*** FILE AUTOMATICALLY CREATED: DO NOT EDIT, CHANGES WILL BE LOST *** ------------------------------------------------------------------------ INPUT FILE DESCRIPTION Program: neb.x / NEB / Quantum Espresso (version: 6.1) ------------------------------------------------------------------------ Input data format: { } = optional, [ ] = it depends, | = or All quantities whose dimensions are not explicitly specified are in RYDBERG ATOMIC UNITS BEWARE: TABS, DOS CHARACTERS ARE POTENTIAL SOURCES OF TROUBLE neb.x DOES NOT READ FROM STANDARD INPUT ! There are two ways for running a calculation with neb.x: (1) specifying a file to parse with the ./neb.x -inp or ./neb.x -input command line option. (2) or specifying the number of copies of PWscf inputs with the ./neb.x -input_images For case (1) a file containing special KEYWORDS (aka SUPERCARDS) has to be written (see below). These KEYWORDS tell the parser which part of the file contains the neb specifics and which part contains the energy/force engine input (at the moment only PW). After the parsing, different files are generated: neb.dat, with the neb specific variables, and a set of pw_*.in PWscf input files, i.e., one for each input position. All options for a single SCF calculation apply. The general structure of the file to be parsed is: ================================================== BEGIN BEGIN_PATH_INPUT ... neb specific namelists and cards END_PATH_INPUT BEGIN_ENGINE_INPUT ...pw specific namelists and cards BEGIN_POSITIONS FIRST_IMAGE ...pw ATOMIC_POSITIONS card INTERMEDIATE_IMAGE ...pw ATOMIC_POSITIONS card LAST_IMAGE ...pw ATOMIC_POSITIONS card END_POSITIONS ... other pw specific cards END_ENGINE_INPUT END For case (2) neb.dat and all pw_1.in, pw_2.in ... should be already present. Structure of the NEB-only input data (file neb.dat): ==================================================== &PATH ... / [ CLIMBING_IMAGES list of images, separated by a comma ] ######################################################################## | SUPERCARD: BEGIN/END | this supercard is enclosed within the keywords: | | BEGIN | ... content of the supercard here ... | END | | The syntax of supercard's content follows below: ######################################################################## | SUPERCARD: BEGIN_PATH_INPUT/END_PATH_INPUT | this supercard is enclosed within the keywords: | | BEGIN_PATH_INPUT | ... content of the supercard here ... | END_PATH_INPUT | | The syntax of supercard's content follows below: ======================================================================== NAMELIST: &PATH +-------------------------------------------------------------------- Variable: string_method Type: CHARACTER Default: 'neb' Description: A string describing the task to be performed. Options are: 'neb' : nudget-elastic-band 'smd' : string-method-dynamics +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: restart_mode Type: CHARACTER Default: 'from_scratch' Description: Options are: 'from_scratch' : from scratch 'restart' : from previous interrupted run +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nstep_path Type: INTEGER Description: number of ionic + electronic steps Default: 1 +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: num_of_images Type: INTEGER Default: 0 Description: Number of points used to discretize the path (it must be larger than 3). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: opt_scheme Type: CHARACTER Default: 'quick-min' Description: Specify the type of optimization scheme: 'sd' : steepest descent 'broyden' : quasi-Newton Broyden's second method (suggested) 'broyden2' : another variant of the quasi-Newton Broyden's second method to be tested and compared with the previous one. 'quick-min' : an optimisation algorithm based on the projected velocity Verlet scheme 'langevin' : finite temperature langevin dynamics of the string (smd only). It is used to compute the average path and the free-energy profile. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: CI_scheme Type: CHARACTER Default: 'no-CI' Description: Specify the type of Climbing Image scheme: 'no-CI' : climbing image is not used 'auto' : original CI scheme. The image highest in energy does not feel the effect of springs and is allowed to climb along the path 'manual' : images that have to climb are manually selected. See also "CLIMBING_IMAGES" card +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: first_last_opt Type: LOGICAL Default: .FALSE. Description: Also the first and the last configurations are optimized "on the fly" (these images do not feel the effect of the springs). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: minimum_image Type: LOGICAL Default: .FALSE. Description: Assume a "minimum image criterion" to build the path. If an atom moves by more than half the length of a crystal axis between one image and the next in the input (before interpolation), an appropriate periodic replica of that atom is chosen. Useful to avoid jumps in the initial reaction path. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: temp_req Type: REAL Default: 0.D0 Kelvin Description: Temperature used for the langevin dynamics of the string. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ds Type: REAL Default: 1.D0 Description: Optimisation step length ( Hartree atomic units ). If "opt_scheme"=="broyden", ds is used as a guess for the diagonal part of the Jacobian matrix. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: k_max, k_min Type: REAL Default: 0.1D0 Hartree atomic units Description: Set them to use a Variable Elastic Constants scheme elastic constants are in the range [ k_min, k_max ] this is useful to rise the resolution around the saddle point. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: path_thr Type: REAL Default: 0.05D0 eV / Angstrom Description: The simulation stops when the error ( the norm of the force orthogonal to the path in eV/A ) is less than path_thr. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: use_masses Type: LOGICAL Default: .FALSE. Description: If. TRUE. the optimisation of the path is performed using mass-weighted coordinates. Useful together with quick-min optimization scheme, if some bonds are much stiffer than others. By assigning a larger (fictitious) mass to atoms with stiff bonds, one may use a longer time step "ds" +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: use_freezing Type: LOGICAL Default: .FALSE. Description: If. TRUE. the images are optimised according to their error: only those images with an error larger than half of the largest are optimised. The other images are kept frozen. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lfcpopt Type: LOGICAL See: fcp_mu Default: .FALSE. Description: If .TRUE. perform a constant bias potential (constant-mu) calculation with ESM method (assume_isolated = 'esm' and esm_bc = 'bc2' or 'bc3' must be set in SYSTEM namelist). "fcp_mu" gives the target Fermi energy. See the header of PW/src/fcp.f90 for documentation +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: fcp_mu Type: REAL See: lfcpopt Default: 0.d0 Description: If "lfcpopt" == .TRUE., gives the target Fermi energy [Ry]. One can specify the total charge of the system for the first and last image by giving "fcp_tot_charge_first" and "fcp_tot_charge_last" so that the Fermi energy of these systems will be the target value, otherwise "first_last_opt" should be .TRUE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: fcp_tot_charge_first Type: REAL See: lfcpopt Default: 0.d0 Description: Total charge of the system ('tot_charge') for the first image. Initial 'tot_charge' for intermediate images will be given by linear interpolation of "fcp_tot_charge_first" and "fcp_tot_charge_last" +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: fcp_tot_charge_last Type: REAL See: lfcpopt Default: 0.d0 Description: Total charge of the system ('tot_charge') for the last image. Initial 'tot_charge' for intermediate images will be given by linear interpolation of "fcp_tot_charge_first" and "fcp_tot_charge_last" +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== ======================================================================== CARD: CLIMBING_IMAGES OPTIONAL CARD, NEEDED ONLY IF "CI_SCHEME" == 'MANUAL', IGNORED OTHERWISE ! ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// CLIMBING_IMAGES index1, index2, ... indexN ///////////////////////////////////////// DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Variables: index1, index2, ... indexN Type: INTEGER Description: index1, index2, ..., indexN are indices of the images to which the Climbing-Image procedure apply. If more than one image is specified they must be separated by a comma. +-------------------------------------------------------------------- ===END OF CARD========================================================== ### END OF SUPERCARD : BEGIN_PATH_INPUT/END_PATH_INPUT ################ ######################################################################## | SUPERCARD: BEGIN_ENGINE_INPUT/END_ENGINE_INPUT | this supercard is enclosed within the keywords: | | BEGIN_ENGINE_INPUT | ... content of the supercard here ... | END_ENGINE_INPUT | | The syntax of supercard's content follows below: Here comes the pw.x specific namelists and cards (see file: "" or INPUT_PW.txt) with the exception of "ATOMIC_POSITIONS" cards, which are specified separately within the "BEGIN_POSITIONS"/END_POSITIONS supercard as described below. So the input that follows here is of the following structure: &CONTROL ... / &SYSTEM ... / &ELECTRONS ... / ... ######################################################################## | SUPERCARD: BEGIN_POSITIONS/END_POSITIONS | this supercard is enclosed within the keywords: | | BEGIN_POSITIONS | ... content of the supercard here ... | END_POSITIONS | | The syntax of supercard's content follows below: NB: Atomic positions for all the images are specified within the "BEGIN_POSITIONS" / END_POSITIONS supercard, where each instance of "ATOMIC_POSITIONS" card is prefixed either by "FIRST_IMAGE", "INTERMEDIATE_IMAGE", or "LAST_IMAGE" keywords. Note that intermediate images are optional, i.e., there can be none or any number of "INTERMEDIATE_IMAGE" images. ######################################################################## | SUPERCARD: FIRST_IMAGE | this supercard starts with the keyword: | | FIRST_IMAGE | ... content of the supercard here ... | | The syntax of supercard's content follows below: ======================================================================== CARD: ATOMIC_POSITIONS { alat | bohr | angstrom | crystal | crystal_sg } For the description of ATOMIC_POSITIONS card see file: "" or INPUT_PW.txt ===END OF CARD========================================================== ### END OF SUPERCARD : FIRST_IMAGE #################################### ######################################################################## | SUPERCARD: INTERMEDIATE_IMAGE | this supercard starts with the keyword: | | INTERMEDIATE_IMAGE | ... content of the supercard here ... | | REMARK: | There can be any number (including zero) of INTERMEDIATE_IMAGE supercards. | | The syntax of supercard's content follows below: ======================================================================== CARD: ATOMIC_POSITIONS { alat | bohr | angstrom | crystal | crystal_sg } For the description of ATOMIC_POSITIONS card see file: "" or INPUT_PW.txt ===END OF CARD========================================================== ### END OF SUPERCARD : INTERMEDIATE_IMAGE ############################# ######################################################################## | SUPERCARD: LAST_IMAGE | this supercard starts with the keyword: | | LAST_IMAGE | ... content of the supercard here ... | | The syntax of supercard's content follows below: ======================================================================== CARD: ATOMIC_POSITIONS { alat | bohr | angstrom | crystal | crystal_sg } For the description of ATOMIC_POSITIONS card see file: "" or INPUT_PW.txt ===END OF CARD========================================================== ### END OF SUPERCARD : LAST_IMAGE ##################################### ### END OF SUPERCARD : BEGIN_POSITIONS/END_POSITIONS ################## Here can follow other pw specific cards ... ### END OF SUPERCARD : BEGIN_ENGINE_INPUT/END_ENGINE_INPUT ############ ### END OF SUPERCARD : BEGIN/END ###################################### This file has been created by helpdoc utility on Fri Mar 03 06:55:23 UTC 2017