Dynamical matrix file 1 1 2 7.5000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 1 'Al ' 24590.765652728711 1 1 0.0000000000 0.0000000000 0.0000000000 Dynamical Matrix in cartesian axes q = ( 0.750000000 0.750000000 0.000000000 ) 1 1 0.10931590 0.00000000 0.03099064 0.00000000 -0.00000000 0.00000000 0.03099064 0.00000000 0.10931590 0.00000000 -0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.18213918 0.00000000 Dynamical Matrix in cartesian axes q = ( 0.750000000 -0.750000000 0.000000000 ) 1 1 0.10931590 0.00000000 -0.03099064 0.00000000 -0.00000000 0.00000000 -0.03099064 0.00000000 0.10931590 0.00000000 -0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.18213918 0.00000000 Dynamical Matrix in cartesian axes q = ( -0.750000000 -0.750000000 0.000000000 ) 1 1 0.10931590 0.00000000 0.03099064 0.00000000 -0.00000000 0.00000000 0.03099064 0.00000000 0.10931590 0.00000000 -0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.18213918 0.00000000 Dynamical Matrix in cartesian axes q = ( -0.750000000 0.750000000 0.000000000 ) 1 1 0.10931590 0.00000000 -0.03099064 0.00000000 -0.00000000 0.00000000 -0.03099064 0.00000000 0.10931590 0.00000000 -0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.18213918 0.00000000 Dynamical Matrix in cartesian axes q = ( 0.750000000 0.000000000 0.750000000 ) 1 1 0.10931590 0.00000000 0.00000000 0.00000000 0.03099064 0.00000000 0.00000000 0.00000000 0.18213918 0.00000000 0.00000000 0.00000000 0.03099064 0.00000000 0.00000000 0.00000000 0.10931590 0.00000000 Dynamical Matrix in cartesian axes q = ( -0.750000000 0.000000000 -0.750000000 ) 1 1 0.10931590 0.00000000 0.00000000 0.00000000 0.03099064 0.00000000 0.00000000 0.00000000 0.18213918 0.00000000 0.00000000 0.00000000 0.03099064 0.00000000 0.00000000 0.00000000 0.10931590 0.00000000 Dynamical Matrix in cartesian axes q = ( 0.750000000 0.000000000 -0.750000000 ) 1 1 0.10931590 0.00000000 -0.00000000 0.00000000 -0.03099064 0.00000000 0.00000000 0.00000000 0.18213918 0.00000000 -0.00000000 0.00000000 -0.03099064 0.00000000 -0.00000000 0.00000000 0.10931590 0.00000000 Dynamical Matrix in cartesian axes q = ( -0.750000000 0.000000000 0.750000000 ) 1 1 0.10931590 0.00000000 -0.00000000 0.00000000 -0.03099064 0.00000000 0.00000000 0.00000000 0.18213918 0.00000000 -0.00000000 0.00000000 -0.03099064 0.00000000 -0.00000000 0.00000000 0.10931590 0.00000000 Dynamical Matrix in cartesian axes q = ( 0.000000000 -0.750000000 -0.750000000 ) 1 1 0.18213918 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.10931590 0.00000000 0.03099064 0.00000000 0.00000000 0.00000000 0.03099064 0.00000000 0.10931590 0.00000000 Dynamical Matrix in cartesian axes q = ( 0.000000000 -0.750000000 0.750000000 ) 1 1 0.18213918 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.10931590 0.00000000 -0.03099064 0.00000000 0.00000000 0.00000000 -0.03099064 0.00000000 0.10931590 0.00000000 Dynamical Matrix in cartesian axes q = ( 0.000000000 0.750000000 -0.750000000 ) 1 1 0.18213918 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.10931590 0.00000000 -0.03099064 0.00000000 0.00000000 0.00000000 -0.03099064 0.00000000 0.10931590 0.00000000 Dynamical Matrix in cartesian axes q = ( 0.000000000 0.750000000 0.750000000 ) 1 1 0.18213918 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.10931590 0.00000000 0.03099064 0.00000000 0.00000000 0.00000000 0.03099064 0.00000000 0.10931590 0.00000000 Diagonalizing the dynamical matrix q = ( 0.750000000 0.750000000 0.000000000 ) ************************************************************************** freq ( 1) = 5.871377 [THz] = 195.848041 [cm-1] ( 0.707107 0.000000 -0.707107 0.000000 0.000000 0.000000 ) freq ( 2) = 7.858288 [THz] = 262.124287 [cm-1] ( -0.707107 0.000000 -0.707107 0.000000 0.000000 0.000000 ) freq ( 3) = 8.953456 [THz] = 298.655141 [cm-1] ( 0.000000 0.000000 0.000000 0.000000 1.000000 0.000000 ) **************************************************************************