
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

SYSTEMS ARCHITECTURE –

A KNOWLEDGE DOMAIN

October 17, 2000

Sebastian Fixson, fixson@mit.edu

Technology, Management and Policy Program, MIT

Course: ESD.83 Research Seminar in Engineering Systems

Prof. David A. Mindell

Knowledge Domain Systems Architectures

.. Listen to those voices: Architecture is a metaphor! says one. Architecture is a
computer program! says another. It’s the voice of the underclass! It’s
Imagineering! – or is it something on the event-space-movement axis? Can
nuclear physics help? Can literature? What questions! What assertions! It’s like
listening to people fighting dragons in the dark.

(Paul Shepheard, 1994)

Knowledge Domain Systems Architectures

- 1 -

1. INTRODUCTION

Systems architecture is not a closely defined discipline – at least not yet. It is emerging from the

understanding that, together with the increasing complexity of the systems we create and use, the

importance grows to develop a general understanding of the underlying relations and

mechanisms of systems behavior. Borrowed from the civil engineering world, the term

architecture is used to describe these fundamental relations. Architecting is the approach to

design this very early, but very fundamental part of system development.

Today, ‘system architecture’ is used in fields as diverse as defense, health care, financial

engineering, biology, astro physics, or computer science. Common to most approaches is that

they consider systems as consisting of several elements (subsystems, components, chunks, etc.)

that are connected such that they perform a function that could not be performed by the elements

alone. Three major schools of thought and their approaches towards system architecting (the

process of creating the architecture) are explained below. The differences in their approaches

can mainly be contributed to the origins of the fields and the mind sets they have developed over

generations of researchers and practitioners.

Increasing use of software in almost all systems as well as legal developments like deregulations

create new dynamics and needs to understand the effect of systems architectures on performance,

acceptance and survival of various systems.

2. THE APPROACH: SYSTEMS AND ARCHITECTURES

Despite the large variety of systems for which the term ‘architecture’ is used, two common

elements can be distilled from the approaches. First, ‘architecture’ is a metaphor that helps

coping with complexity. Most of the times it does so by abstraction, by giving order to the

chaos. It helps to make sense of otherwise difficult to understand complex phenomena or

systems. Second, ‘architecture’ establishes rules. An architecture assigns roles to the elements

involved, it declares number, location and function of connections between the elements.

For several thousand years humans have architected civil projects: houses, bridges, palaces. This

seems to be the reason that ‘architecture’ can be used as metaphor in other disciplines allowing a

quick understanding of the idea. At the same time, the word ‘architecture’ carries with it a

Knowledge Domain Systems Architectures

- 2 -

certain structure of thinking about objects. This has had various effects on how disciplines

developed their approach to system architecture.

Most descriptions of ‘architecture’ include the assignment from form to function. Function is

what the system eventually does, the behavior which it will have. In contrast, the form is what is

created by the architect, it describes the elements and the way they are connected, i.e. their

interfaces. The form is the ‘thing’ that eventually executes the function

Different types of systems place different requirements on the systems architecture. Therefore,

system definition, and in particular boundary determination, has a strong effect on which

characteristics of the systems architecture become important.

As systems vary in a number of dimensions, so does the focus when developing their

architectures. Systems vary in size and complexity, and how often they are produced. The

electrical system in a residential house requires a different focus than a national air defense

system. They vary in number and type of human interactions. Architecting a petrochemical

plant that human interactions are limited to its personnel and neighboring communities is

different from architecting a public transportation system that is additionally used by a large

number of customers every day. Systems vary in number and type of their stakeholders (client,

builder, beneficiaries, adversely effected persons, etc.). They may vary in the authority structure

(pre-planned, pre-determined, loosely-coupled, collaborative), and in planned life time.

However, common for all architectural thoughts is the notion of synergy, the idea that the system

is more than the sum of its elements and that creating and maintaining a sound architecture

allows better system performance and survival. Cantoni and Ferretti characterize this

fundamental feature of systems architecture as follows:

The notion of a system’s architecture is somewhat more than the elements which
are used and the rules for their composition. An example is the design of arches:
the set of bricks placed one next to another in a curve to form an arch gives rise to
new capacity of supporting weights that is not given simply by addition to the
elementary property of each component: a well-structured system comes forth,
able to overstep the crude joining of the parts. Arch designing points out directly
this astonishing capability to bring forth new qualities not directly derived from
the scaling of the ingredients.1

1 Cantoni and Ferretti 1994, p.1, italics theirs

Knowledge Domain Systems Architectures

- 3 -

3. HISTORY: SEVERAL SCHOOLS OF THOUGHT

As mentioned earlier, system architecture is not a concept invented by a single person or a small

group of people. Rather, it is an idea that emerged over the last decades in several somewhat

distinct areas. Each of them has its own world view, affecting the mental concept of what an

architecture is, and what it does. Three major schools of thought are introduced below.

3.1 Large-Technical-Systems based School

As the term ‘architecture’ in everyday use implies, it carries with it the notion of ‘architecting,’ a

synonym for planning, for creating a concept or a structure. The importance of a concept grows

with the size of the system or the performance requirements put on to it. This is because the risk

of malfunction usually carries high costs for large complex systems.

Historically, the technical fields that were characterized by both systems of significantly large

complexity and the organizational structure that allows central planning and (to some extent)

management of the entire system were the military and related operations. It is for this reason

that the advancement of weapon systems, air defense systems or space exploration programs

developed the need for ‘system architecting.’ During the period between 1945 and 1990 the

political and social environment in most Western Countries was comparatively stable2, so that

the focus on system architecting was placed first to ensure system performance of increasingly

complex technical systems.

The enormous difficulty to transport a human to the moon and back, for example, was managed

to overcome by developing an organizational structure that could develop, produce, and maintain

a system pursuing this goal. This included the development of very elaborate procedural policies

for development, procurement, testing and certification. For example, to ensure system

compatibility military acquisition guidelines fill books. That is architecting the system, i.e. the

‘product,’ was possible only by simultaneously architecting the process creating it. One result of

this development is the so-called waterfall model of systems acquisition. Basic idea is to

organize the entire process in a sequence of steps from requirements identification to concept

development to design to operations. To achieve high system performance each step includes a

2 The time period of the late 1960s and early 1970s began to change the public perception, but had only limited
effects on large scale financing of military and space projects.

Knowledge Domain Systems Architectures

- 4 -

detailed guideline what needs to be done, when, by whom, and how. This approach follows the

idea that thorough planning and execution in each step allows to keep feedback loops local and

ensure the high level of quality needed to make such complex systems work. The demand for

high quality is particularly important for systems that either affect public health and safety or that

have very high cost in case of a system malfunction.

Client need & resources

Engineering & detailed design

Development & production

Interface description & systems engineering

Conception & model building

Testing, certification & acceptance

Operation & diagnosis

Evaluation & Adaptation

adapted from Maier & Rechtin, 2000

Figure 1: Waterfall model of acquisition

This type of system has been called builder architected system. Because of the technical

complexity and the large number of unknowns, especially for unprecedented systems, past data

is often of limited value. Thus, the scientific tools of classic engineering are often not sufficient.

It is for this reason that systems architecting is often described more as an art than science and

that good system architects often also have artistic qualities.3

In addition to builder architected systems a similar approach has found its way into another,

historically hardware dominated, field: manufacturing. Since the system is now the production

process, the waterfall model displays two intersecting waterfalls: one for product and one for

process.

3 Robert H. Liebeck, Lecture in System Architecture, MIT, October 13, 2000

Knowledge Domain Systems Architectures

- 5 -

Enterprise need
resources

Modeling

Engineering

Pilot Plant

Build

Certify

Production

Maintenance

Reconfiguration

Adatation

Shutdown

Engineering

Interface description

Conception & model building

Client need & resources

Certification

Operation & diagnosis

Evaluation & Adaptation

Process Waterfall

Product Waterfall

adapted from Maier & Rechtin, 2000

Figure 2: Intersecting Waterfall Models

Characteristic for the approach of system architecture that grew out of the large technical

systems world is the mental picture of a hierarchy. In the hardware world hierarchies can be

established unambiguously. A component either belongs to one subsystem or another – but not

to both simultaneously. This fact finds it expression in sayings like “one person’s system is

another person’s component” or “everything is part of a higher level super system and everything

is composed of subsystems.”

With the fall of the iron curtain in Europe in the early 1990s and the accompanying shift in the

geopolitical situation, the financial and long-term planning condition for many military and

space exploration projects has changed. This is one of the reasons that the architectural

framework has been expanded beyond technical performance requirements to include the

customer and his perspective on system performance.

Both the increasing importance of the customer’s perception as well as a shift to systems with

higher content in software are beginning to shift the classical system architecture paradigm away

from one with procedures described in detail to one that is guided more by heuristics.4 At MIT,

Edward Crawley, dean of the Aero/Astro department, teaches a course titled System Architecture

that, among others, includes many of the issues discussed above.

4 This approach is especially promoted by Maier and Rechtin, 2000

Knowledge Domain Systems Architectures

- 6 -

3.2 Product Development based School

The architecture definitions that emerged from the product development world have – next to

some similarities - a slightly different focus than those discussed in the previous chapter. This is

not only directed to the difference in understanding of the terms product and system 5, but also to

the purpose of architecting. While the focus of the large-technical system world has historically

been on the problem to make the technical system work at all and under all conceivable

conditions, the product development based school is more concerned with the question what does

a certain product architecture do to the external market position of the product and to the internal

process of product design and production. Both aspects affect directly the competitive position

of the company making the product.

Similar to the large-technical systems world, the product development school has historically

been hardware oriented. Thus, the definition of architecture has been described as “the scheme

by which the functional elements of the product are arranged into physical chunks.”6 This

assignment of the functional elements to the physical building blocks of the product includes the

interface definition. Several authors have suggested that there are essentially two types of

product architectures: integral and modular. While the former displays a complex function-form

definition with often ill-defined interactions between subsystems and components, or chunks, the

latter is characterized by a one-to-one function-form description and well defined interactions

between the subsystems and components. The modular architecture is described as slot, bus, or

sectional depending on the degree of interchangeability among the components.

The implications of architectural choices are far reaching. Product features like upgradeability,

variety, serviceability, adaptability, use flexibility, or reuse options, are strongly affected by the

product’s architecture, and these features contribute to a product’s success.

In a general sense, the underlying idea which is tied to modular product architectures is very

similar to those promoted by the large-technical-systems based school, i.e. design robustness

against changing environmental conditions, nature or enemy in the former, market preferences

and competition in the latter.

5 Although it is arguable that all products are systems, many certainly are.
6 Ulrich, Karl T., Eppinger, Steven D., 2000, Product Design and Development, p.183

Knowledge Domain Systems Architectures

- 7 -

A tool developed for the architecting process is the design structure matrix, and its various

derivatives. At MIT, Steven Eppinger has been developing design matrixes to map and optimize

designs effort and relations between product architecture and organizational architecture. Others

have developed procedures and methodologies to optimize module boundary definitions, i.e.

architectures, along various dimensions as, for example, innovation dynamics (Balwin and Clark

2000), customer segmentation (Yu et al. 1999), product variety (Martin 1999), or product

recyclability (Newcomb et al. 1998).

3.3 Computer-based School

The emergence of computers and software programs as means to control, calculate and operate

system allowed the development of new ways to understand the systems’ architectures. Despite

its origin in software engineering, software development later began to make use of the specific

advantages software offers. The fundamental difference that software embodies is that it is not

bound to physical artifacts. This allowed to abandon the notion of hierarchy (or at least to give it

a different meaning) and to create software with features as object-oriented and layered design.

Start

Function

adapted from Maier & Rechtin, 2000

Certify Build

FormFinal Form

Intermediate
Forms

Figure 3: Spiral Model

These features together with totally different economics (almost all software cost occur during

product development) changed the system creation and architecting process for software. The

most common model used to describe software development is the spiral model. Here the

Knowledge Domain Systems Architectures

- 8 -

development is understood not as a well-planned long shot as in the hardware world, but rather

as an evolutionary process from one generation to the next. The line between prototypes and

‘real’ products has been blurred. For these reasons software is far better suited to be adapted to

fast changing environmental expectations than hardware.

Several, so-called architectural styles have been developed in software development. Pipe-and-

filter architectures contain one type of component, the filter, and type of connector, the pipe.

Object oriented architectures are built from components that encapsulate both data and function

and exchange messages. Event-based architectures have as its fundamental structure a loop

which receives events, interprets them and takes action based on a combination of both. Layered

architectures emphasize horizontal partitioning of the system with explicit message passing and

function calling. Blackboard architectures are built from a set of concurrent components which

interact by reading and writing to a common area.

Although these descriptions show the implementer’s point of view, what these styles

demonstrate, is that software allows new ways of modeling problems. Historically, software has

been moving successively higher in abstraction from computing hardware. As this seems to be

the only economic way to build very large and complex systems it is to expect that the

architectural software development will proceed on the path to languages and applications with

higher levels of abstraction.

4. AN OUTLOOK

As the description of three different schools indicates, system architecture is not a well defined

field, although it is moving towards this direction. Given its emerging character, it may be too

early for a final evaluation. The wave of literature that has appeared during the 1990s in each of

the three schools, however, seems to indicate that at least academia perceives systems

architectures as a promising field. In addition, the increasing complexity of our world is equally

likely to draw attention from the private sector to this domain. Recognizing the state of flux, I

will discuss some anecdotal evidence where the development of systems architecture is headed.

Software is likely to take on the leading role in most products and systems, thereby increasing

the weight of the ‘software world view’ in architecting. This may allow to develop new concepts

to understand systems architectures in new ways. Some researchers predict that for fast pace

Knowledge Domain Systems Architectures

- 9 -

industries even the spiral model is too limiting. The insight that “we need to accommodate the

fact that systems are integrated without prior design – out of components that were never

intended to interact”7 suggest the understanding the interfaces become the systems architecture.

Perhaps, it will offer a way to overcome the problem inherent to the classic hierarchical view of

systems. In reality, many systems are not (only) hierarchically structured, e.g. the human body

consists of several overlapping systems, i.e. it has a skeleton system, a nervous system, etc.

Also, social systems often display structures other than hierarchical. “Often a complex system

must be understood not as a simple hierarchy, but as a structure of overlapping and interlocking

subsystems.”8

In addition, a different type of system is gaining importance, which will require a different

understanding of systems architectures. These are so-called collaborative systems, the most

famous example being the Internet. “Long known as part of the civil infrastructure of industrial

societies, they have come to greater prominence as high-technology communication systems

have adopted similar models, centralized systems have been decentralized through deregulation

or divestiture, and formerly independent systems have been loosely integrated into larger

wholes.”9

These latest developments introduce a dimension into system architecting which engineers are

not necessarily familiar with. Ownership, control, but also purpose of the systems may not only

be shifting over time but possibly be entirely distributed. Whether this process is equally

changing the way engineers think as the move from feudal societies to democracies changed the

thinking of political leaders remains to be explored in the future.

As systems architectures’ creation and definition is moving continuously to higher and more

abstract levels, systems architects may have to improve their interpretation skills. Higher levels

of abstraction no longer determine the system itself (its elements and its connections) but only

the rules with which it will evolve and operate.

7 Perrochon, Louis; Mann, Walter, 1999, Inferred Design, p.48
8 Mitchell, William J., 1998, The Logic of Architecture, p. 190
9 Maier, Mark W., Rechtin, Eberhardt, 2000, The Art of Systems Architecting, p. 135

Knowledge Domain Systems Architectures

- 10 -

References and additional Literature:

Civil Architecture

Alexander, Christopher, 1964, Notes on the Synthesis of Form, Harvard University Press, Cambridge,
Massachusetts

Mitchell, William J., 1998, The Logic of Architecture – Design, Computation, and Cognition, The MIT
Press, Cambridge,Massachusetts

Shepheard, Paul, 1994, What is Architecture – An Essay on Landscapes, Buildings, and Machines, The
MIT Press, Cambridge, Massachusetts

Large-Technical-Systems based school

Crawley, Edward, 2000, Lecture Notes to Course ESD.34: Systems Architecture, Massachusetts Institute of
Technology, Cambridge, Massachusetts

DSMC, Systems Engineering Fundamentals, October 1999, Defense Systems Management College Press,
Fort Belvoir, Virginia

Intelligent Transportation Systems, 2000, http://www.itsa.org/architecture.html, web page of the Intelligent
Transportation Society

Maier, Mark W., Rechtin, Eberhardt, 2000, The Art of Systems Architecting, 2nd Edition, CRC Press, Boca
Raton, Florida

Scott, Mark W. 1999, System Architecture Evaluation by Single Metric , unpublished MIT Master Thesis,
supervised by Prof. Ed Crawley

Product development based school

Baldwin, Carliss Y., Clark, Kim B., 2000, Design Rules – Volume 1. The Power of Modularity, The MIT
Press, Cambridge, Massachusetts

Eppinger, Steven D., Whitney, Daniel E., Smith, Robert P., Gebala, David A., 1994, A Model-Based
Method for Organizing Tasks in Product Development, Research in Engineering Design, 1-13

Gulati, Rosaline K., Eppinger, Steven D., 1996, The Coupling of Product Architecture and Organizational
Structure Decisions, Sloan Working Paper #3906-96

Martin, Mark V., 1999, Design for Variety: A Methodology for Developing Product Platform
Architectures, Doctoral Dissertation, Mechanical Engineering, Stanford, CA, 172

Newcomb, P.J., Bras, Bert, Rosen, David W., 1998, Implications of Modularity on Product Design for the
Life Cycle, Journal of Mechanical Design, Vol. 120, 3, 483-491

Steward, Donald V., 1981, Systems Analysis and Management: Structure, Strategy, and Design, New
York/Princeton, Petrocelli Books

Ulrich, Karl T, The role of product architecture in the manufacturing firm, Research Policy, (24), 419-440

Ulrich, Karl T., Eppinger, Steven D., 2000, Product Design and Development, Second Edition, Mc Graw-
Hill, Boston, Massachusetts

Yu, Janet S., Gonzalez-Zugasti, Javier P., Otto, Kevin N., 1999, Product Architecture Definition based
upon Customer Demands, Journal of Mechanical Design, 329-335

Knowledge Domain Systems Architectures

- 11 -

Software based school

Barroca, Leonor, Hall, Jon, Hall, Patrick (eds.), 2000, Software Architectures – Advances and
Applications , Springer, New York

Coplien, James O., 1999, Reevaluating the Architectural Metaphor: Toward Piecemeal Growth, IEEE
Software, September/October 1999, 40-44

Cantoni, Virginio, Ferretti, Marco, 1994, Pyramidal Architectures for Computer Vision, Plenum Press,
New York

Garlan, David, Allen, Robert, Ockerbloom, John, 1995, Architectural Mismatch: Why Reuse is so Hard,
IEEE Software, November 1995, 17-26

Perrochon, Louis, Mann, Walter, 1999, Inferred Designs, IEEE Software, September/October 1999, 46-51

Shaw, Mary, 1995, Comparing Architectural Design Styles, IEEE Software, November 1995, 27-41

Journal of Systems Architecture, Else Vier Publishing

