2) the industrial orientation of the course, 3) the emphasis on problem definition, and 4) the focus on existing products. In this section we discuss each of these factors as well as a faculty research issue. The appendix offers advice to faculty who might be planning this type of course.

The course spans nine months and engages the students in activities from cost accounting to detailed mechanical design. The duration is long enough for the groups to develop important teamwork experience and for them to grope with the organizational and information gathering aspects inherent in large projects. The tasks that the students engage in are diverse enough that the students can test the bounds on their own skills and learn how to rely on team members with complementary skills.

This project course gives students a hands-on, real-world experience with which to evaluate and develop the tools and concepts they learn in other courses. Working on product design in the context of a complex, real-time, human environment provides students an opportunity to experiment with design work at no risk to their employment status. Learning from errors, misjudgments, and experience on the class projects will reduce problems (and anxiety) for these students in their first jobs, where the high risks of failure often encourage more conservative problem solving strategies. The university is the last chance for students to test the limits of their problem solving skills in a stimulating but relatively benign environment.

The students reaction to the diversity of the multidisciplinary topics covered is quite positive. This reinforces the main message of the class that successful design requires doing everything right. When the students apply the material and concepts presented in class to their project work, they often conclude that this is one of the most practical courses they have taken at MIT.

Students spend a great deal of time researching the client, defining the whole problem, and then breaking down the project into individual thesis proposals. This forces students to consider their work as it fits into the larger efforts of their team and sponsor. The class discovers that while the client's markets are very different, each company's motivation for product redesign can also be distinct, including competition, quality, cost, and marketability.

We do not encourage the management and engineering students to focus on the problems within their own disciplines. In fact, when asked to describe the content of their thesis topics, the engineering students felt that (on average) 35% of their efforts dealt with traditionally managerial issues. The management students considered 25% of their efforts to be in technical areas. While we have not directly compared these data to a control group, we feel that we have provided a genuinely interdisciplinary experience for the students.

One-by-product of the interdisciplinary experience for the students is their exposure to a variety of different kinds of professional work activities. We find that the students tend to project these experiences onto their own career expectations. In many ways they seem to be using the projects to evaluate what they want to do professionally. We believe that as a parallel activity to the students' job searches, the course serves an important career planning role.

Since many products require over one million hours of development activity, it is very difficult to expose students to a realistic design project. The redesign focus of our course appears to address this problem quite well. Whereas the students do not have the opportunity to generate the initial design configuration for the product, they do generate and evaluate many alternative approaches to product and process redesign. They are exposed to many product life cycle issues in design, such as reliability, field failures, and manufacturing costs. Such issues rarely surface in most design project courses because the projects typically begin with a broadly stated problem and end at the conceptual design stage.

We found that the overall effort to manage this course exceeds that required by one following the traditional lecture and examination format. Flowers [5] suggests that universities must provide incentives for this type of teaching activity. In the first year, we had a student-faculty ratio of four-to-one. The next year the ratio increased to seven-to-one. We are now trying to create ways of reaching 30 or more students with the effort of two faculty members. This will bring the student-faculty ratio for the course more closely aligned with that of other electives at MIT. One possible solution is the greater use of teaching assistants, the participation of industrial practitioners in the educational process, or the use of several shorter, and more well-defined, projects that may not require as much faculty supervision. Our goal is to find a way to provide interdisciplinary, project-based design education to a substantial fraction of our engineering and management students without unduly straining faculty resources.

Research Implications

An important dimension of our experience in teaching this course has been the way in which it has drawn us towards research questions of industrial relevance. At Michigan, the interdisciplinary design course forms a testing environment in which design research is conducted [7]. We have also used our projects as a design laboratory.

For example, through the class projects, we have observed deficiencies in the way that firms compute manufacturing costs of a product. This information is critical to the redesign effort and yet is often poorly understood. This observation has led us to embark on a
research effort to devise better design cost estimation tools and manufacturing cost accounting schemes [9].

We have been privileged to study and participate in some of the product design activities of our sponsoring firms. Through this window into their operations, we have observed the monumental challenge of organizing the many tasks in a complex development effort. Thus, we have also begun research aimed at improving the design process itself when hundreds of tasks are involved [10].

Implications for Practitioners

There are several implications of our experience for practitioners. First, design teams benefit from exposure to explicit instruction on teamwork, group dynamics, and group problem solving. Second, they also seem to benefit from a diversity of backgrounds and early opportunities for structured sharing of areas of expertise by members of the group. Third, having an outside team come in and help work on a company problem can stimulate long-term insiders to think about their work in new ways. Firms should create opportunities like this for their people to be simulated by outside thinking.

APPENDIX: LOGISTICS

In planning and executing this course, we have developed a few heuristics which may be of interest to others considering teaching a class like ours.

Finding Industrial Sponsors and Products

Use local firms that are close enough for the students to visit. Many firms will like to have some exposure on the campus.

Each client company should identify an enthusiastic, well connected individual to serve as the main contact for the students. Do not guarantee to the sponsors specific deliverable results; only promise fresh ideas and written reports from the students.

The products should have a number of components, subassemblies, or manufacturing operations for the students to focus on individually.

The products should have a fairly long life cycle, so that the students’ suggestions have a chance of eventually being adopted.

Searching for good sponsors and projects can be very time consuming. Begin this process well before the academic year commences.

Organizing the Student Projects

Three to five students per product team seems to work well. Try to balance the available skills and experiences among the groups.

Since these projects require regular (indirect) supervision throughout the academic year, limit the enrollment to the number of students the faculty are willing to advise.

Enforce definite transitions from problem definition to solution finding and implementation modes.

Motivating Student Groups

In class, discuss the documented strengths and weaknesses of group behavior, using product development teams as an example [2].

Schedule formal presentations for design review. Invite a panel of experts, whose presence will force students to discuss the broad issues.

Encourage students to interact with their clients as professional consultants would.

REFERENCES

Steven D. Eppinger received the S.B., S.M., and Sc.D. degrees from Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge, MA.

He joined the MIT Sloan School of Management in 1988 and is presently Assistant Professor of Management Science at the university.

His research focuses on improving product design and manufacturing practices, and is conducted with the MIT Leaders for Manufacturing Program. His current projects include developing design for manufacture techniques, organizing product development activities, improving the quality of manufacturing processes using analytical models, and controlling factory automation systems with on-line sensors. He has experience as a machinist and as a manufacturing engineer in both prototype and production operations.

Charles H. Fine received the A.B. degree in mathematics and management science from Duke University, Durham, NC, and the M.S. degree in operations and the Ph.D. degree in business administration (decision sciences), both from Stanford University, Stanford, CA, in 1978, 1981, and 1983, respectively.

“He is presently Associate Professor of Management Science at MIT’s Sloan School of Management, Cambridge, MA, where he teaches operations management and manufacturing policy.

He received a Leaders for Manufacturing Junior Faculty Research Grant in 1988–1990 and an Arthur D. Little Foundation Research Grant in 1984–1985. Dr. Fine’s research interests are in manufacturing technology evaluation, focusing particularly on economic models for evaluating flexible manufacturing technologies; total quality management, focusing on economic models of quality improvement investments, and manufacturing cost and information systems. His work has appeared, among other places, in Management Science, Operations Research, Journal of Manufacturing and Operations Management, Games and Economic Behavior, and Interfaces.

He is presently Ford International Assistant Professor of Management at the MIT Sloan School of Management, where he is active in the MIT Leaders for Manufacturing Program. He is also a faculty member of the MIT Artificial Intelligence Laboratory, where he leads the Design Automation Group.

His research interests are focused on computational decision aids for design and manufacturing, and on the management of product development, and he has developed a wide variety of products in industry, from surgical devices to novel foods.