Dynamical matrix file Phonon dispersions for Al 1 1 2 7.5000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 1 'Al ' 24590.765652728711 1 1 0.0000000000 0.0000000000 0.0000000000 Dynamical Matrix in cartesian axes q = ( 1.000000000 0.750000000 0.000000000 ) 1 1 0.10108179 0.00000000 0.00000000 0.00000000 -0.00000000 0.00000000 0.00000000 0.00000000 0.09544511 0.00000000 0.00000000 0.00000000 -0.00000000 0.00000000 0.00000000 0.00000000 0.17762217 0.00000000 Dynamical Matrix in cartesian axes q = ( 0.000000000 -0.750000000 1.000000000 ) 1 1 0.17762217 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.09544511 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.10108179 0.00000000 Dynamical Matrix in cartesian axes q = ( -1.000000000 -0.750000000 0.000000000 ) 1 1 0.10108179 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.09544511 0.00000000 0.00000000 0.00000000 -0.00000000 0.00000000 0.00000000 0.00000000 0.17762217 0.00000000 Dynamical Matrix in cartesian axes q = ( -1.000000000 0.000000000 0.750000000 ) 1 1 0.10108179 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.17762217 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.09544511 0.00000000 Dynamical Matrix in cartesian axes q = ( -1.000000000 0.000000000 -0.750000000 ) 1 1 0.10108179 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.17762217 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.09544511 0.00000000 Dynamical Matrix in cartesian axes q = ( 0.750000000 1.000000000 0.000000000 ) 1 1 0.09544511 0.00000000 0.00000000 0.00000000 -0.00000000 0.00000000 0.00000000 0.00000000 0.10108179 0.00000000 0.00000000 0.00000000 -0.00000000 0.00000000 0.00000000 0.00000000 0.17762217 0.00000000 Dynamical Matrix in cartesian axes q = ( -0.750000000 0.000000000 -1.000000000 ) 1 1 0.09544511 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 -0.00000000 0.00000000 0.17762217 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.10108179 0.00000000 Dynamical Matrix in cartesian axes q = ( 0.750000000 0.000000000 -1.000000000 ) 1 1 0.09544511 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 -0.00000000 0.00000000 0.17762217 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.10108179 0.00000000 Dynamical Matrix in cartesian axes q = ( 0.000000000 -1.000000000 -0.750000000 ) 1 1 0.17762217 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.10108179 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.09544511 0.00000000 Dynamical Matrix in cartesian axes q = ( 0.000000000 -1.000000000 0.750000000 ) 1 1 0.17762217 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.10108179 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.09544511 0.00000000 Dynamical Matrix in cartesian axes q = ( 0.000000000 0.750000000 1.000000000 ) 1 1 0.17762217 0.00000000 -0.00000000 0.00000000 0.00000000 0.00000000 -0.00000000 0.00000000 0.09544511 0.00000000 0.00000000 0.00000000 -0.00000000 0.00000000 -0.00000000 0.00000000 0.10108179 0.00000000 Dynamical Matrix in cartesian axes q = ( -0.750000000 -1.000000000 0.000000000 ) 1 1 0.09544511 0.00000000 0.00000000 0.00000000 -0.00000000 0.00000000 0.00000000 0.00000000 0.10108179 0.00000000 0.00000000 0.00000000 -0.00000000 0.00000000 0.00000000 0.00000000 0.17762217 0.00000000 Diagonalizing the dynamical matrix q = ( 1.000000000 0.750000000 0.000000000 ) ************************************************************************** freq ( 1) = 6.481356 [THz] = 216.194754 [cm-1] ( -0.000000 0.000000 -1.000000 0.000000 0.000000 0.000000 ) freq ( 2) = 6.669994 [THz] = 222.487064 [cm-1] ( -1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ) freq ( 3) = 8.841737 [THz] = 294.928605 [cm-1] ( 0.000000 0.000000 0.000000 0.000000 1.000000 0.000000 ) **************************************************************************