Dynamical matrix file Phonon dispersions for Al 1 1 2 7.5000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 1 'Al ' 24590.765652728711 1 1 0.0000000000 0.0000000000 0.0000000000 Dynamical Matrix in cartesian axes q = ( 1.000000000 0.250000000 0.000000000 ) 1 1 0.17762504 0.00000000 0.00000000 0.00000000 -0.00000000 0.00000000 -0.00000000 0.00000000 0.09544528 0.00000000 -0.00000000 0.00000000 0.00000000 0.00000000 -0.00000000 0.00000000 0.10108251 0.00000000 Dynamical Matrix in cartesian axes q = ( 1.000000000 -0.250000000 0.000000000 ) 1 1 0.17762504 0.00000000 0.00000000 0.00000000 -0.00000000 0.00000000 -0.00000000 0.00000000 0.09544528 0.00000000 -0.00000000 0.00000000 -0.00000000 0.00000000 -0.00000000 0.00000000 0.10108251 0.00000000 Dynamical Matrix in cartesian axes q = ( 1.000000000 0.000000000 0.250000000 ) 1 1 0.17762504 0.00000000 -0.00000000 0.00000000 -0.00000000 0.00000000 0.00000000 0.00000000 0.10108251 0.00000000 -0.00000000 0.00000000 0.00000000 0.00000000 -0.00000000 0.00000000 0.09544528 0.00000000 Dynamical Matrix in cartesian axes q = ( 1.000000000 0.000000000 -0.250000000 ) 1 1 0.17762504 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.10108251 0.00000000 -0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.09544528 0.00000000 Dynamical Matrix in cartesian axes q = ( 0.250000000 1.000000000 0.000000000 ) 1 1 0.09544528 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 -0.00000000 0.00000000 0.17762504 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.10108251 0.00000000 Dynamical Matrix in cartesian axes q = ( -0.250000000 0.000000000 -1.000000000 ) 1 1 0.09544528 0.00000000 0.00000000 0.00000000 -0.00000000 0.00000000 0.00000000 0.00000000 0.10108251 0.00000000 -0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.17762504 0.00000000 Dynamical Matrix in cartesian axes q = ( 0.250000000 0.000000000 -1.000000000 ) 1 1 0.09544528 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.10108251 0.00000000 0.00000000 0.00000000 -0.00000000 0.00000000 0.00000000 0.00000000 0.17762504 0.00000000 Dynamical Matrix in cartesian axes q = ( 0.000000000 -1.000000000 -0.250000000 ) 1 1 0.10108251 0.00000000 -0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.17762504 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 -0.00000000 0.00000000 0.09544528 0.00000000 Dynamical Matrix in cartesian axes q = ( 0.000000000 -1.000000000 0.250000000 ) 1 1 0.10108251 0.00000000 -0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.17762504 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.09544528 0.00000000 Dynamical Matrix in cartesian axes q = ( 0.000000000 -0.250000000 1.000000000 ) 1 1 0.10108251 0.00000000 0.00000000 0.00000000 -0.00000000 0.00000000 0.00000000 0.00000000 0.09544528 0.00000000 -0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.17762504 0.00000000 Dynamical Matrix in cartesian axes q = ( 0.000000000 0.250000000 1.000000000 ) 1 1 0.10108251 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.09544528 0.00000000 0.00000000 0.00000000 -0.00000000 0.00000000 -0.00000000 0.00000000 0.17762504 0.00000000 Dynamical Matrix in cartesian axes q = ( -0.250000000 -1.000000000 0.000000000 ) 1 1 0.09544528 0.00000000 -0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.17762504 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 -0.00000000 0.00000000 0.10108251 0.00000000 Diagonalizing the dynamical matrix q = ( 1.000000000 0.250000000 0.000000000 ) ************************************************************************** freq ( 1) = 6.481361 [THz] = 216.194946 [cm-1] ( 0.000000 0.000000 -1.000000 0.000000 -0.000000 0.000000 ) freq ( 2) = 6.670018 [THz] = 222.487860 [cm-1] ( 0.000000 0.000000 -0.000000 0.000000 1.000000 0.000000 ) freq ( 3) = 8.841809 [THz] = 294.930986 [cm-1] ( 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 ) **************************************************************************