Overview

- **What is the 'manufacturing system'?**
 - Differentiation between product development and manufacturing

- **History Manufacturing Philosophies**
 - Craft Production
 - Mass Production
 - Lean Production
 - ??

- **Complexity and Systems Perspective in the Manufacturing World**
 - Efficacy and Efficiency
 - Flexibility
 - Adaptability / Learning
 - Holistic View

- **References**
 - Manufacturing at MIT
 - Literature
Product Development and Manufacturing: Intersecting Waterfall Model

Process Waterfall
- Enterprise need resources
 - Modeling
 - Engineering
 - Pilot Plant
 - Build
 - Certify

Product Waterfall
- Client need & resources
 - Conception & model building
 - Interface description
 - Engineering
 - MANUFACTURING
 - Certification
 - Reconfiguration
 - Operation & diagnosis
 - Evaluation & Adaptation
 - Adaptation
 - Shutdown

adapted from Maier & Rechtin, 2000

History of Manufacturing Philosophies (I): Craft Production

- **Craftsman's Production**
 - Characteristics
 - Highly skilled work force
 - Decentralized organizations
 - General-purpose machines
 - Very low production Volumes
 - Advantages
 - Very flexible
 - Economics focused on variable cost; low level of specific investment
 - Disadvantages
 - High total unit cost

- **Relation to Complexity**
 - Capability limits constrain the growth of the system
 - System is incentive based (agents maximize utility)
 - Product price justifies transaction costs
History of Manufacturing Philosophies (II): Mass Production

- **Characteristics:**
 - Technology
 - *Product has to have a long live (system needs stable environment)*
 - *Interchangeable Parts (Same gauging system, Prehardend Metals, etc.)*
 - *Very short "Cycle Times", Single-purpose Tools*
 - Work force
 - *Only unskilled workers required*
 - Organization
 - Move to higher levels of vertical integration (e.g. Rouge Complex)
 - Vertical Integration necessary to fund complex technologies (Chandler)

- **Advantages**
 - Delivers much higher productivity than craft production as long as product variety is low
 - Only unskilled labor required

- **Disadvantages**
 - High fixed cost (large investments)
 - Inflexible
 - Only unskilled labor required (⇒ inflexibility increases over time)

- **Relation to Complexity**
 - Manufacturing system "grow" more and more complex over time
 (Example: Pratt and Whitney Grinding Machine)
 - Increasing specialization in disciplines makes it harder to see the 'big picture,' i.e. the system
 - Increasing system complexity made optimization disciplines simultaneously more important and increasingly difficult
 - *Operations Research*
 - *Operations Management*
 - ..
History of Manufacturing Philosophies (III): Lean Production

- **Characteristics:**
 - Historical specifics in post-WWII Japan: small home market, strong labor positions, little capital available, strong global competition
 - in essence: Toyota Production System
 - Technology
 - Simple, error-proven
 - Avoid unnecessary complexity (= understand your process)
 - Work force
 - Skilled workers required
 - Life-long job commitment, seniority pays
 - Organization
 - Everyone in the production line is both a customer and a supplier (ref. A. Smith)
 - Decision delegation to lower levels in the hierarchy: workers can (and are expected to) stop the line when they detect an error
 - System in place that quickly traces every problem, once discovered, to its ultimate cause (Five Whys)
 - Manufacturing, supply network, and dealership become one system;
 - that makes smoothing possible (fragile system)

- **Advantages**
 - Delivering much higher total productivity than mass production due to waste (muda) elimination
 - Skilled labor required
 - Ties in customer and supplier into the value chain

- **Disadvantages**
 - If pushed to extreme efficiency, system is fragile
 - ..?

- **Applications beyond the automotive industry**
 - Aerospace (Lean Aerospace Initiative at MIT)
 - Aero/Astro has historically been in the world of military and long-term development, i.e. the focus was primarily on technical performance
 - After the shift of geopolitical situation in the early 1990s, the demand profile on these large-scale and complex systems has changed by increasing the value of time and cost
 - **LAI: Better, Faster, Cheaper instead Faster, Higher, Farther** (Murman et al. 2000)
 - Appliances, Machinery, etc.
Complexity and Manufacturing today

- In the past, technology-stable environments that were created for large scale military projects facilitated the growth of complex systems with increasing complexity (see P&W)

- Economics vary for different processes, i.e. they have their own logic; Depending on the level of analysis, the answer can be completely different
 - Holistic approach can change the economic dynamics

 - Different level of analysis:
 - **Process Improvement**
 - **Operations Management Development**
 - **Factory Flow Redesign**
 - **Lean Infrastructure**

- Lean Production = Complex Adaptive System?
 - Despite being fragile, does it dampen the volatility (bullwhip-effect)?
 - Perfection = Flexibility?
 - Flow = Dynamic?
 - Pull = Adaptation (short term)?
 - Learning = Adaptation (long term)?
 - ..

Future Paths?

- In volatile and fast changing markets, focus may shift from 'perfect efficiency' for one specific environment to survival in many different ones

 - Stochasthic nature and behavior of environment
 - Lean Production systems are fragile by nature (operate on extreme end of operation)
 - Flexibility becomes a value in itself (not equals waste)

- Agile Manufacturing?
 - at marketing level: agile competition is characterized by customer-enriching, individualized combinations of products and services
 - at production level: agile competition is characterized by the ability to manufacture goods and to produce services to customer order in arbitrary lot sizes

- Impact of increasing importance of software technology
 - Spiral model (more prototyping than production?)
 - Software becomes core and hardware is modeled around?

- Relevance of manufacturing?
 - Core competence? (Car vs. Electronics)
 - Systems View: Role and Level of Importance of Manufacturing within the Value Chain (Strategic Decision)
References (I)

- **Manufacturing at MIT**
 - Laboratory for Manufacturing and Productivity
 - investigates how various performance improvement strategies (SPC, TQM, JIT, etc.) fit together
 - Production System Design Laboratory - Prof. Cochran-(http://psd.mit.edu/)
 - PSD is taking a holistic approach at designing manufacturing systems according to the principles of Lean Production
 - Center for Innovation in Product Development (CIPD) - (http://web.mit.edu/afs/athena.mit.edu/org/c/cipd/)
 - Research Projects (selected):
 - *Managing Risk and Managing Knowledge in Product and Process Development: Designing and Implementing Complex Product and Production Technologies*
 - *Product Development Across Firm Boundaries: Problems of Cooperation and Coordination in Large Complex Systems*
 - Lean Aircraft Initiative, Head: Prof. Earl Murman (LAI) (http://lean.mit.edu/);
 - five key themes for research in Phase III: (a) measuring value to the enterprise; (b) time; (c) organizations and people; (d) knowledge and information infrastructure; and (e) government as a lean customer & operator
 - Factory Operations Focus Team Project, selected projects:
 - *Design and Management of Complex Manufacturing Systems*
 - *Lean Assembly System Design for the Lean Aircraft Initiative*
 - *Production Control in Factories and Supply Chains*
References (II)

- Womack, James P., Daniel T. Jones, and Daniel Roos, 1990; The machine that changed the world; HarperPerennial, New York