*** FILE AUTOMATICALLY CREATED: DO NOT EDIT, CHANGES WILL BE LOST *** ------------------------------------------------------------------------ INPUT FILE DESCRIPTION Program: pw.x / PWscf / Quantum Espresso (version: 6.1) ------------------------------------------------------------------------ Input data format: { } = optional, [ ] = it depends, | = or All quantities whose dimensions are not explicitly specified are in RYDBERG ATOMIC UNITS. Charge is "number" charge (i.e. not multiplied by e); potentials are in energy units (i.e. they are multiplied by e). BEWARE: TABS, DOS CHARACTERS ARE POTENTIAL SOURCES OF TROUBLE Comment lines in namelists can be introduced by a "!", exactly as in fortran code. Comments lines in cards can be introduced by either a "!" or a "#" character in the first position of a line. Do not start any line in cards with a "/" character. Structure of the input data: =============================================================================== &CONTROL ... / &SYSTEM ... / &ELECTRONS ... / [ &IONS ... / ] [ &CELL ... / ] ATOMIC_SPECIES X Mass_X PseudoPot_X Y Mass_Y PseudoPot_Y Z Mass_Z PseudoPot_Z ATOMIC_POSITIONS { alat | bohr | crystal | angstrom | crystal_sg } X 0.0 0.0 0.0 {if_pos(1) if_pos(2) if_pos(3)} Y 0.5 0.0 0.0 Z O.0 0.2 0.2 K_POINTS { tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c } if (gamma) nothing to read if (automatic) nk1, nk2, nk3, k1, k2, k3 if (not automatic) nks xk_x, xk_y, xk_z, wk [ CELL_PARAMETERS { alat | bohr | angstrom } v1(1) v1(2) v1(3) v2(1) v2(2) v2(3) v3(1) v3(2) v3(3) ] [ OCCUPATIONS f_inp1(1) f_inp1(2) f_inp1(3) ... f_inp1(10) f_inp1(11) f_inp1(12) ... f_inp1(nbnd) [ f_inp2(1) f_inp2(2) f_inp2(3) ... f_inp2(10) f_inp2(11) f_inp2(12) ... f_inp2(nbnd) ] ] [ CONSTRAINTS nconstr { constr_tol } constr_type(.) constr(1,.) constr(2,.) [ constr(3,.) constr(4,.) ] { constr_target(.) } ] [ ATOMIC_FORCES label_1 Fx(1) Fy(1) Fz(1) ..... label_n Fx(n) Fy(n) Fz(n) ] ======================================================================== NAMELIST: &CONTROL +-------------------------------------------------------------------- Variable: calculation Type: CHARACTER Default: 'scf' Description: A string describing the task to be performed. Options are: 'scf' 'nscf' 'bands' 'relax' 'md' 'vc-relax' 'vc-md' (vc = variable-cell). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: title Type: CHARACTER Default: ' ' Description: reprinted on output. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: verbosity Type: CHARACTER Default: 'low' Description: Currently two verbosity levels are implemented: 'high' 'low' 'debug' and 'medium' have the same effect as 'high'; 'default' and 'minimal' as 'low' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: restart_mode Type: CHARACTER Default: 'from_scratch' Description: Available options are: 'from_scratch' : From scratch. This is the normal way to perform a PWscf calculation 'restart' : From previous interrupted run. Use this switch only if you want to continue an interrupted calculation, not to start a new one, or to perform non-scf calculations. Works only if the calculation was cleanly stopped using variable "max_seconds", or by user request with an "exit file" (i.e.: create a file "prefix".EXIT, in directory "outdir"; see variables "prefix", "outdir"). Overrides "startingwfc" and "startingpot". +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wf_collect Type: LOGICAL Default: .FALSE. Description: This flag controls the way wavefunctions are stored to disk : .TRUE. collect wavefunctions from all processors, store them into the output data directory "outdir"/"prefix".save, ... .FALSE. do not collect wavefunctions, leave them in temporary local files (one per processor). The resulting format ... Note that this flag has no effect on reading, only on writing. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nstep Type: INTEGER Description: number of molecular-dynamics or structural optimization steps performed in this run Default: 1 if "calculation" == 'scf', 'nscf', 'bands'; 50 for the other cases +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: iprint Type: INTEGER Default: write only at convergence Description: band energies are written every iprint iterations +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tstress Type: LOGICAL Default: .false. Description: calculate stress. It is set to .TRUE. automatically if "calculation" == 'vc-md' or 'vc-relax' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tprnfor Type: LOGICAL Description: calculate forces. It is set to .TRUE. automatically if "calculation" == 'relax','md','vc-md' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: dt Type: REAL Default: 20.D0 Description: time step for molecular dynamics, in Rydberg atomic units (1 a.u.=4.8378 * 10^-17 s : beware, the CP code uses Hartree atomic units, half that much!!!) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: outdir Type: CHARACTER Default: value of the ESPRESSO_TMPDIR environment variable if set; current directory ('./') otherwise Description: input, temporary, output files are found in this directory, see also "wfcdir" +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wfcdir Type: CHARACTER Default: same as "outdir" Description: This directory specifies where to store files generated by each processor (*.wfc{N}, *.igk{N}, etc.). Useful for machines without a parallel file system: set "wfcdir" to a local file system, while "outdir" should be a parallel or networkfile system, visible to all processors. Beware: in order to restart from interrupted runs, or to perform further calculations using the produced data files, you may need to copy files to "outdir". Works only for pw.x. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: prefix Type: CHARACTER Default: 'pwscf' Description: prepended to input/output filenames: prefix.wfc, prefix.rho, etc. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lkpoint_dir Type: LOGICAL Default: .true. Description: If .false. a subdirectory for each k_point is not opened in the "prefix".save directory; Kohn-Sham eigenvalues are stored instead in a single file for all k-points. Currently doesn't work together with "wf_collect" +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: max_seconds Type: REAL Default: 1.D+7, or 150 days, i.e. no time limit Description: Jobs stops after "max_seconds" CPU time. Use this option in conjunction with option "restart_mode" if you need to split a job too long to complete into shorter jobs that fit into your batch queues. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: etot_conv_thr Type: REAL Default: 1.0D-4 Description: Convergence threshold on total energy (a.u) for ionic minimization: the convergence criterion is satisfied when the total energy changes less than "etot_conv_thr" between two consecutive scf steps. Note that "etot_conv_thr" is extensive, like the total energy. See also "forc_conv_thr" - both criteria must be satisfied +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: forc_conv_thr Type: REAL Default: 1.0D-3 Description: Convergence threshold on forces (a.u) for ionic minimization: the convergence criterion is satisfied when all components of all forces are smaller than "forc_conv_thr". See also "etot_conv_thr" - both criteria must be satisfied +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: disk_io Type: CHARACTER Default: see below Description: Specifies the amount of disk I/O activity: 'high' : save all data to disk at each SCF step 'medium' : save wavefunctions at each SCF step unless there is a single k-point per process (in which case the behavior is the same as 'low') 'low' : store wfc in memory, save only at the end 'none' : do not save anything, not even at the end ('scf', 'nscf', 'bands' calculations; some data may be written anyway for other calculations) Default is 'low' for the scf case, 'medium' otherwise. Note that the needed RAM increases as disk I/O decreases! It is no longer needed to specify 'high' in order to be able to restart from an interrupted calculation (see "restart_mode") but you cannot restart in "disk_io"=='none' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: pseudo_dir Type: CHARACTER Default: value of the $ESPRESSO_PSEUDO environment variable if set; '$HOME/espresso/pseudo/' otherwise Description: directory containing pseudopotential files +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tefield Type: LOGICAL Default: .FALSE. Description: If .TRUE. a saw-like potential simulating an electric field is added to the bare ionic potential. See variables "edir", "eamp", "emaxpos", "eopreg" for the form and size of the added potential. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: dipfield Type: LOGICAL Default: .FALSE. Description: If .TRUE. and "tefield"==.TRUE. a dipole correction is also added to the bare ionic potential - implements the recipe of L. Bengtsson, PRB 59, 12301 (1999). See variables "edir", "emaxpos", "eopreg" for the form of the correction. Must be used ONLY in a slab geometry, for surface calculations, with the discontinuity FALLING IN THE EMPTY SPACE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lelfield Type: LOGICAL Default: .FALSE. Description: If .TRUE. a homogeneous finite electric field described through the modern theory of the polarization is applied. This is different from "tefield" == .true. ! +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nberrycyc Type: INTEGER Default: 1 Description: In the case of a finite electric field ( "lelfield" == .TRUE. ) it defines the number of iterations for converging the wavefunctions in the electric field Hamiltonian, for each external iteration on the charge density +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lorbm Type: LOGICAL Default: .FALSE. Description: If .TRUE. perform orbital magnetization calculation. If finite electric field is applied ("lelfield"==.true.) only Kubo terms are computed [for details see New J. Phys. 12, 053032 (2010), doi:10.1088/1367-2630/12/5/053032]. The type of calculation is 'nscf' and should be performed on an automatically generated uniform grid of k points. Works ONLY with norm-conserving pseudopotentials. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lberry Type: LOGICAL Default: .FALSE. Description: If .TRUE. perform a Berry phase calculation. See the header of PW/src/bp_c_phase.f90 for documentation. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: gdir Type: INTEGER Description: For Berry phase calculation: direction of the k-point strings in reciprocal space. Allowed values: 1, 2, 3 1=first, 2=second, 3=third reciprocal lattice vector For calculations with finite electric fields ("lelfield"==.true.) "gdir" is the direction of the field. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nppstr Type: INTEGER Description: For Berry phase calculation: number of k-points to be calculated along each symmetry-reduced string. The same for calculation with finite electric fields ("lelfield"==.true.). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lfcpopt Type: LOGICAL See: fcp_mu Default: .FALSE. Description: If .TRUE. perform a constant bias potential (constant-mu) calculation for a static system with ESM method. See the header of PW/src/fcp.f90 for documentation. NB: - The total energy displayed in 'prefix.out' includes the potentiostat contribution (-mu*N). - "calculation" must be 'relax'. - "assume_isolated" = 'esm' and "esm_bc" = 'bc2' or 'bc3' must be set in "SYSTEM" namelist. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: monopole Type: LOGICAL Default: .FALSE. See: zmon, realxz, block, block_1, block_2, block_height Description: In the case of charged cells ("tot_charge" .ne. 0) setting monopole = .TRUE. represents the counter charge (i.e. -tot_charge) not by a homogenous background charge but with a charged plate, which is placed at "zmon" (see below). Details of the monopole potential can be found in T. Brumme, M. Calandra, F. Mauri; PRB 89, 245406 (2014). Note, that in systems which are not symmetric with respect to the plate, one needs to enable the dipole correction! ("dipfield"=.true.). Currently, symmetry can be used with monopole=.true. but carefully check that no symmetry is included which maps z to -z even if in principle one could still use them for symmetric systems (i.e. no dipole correction). For "nosym"=.false. verbosity is set to 'high'. +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== ======================================================================== NAMELIST: &SYSTEM +-------------------------------------------------------------------- Variable: ibrav Type: INTEGER Status: REQUIRED Description: Bravais-lattice index. If ibrav /= 0, specify EITHER [ "celldm"(1)-"celldm"(6) ] OR [ "A", "B", "C", "cosAB", "cosAC", "cosBC" ] but NOT both. The lattice parameter "alat" is set to alat = celldm(1) (in a.u.) or alat = A (in Angstrom); see below for the other parameters. For ibrav=0 specify the lattice vectors in "CELL_PARAMETERS", optionally the lattice parameter alat = celldm(1) (in a.u.) or = A (in Angstrom), or else it is taken from "CELL_PARAMETERS" ibrav structure celldm(2)-celldm(6) or: b,c,cosab,cosac,cosbc 0 free crystal axis provided in input: see card "CELL_PARAMETERS" 1 cubic P (sc) v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,1) 2 cubic F (fcc) v1 = (a/2)(-1,0,1), v2 = (a/2)(0,1,1), v3 = (a/2)(-1,1,0) 3 cubic I (bcc) v1 = (a/2)(1,1,1), v2 = (a/2)(-1,1,1), v3 = (a/2)(-1,-1,1) 4 Hexagonal and Trigonal P celldm(3)=c/a v1 = a(1,0,0), v2 = a(-1/2,sqrt(3)/2,0), v3 = a(0,0,c/a) 5 Trigonal R, 3fold axis c celldm(4)=cos(alpha) The crystallographic vectors form a three-fold star around the z-axis, the primitive cell is a simple rhombohedron: v1 = a(tx,-ty,tz), v2 = a(0,2ty,tz), v3 = a(-tx,-ty,tz) where c=cos(alpha) is the cosine of the angle alpha between any pair of crystallographic vectors, tx, ty, tz are: tx=sqrt((1-c)/2), ty=sqrt((1-c)/6), tz=sqrt((1+2c)/3) -5 Trigonal R, 3fold axis <111> celldm(4)=cos(alpha) The crystallographic vectors form a three-fold star around <111>. Defining a' = a/sqrt(3) : v1 = a' (u,v,v), v2 = a' (v,u,v), v3 = a' (v,v,u) where u and v are defined as u = tz - 2*sqrt(2)*ty, v = tz + sqrt(2)*ty and tx, ty, tz as for case ibrav=5 Note: if you prefer x,y,z as axis in the cubic limit, set u = tz + 2*sqrt(2)*ty, v = tz - sqrt(2)*ty See also the note in Modules/latgen.f90 6 Tetragonal P (st) celldm(3)=c/a v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,c/a) 7 Tetragonal I (bct) celldm(3)=c/a v1=(a/2)(1,-1,c/a), v2=(a/2)(1,1,c/a), v3=(a/2)(-1,-1,c/a) 8 Orthorhombic P celldm(2)=b/a celldm(3)=c/a v1 = (a,0,0), v2 = (0,b,0), v3 = (0,0,c) 9 Orthorhombic base-centered(bco) celldm(2)=b/a celldm(3)=c/a v1 = (a/2, b/2,0), v2 = (-a/2,b/2,0), v3 = (0,0,c) -9 as 9, alternate description v1 = (a/2,-b/2,0), v2 = (a/2, b/2,0), v3 = (0,0,c) 10 Orthorhombic face-centered celldm(2)=b/a celldm(3)=c/a v1 = (a/2,0,c/2), v2 = (a/2,b/2,0), v3 = (0,b/2,c/2) 11 Orthorhombic body-centered celldm(2)=b/a celldm(3)=c/a v1=(a/2,b/2,c/2), v2=(-a/2,b/2,c/2), v3=(-a/2,-b/2,c/2) 12 Monoclinic P, unique axis c celldm(2)=b/a celldm(3)=c/a, celldm(4)=cos(ab) v1=(a,0,0), v2=(b*cos(gamma),b*sin(gamma),0), v3 = (0,0,c) where gamma is the angle between axis a and b. -12 Monoclinic P, unique axis b celldm(2)=b/a celldm(3)=c/a, celldm(5)=cos(ac) v1 = (a,0,0), v2 = (0,b,0), v3 = (c*cos(beta),0,c*sin(beta)) where beta is the angle between axis a and c 13 Monoclinic base-centered celldm(2)=b/a celldm(3)=c/a, celldm(4)=cos(ab) v1 = ( a/2, 0, -c/2), v2 = (b*cos(gamma), b*sin(gamma), 0), v3 = ( a/2, 0, c/2), where gamma is the angle between axis a and b 14 Triclinic celldm(2)= b/a, celldm(3)= c/a, celldm(4)= cos(bc), celldm(5)= cos(ac), celldm(6)= cos(ab) v1 = (a, 0, 0), v2 = (b*cos(gamma), b*sin(gamma), 0) v3 = (c*cos(beta), c*(cos(alpha)-cos(beta)cos(gamma))/sin(gamma), c*sqrt( 1 + 2*cos(alpha)cos(beta)cos(gamma) - cos(alpha)^2-cos(beta)^2-cos(gamma)^2 )/sin(gamma) ) where alpha is the angle between axis b and c beta is the angle between axis a and c gamma is the angle between axis a and b +-------------------------------------------------------------------- ///--- EITHER: +-------------------------------------------------------------------- Variable: celldm(i), i=1,6 Type: REAL See: ibrav Description: Crystallographic constants - see the "ibrav" variable. Specify either these OR "A","B","C","cosAB","cosBC","cosAC" NOT both. Only needed values (depending on "ibrav") must be specified alat = "celldm"(1) is the lattice parameter "a" (in BOHR) If "ibrav"==0, only "celldm"(1) is used if present; cell vectors are read from card "CELL_PARAMETERS" +-------------------------------------------------------------------- OR: +-------------------------------------------------------------------- Variables: A, B, C, cosAB, cosAC, cosBC Type: REAL See: ibrav Description: Traditional crystallographic constants: a,b,c in ANGSTROM cosAB = cosine of the angle between axis a and b (gamma) cosAC = cosine of the angle between axis a and c (beta) cosBC = cosine of the angle between axis b and c (alpha) The axis are chosen according to the value of @ref ibrav. Specify either these OR @ref celldm but NOT both. Only needed values (depending on @ref ibrav) must be specified. The lattice parameter alat = A (in ANGSTROM ). If @ref ibrav == 0, only A is used if present, and cell vectors are read from card @ref CELL_PARAMETERS. +-------------------------------------------------------------------- \\\--- +-------------------------------------------------------------------- Variable: nat Type: INTEGER Status: REQUIRED Description: number of atoms in the unit cell (ALL atoms, except if space_group is set, in which case, INEQUIVALENT atoms) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ntyp Type: INTEGER Status: REQUIRED Description: number of types of atoms in the unit cell +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nbnd Type: INTEGER Default: for an insulator, "nbnd" = number of valence bands ("nbnd" = # of electrons /2); for a metal, 20% more (minimum 4 more) Description: Number of electronic states (bands) to be calculated. Note that in spin-polarized calculations the number of k-point, not the number of bands per k-point, is doubled +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tot_charge Type: REAL Default: 0.0 Description: Total charge of the system. Useful for simulations with charged cells. By default the unit cell is assumed to be neutral (tot_charge=0). tot_charge=+1 means one electron missing from the system, tot_charge=-1 means one additional electron, and so on. In a periodic calculation a compensating jellium background is inserted to remove divergences if the cell is not neutral. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tot_magnetization Type: REAL Default: -1 [unspecified] Description: Total majority spin charge - minority spin charge. Used to impose a specific total electronic magnetization. If unspecified then tot_magnetization variable is ignored and the amount of electronic magnetization is determined during the self-consistent cycle. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: starting_magnetization(i), i=1,ntyp Type: REAL Description: Starting spin polarization on atomic type 'i' in a spin polarized calculation. Values range between -1 (all spins down for the valence electrons of atom type 'i') to 1 (all spins up). Breaks the symmetry and provides a starting point for self-consistency. The default value is zero, BUT a value MUST be specified for AT LEAST one atomic type in spin polarized calculations, unless you constrain the magnetization (see "tot_magnetization" and "constrained_magnetization"). Note that if you start from zero initial magnetization, you will invariably end up in a nonmagnetic (zero magnetization) state. If you want to start from an antiferromagnetic state, you may need to define two different atomic species corresponding to sublattices of the same atomic type. starting_magnetization is ignored if you are performing a non-scf calculation, if you are restarting from a previous run, or restarting from an interrupted run. If you fix the magnetization with "tot_magnetization", you should not specify starting_magnetization. In the spin-orbit case starting with zero starting_magnetization on all atoms imposes time reversal symmetry. The magnetization is never calculated and kept zero (the internal variable domag is .FALSE.). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ecutwfc Type: REAL Status: REQUIRED Description: kinetic energy cutoff (Ry) for wavefunctions +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ecutrho Type: REAL Default: 4 * "ecutwfc" Description: Kinetic energy cutoff (Ry) for charge density and potential For norm-conserving pseudopotential you should stick to the default value, you can reduce it by a little but it will introduce noise especially on forces and stress. If there are ultrasoft PP, a larger value than the default is often desirable (ecutrho = 8 to 12 times "ecutwfc", typically). PAW datasets can often be used at 4*"ecutwfc", but it depends on the shape of augmentation charge: testing is mandatory. The use of gradient-corrected functional, especially in cells with vacuum, or for pseudopotential without non-linear core correction, usually requires an higher values of ecutrho to be accurately converged. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ecutfock Type: REAL Default: ecutrho Description: Kinetic energy cutoff (Ry) for the exact exchange operator in EXX type calculations. By default this is the same as "ecutrho" but in some EXX calculations significant speed-up can be found by reducing ecutfock, at the expense of some loss in accuracy. Must be .gt. "ecutwfc". Not implemented for stress calculation. Use with care, especially in metals where it may give raise to instabilities. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: nr1, nr2, nr3 Type: INTEGER Description: Three-dimensional FFT mesh (hard grid) for charge density (and scf potential). If not specified the grid is calculated based on the cutoff for charge density (see also @ref ecutrho) Note: you must specify all three dimensions for this setting to be used. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: nr1s, nr2s, nr3s Type: INTEGER Description: Three-dimensional mesh for wavefunction FFT and for the smooth part of charge density ( smooth grid ). Coincides with @ref nr1, @ref nr2, @ref nr3 if @ref ecutrho = 4 * ecutwfc ( default ) Note: you must specify all three dimensions for this setting to be used. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nosym Type: LOGICAL Default: .FALSE. Description: if (.TRUE.) symmetry is not used, which means that: - if a list of k points is provided in input, it is used "as is": symmetry-inequivalent k-points are not generated, and the charge density is not symmetrized; - if a uniform (Monkhorst-Pack) k-point grid is provided in input, it is expanded to cover the entire Brillouin Zone, irrespective of the crystal symmetry. Time reversal symmetry is assumed so k and -k are considered as equivalent unless "noinv"=.true. is specified. A careful usage of this option can be advantageous: - in low-symmetry large cells, if you cannot afford a k-point grid with the correct symmetry - in MD simulations - in calculations for isolated atoms +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nosym_evc Type: LOGICAL Default: .FALSE. Description: if (.TRUE.) symmetry is not used, and k points are forced to have the symmetry of the Bravais lattice; an automatically generated Monkhorst-Pack grid will contain all points of the grid over the entire Brillouin Zone, plus the points rotated by the symmetries of the Bravais lattice which were not in the original grid. The same applies if a k-point list is provided in input instead of a Monkhorst-Pack grid. Time reversal symmetry is assumed so k and -k are equivalent unless "noinv"=.true. is specified. This option differs from "nosym" because it forces k-points in all cases to have the full symmetry of the Bravais lattice (not all uniform grids have such property!) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: noinv Type: LOGICAL Default: .FALSE. Description: if (.TRUE.) disable the usage of k => -k symmetry (time reversal) in k-point generation +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: no_t_rev Type: LOGICAL Default: .FALSE. Description: if (.TRUE.) disable the usage of magnetic symmetry operations that consist in a rotation + time reversal. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: force_symmorphic Type: LOGICAL Default: .FALSE. Description: if (.TRUE.) force the symmetry group to be symmorphic by disabling symmetry operations having an associated fractionary translation +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: use_all_frac Type: LOGICAL Default: .FALSE. Description: if (.TRUE.) do not discard symmetry operations with an associated fractionary translation that does not send the real-space FFT grid into itself. These operations are incompatible with real-space symmetrization but not with the new G-space symmetrization. BEWARE: do not use for phonons and for hybrid functionals! Both still use symmetrization in real space. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: occupations Type: CHARACTER Description: Available options are: 'smearing' : gaussian smearing for metals; see variables "smearing" and "degauss" 'tetrahedra' : Tetrahedron method, Bloechl's version: P.E. Bloechl, PRB 49, 16223 (1994) Requires uniform grid of k-points, to be automatically generated (see card "K_POINTS"). Well suited for calculation of DOS, less so (because not variational) for force/optimization/dynamics calculations. 'tetrahedra_lin' : Original linear tetrahedron method. To be used only as a reference; the optimized tetrahedron method is more efficient. 'tetrahedra_opt' : Optimized tetrahedron method: see M. Kawamura, PRB 89, 094515 (2014). Can be used for phonon calculations as well. 'fixed' : for insulators with a gap 'from_input' : The occupation are read from input file, card "OCCUPATIONS". Option valid only for a single k-point, requires "nbnd" to be set in input. Occupations should be consistent with the value of "tot_charge". +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: one_atom_occupations Type: LOGICAL Default: .FALSE. Description: This flag is used for isolated atoms ("nat"=1) together with "occupations"='from_input'. If it is .TRUE., the wavefunctions are ordered as the atomic starting wavefunctions, independently from their eigenvalue. The occupations indicate which atomic states are filled. The order of the states is written inside the UPF pseudopotential file. In the scalar relativistic case: S -> l=0, m=0 P -> l=1, z, x, y D -> l=2, r^2-3z^2, xz, yz, xy, x^2-y^2 In the noncollinear magnetic case (with or without spin-orbit), each group of states is doubled. For instance: P -> l=1, z, x, y for spin up, l=1, z, x, y for spin down. Up and down is relative to the direction of the starting magnetization. In the case with spin-orbit and time-reversal ("starting_magnetization"=0.0) the atomic wavefunctions are radial functions multiplied by spin-angle functions. For instance: P -> l=1, j=1/2, m_j=-1/2,1/2. l=1, j=3/2, m_j=-3/2, -1/2, 1/2, 3/2. In the magnetic case with spin-orbit the atomic wavefunctions can be forced to be spin-angle functions by setting "starting_spin_angle" to .TRUE.. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: starting_spin_angle Type: LOGICAL Default: .FALSE. Description: In the spin-orbit case when "domag"=.TRUE., by default, the starting wavefunctions are initialized as in scalar relativistic noncollinear case without spin-orbit. By setting "starting_spin_angle"=.TRUE. this behaviour can be changed and the initial wavefunctions are radial functions multiplied by spin-angle functions. When "domag"=.FALSE. the initial wavefunctions are always radial functions multiplied by spin-angle functions independently from this flag. When "lspinorb" is .FALSE. this flag is not used. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: degauss Type: REAL Default: 0.D0 Ry Description: value of the gaussian spreading (Ry) for brillouin-zone integration in metals. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: smearing Type: CHARACTER Default: 'gaussian' Description: Available options are: 'gaussian', 'gauss' : ordinary Gaussian spreading (Default) 'methfessel-paxton', 'm-p', 'mp' : Methfessel-Paxton first-order spreading (see PRB 40, 3616 (1989)). 'marzari-vanderbilt', 'cold', 'm-v', 'mv' : Marzari-Vanderbilt cold smearing (see PRL 82, 3296 (1999)) 'fermi-dirac', 'f-d', 'fd' : smearing with Fermi-Dirac function +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nspin Type: INTEGER Default: 1 Description: nspin = 1 : non-polarized calculation (default) nspin = 2 : spin-polarized calculation, LSDA (magnetization along z axis) nspin = 4 : spin-polarized calculation, noncollinear (magnetization in generic direction) DO NOT specify "nspin" in this case; specify "noncolin"=.TRUE. instead +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: noncolin Type: LOGICAL Default: .false. Description: if .true. the program will perform a noncollinear calculation. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ecfixed Type: REAL Default: 0.0 See: q2sigma +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: qcutz Type: REAL Default: 0.0 See: q2sigma +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: q2sigma Type: REAL Default: 0.1 Description: ecfixed, qcutz, q2sigma: parameters for modified functional to be used in variable-cell molecular dynamics (or in stress calculation). "ecfixed" is the value (in Rydberg) of the constant-cutoff; "qcutz" and "q2sigma" are the height and the width (in Rydberg) of the energy step for reciprocal vectors whose square modulus is greater than "ecfixed". In the kinetic energy, G^2 is replaced by G^2 + qcutz * (1 + erf ( (G^2 - ecfixed)/q2sigma) ) See: M. Bernasconi et al, J. Phys. Chem. Solids 56, 501 (1995), doi:10.1016/0022-3697(94)00228-2 +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: input_dft Type: CHARACTER Default: read from pseudopotential files Description: Exchange-correlation functional: eg 'PBE', 'BLYP' etc See Modules/funct.f90 for allowed values. Overrides the value read from pseudopotential files. Use with care and if you know what you are doing! +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: exx_fraction Type: REAL Default: it depends on the specified functional Description: Fraction of EXX for hybrid functional calculations. In the case of "input_dft"='PBE0', the default value is 0.25, while for "input_dft"='B3LYP' the "exx_fraction" default value is 0.20. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: screening_parameter Type: REAL Default: 0.106 Description: screening_parameter for HSE like hybrid functionals. For more information, see: J. Chem. Phys. 118, 8207 (2003), doi:10.1063/1.1564060 J. Chem. Phys. 124, 219906 (2006), doi:10.1063/1.2204597 +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: exxdiv_treatment Type: CHARACTER Default: 'gygi-baldereschi' Description: Specific for EXX. It selects the kind of approach to be used for treating the Coulomb potential divergencies at small q vectors. 'gygi-baldereschi' : appropriate for cubic and quasi-cubic supercells 'vcut_spherical' : appropriate for cubic and quasi-cubic supercells 'vcut_ws' : appropriate for strongly anisotropic supercells, see also "ecutvcut". 'none' : sets Coulomb potential at G,q=0 to 0.0 (required for GAU-PBE) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: x_gamma_extrapolation Type: LOGICAL Default: .true. Description: Specific for EXX. If .true., extrapolate the G=0 term of the potential (see README in examples/EXX_example for more) Set this to .false. for GAU-PBE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ecutvcut Type: REAL Default: 0.0 Ry See: exxdiv_treatment Description: Reciprocal space cutoff for correcting Coulomb potential divergencies at small q vectors. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: nqx1, nqx2, nqx3 Type: INTEGER Description: Three-dimensional mesh for q (k1-k2) sampling of the Fock operator (EXX). Can be smaller than the number of k-points. Currently this defaults to the size of the k-point mesh used. In QE =< 5.0.2 it defaulted to nqx1=nqx2=nqx3=1. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lda_plus_u Type: LOGICAL Default: .FALSE. Status: DFT+U (formerly known as LDA+U) currently works only for a few selected elements. Modify Modules/set_hubbard_l.f90 and PW/src/tabd.f90 if you plan to use DFT+U with an element that is not configured there. Description: Specify "lda_plus_u" = .TRUE. to enable DFT+U calculations See: Anisimov, Zaanen, and Andersen, PRB 44, 943 (1991); Anisimov et al., PRB 48, 16929 (1993); Liechtenstein, Anisimov, and Zaanen, PRB 52, R5467 (1994). You must specify, for each species with a U term, the value of U and (optionally) alpha, J of the Hubbard model (all in eV): see "lda_plus_u_kind", "Hubbard_U", "Hubbard_alpha", "Hubbard_J" +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lda_plus_u_kind Type: INTEGER Default: 0 Description: Specifies the type of DFT+U calculation: 0 simplified version of Cococcioni and de Gironcoli, PRB 71, 035105 (2005), using "Hubbard_U" 1 rotationally invariant scheme of Liechtenstein et al., using "Hubbard_U" and "Hubbard_J" +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: Hubbard_U(i), i=1,ntyp Type: REAL Default: 0.D0 for all species Description: Hubbard_U(i): U parameter (eV) for species i, DFT+U calculation +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: Hubbard_J0(i), i=1,ntype Type: REAL Default: 0.D0 for all species Description: Hubbard_J0(i): J0 parameter (eV) for species i, DFT+U+J calculation, see PRB 84, 115108 (2011) for details. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: Hubbard_alpha(i), i=1,ntyp Type: REAL Default: 0.D0 for all species Description: Hubbard_alpha(i) is the perturbation (on atom i, in eV) used to compute U with the linear-response method of Cococcioni and de Gironcoli, PRB 71, 35105 (2005) (only for "lda_plus_u_kind"=0) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: Hubbard_beta(i), i=1,ntyp Type: REAL Default: 0.D0 for all species Description: Hubbard_beta(i) is the perturbation (on atom i, in eV) used to compute J0 with the linear-response method of Cococcioni and de Gironcoli, PRB 71, 35105 (2005) (only for "lda_plus_u_kind"=0). See also PRB 84, 115108 (2011). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: Hubbard_J(i,ityp) Default: 0.D0 for all species Description: Hubbard_J(i,ityp): J parameters (eV) for species ityp, used in DFT+U calculations (only for "lda_plus_u_kind"=1) For p orbitals: J = Hubbard_J(1,ityp); For d orbitals: J = Hubbard_J(1,ityp), B = Hubbard_J(2,ityp); For f orbitals: J = Hubbard_J(1,ityp), E2 = Hubbard_J(2,ityp), E3= Hubbard_J(3,ityp). If B or E2 or E3 are not specified or set to 0 they will be calculated from J using atomic ratios. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: starting_ns_eigenvalue(m,ispin,I) Type: REAL Default: -1.d0 that means NOT SET Description: In the first iteration of an DFT+U run it overwrites the m-th eigenvalue of the ns occupation matrix for the ispin component of atomic species I. Leave unchanged eigenvalues that are not set. This is useful to suggest the desired orbital occupations when the default choice takes another path. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: U_projection_type Type: CHARACTER Default: 'atomic' Description: Only active when "lda_plus_U" is .true., specifies the type of projector on localized orbital to be used in the DFT+U scheme. Currently available choices: 'atomic' : use atomic wfc's (as they are) to build the projector 'ortho-atomic' : use Lowdin orthogonalized atomic wfc's 'norm-atomic' : Lowdin normalization of atomic wfc. Keep in mind: atomic wfc are not orthogonalized in this case. This is a "quick and dirty" trick to be used when atomic wfc from the pseudopotential are not normalized (and thus produce occupation whose value exceeds unity). If orthogonalized wfc are not needed always try 'atomic' first. 'file' : use the information from file "prefix".atwfc that must have been generated previously, for instance by pmw.x (see PP/src/poormanwannier.f90 for details). 'pseudo' : use the pseudopotential projectors. The charge density outside the atomic core radii is excluded. N.B.: for atoms with +U, a pseudopotential with the all-electron atomic wavefunctions is required (i.e., as generated by ld1.x with lsave_wfc flag). NB: forces and stress currently implemented only for the 'atomic' and 'pseudo' choice. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: edir Type: INTEGER Description: The direction of the electric field or dipole correction is parallel to the bg(:,edir) reciprocal lattice vector, so the potential is constant in planes defined by FFT grid points; "edir" = 1, 2 or 3. Used only if "tefield" is .TRUE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: emaxpos Type: REAL Default: 0.5D0 Description: Position of the maximum of the saw-like potential along crystal axis "edir", within the unit cell (see below), 0 < emaxpos < 1 Used only if "tefield" is .TRUE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: eopreg Type: REAL Default: 0.1D0 Description: Zone in the unit cell where the saw-like potential decreases. ( see below, 0 < eopreg < 1 ). Used only if "tefield" is .TRUE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: eamp Type: REAL Default: 0.001 a.u. Description: Amplitude of the electric field, in ***Hartree*** a.u.; 1 a.u. = 51.4220632*10^10 V/m. Used only if "tefield"==.TRUE. The saw-like potential increases with slope "eamp" in the region from ("emaxpos"+"eopreg"-1) to ("emaxpos"), then decreases to 0 until ("emaxpos"+"eopreg"), in units of the crystal vector "edir". Important: the change of slope of this potential must be located in the empty region, or else unphysical forces will result. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: angle1(i), i=1,ntyp Type: REAL Description: The angle expressed in degrees between the initial magnetization and the z-axis. For noncollinear calculations only; index i runs over the atom types. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: angle2(i), i=1,ntyp Type: REAL Description: The angle expressed in degrees between the projection of the initial magnetization on x-y plane and the x-axis. For noncollinear calculations only. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: constrained_magnetization Type: CHARACTER See: lambda, fixed_magnetization Default: 'none' Description: Used to perform constrained calculations in magnetic systems. Currently available choices: 'none' : no constraint 'total' : total magnetization is constrained by adding a penalty functional to the total energy: LAMBDA * SUM_{i} ( magnetization(i) - fixed_magnetization(i) )**2 where the sum over i runs over the three components of the magnetization. Lambda is a real number (see below). Noncolinear case only. Use "tot_magnetization" for LSDA 'atomic' : atomic magnetization are constrained to the defined starting magnetization adding a penalty: LAMBDA * SUM_{i,itype} ( magnetic_moment(i,itype) - mcons(i,itype) )**2 where i runs over the cartesian components (or just z in the collinear case) and itype over the types (1-ntype). mcons(:,:) array is defined from starting_magnetization, (and angle1, angle2 in the non-collinear case). lambda is a real number 'total direction' : the angle theta of the total magnetization with the z axis (theta = fixed_magnetization(3)) is constrained: LAMBDA * ( arccos(magnetization(3)/mag_tot) - theta )**2 where mag_tot is the modulus of the total magnetization. 'atomic direction' : not all the components of the atomic magnetic moment are constrained but only the cosine of angle1, and the penalty functional is: LAMBDA * SUM_{itype} ( mag_mom(3,itype)/mag_mom_tot - cos(angle1(ityp)) )**2 N.B.: symmetrization may prevent to reach the desired orientation of the magnetization. Try not to start with very highly symmetric configurations or use the nosym flag (only as a last remedy) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: fixed_magnetization(i), i=1,3 Type: REAL See: constrained_magnetization Default: 0.d0 Description: total magnetization vector (x,y,z components) to be kept fixed when "constrained_magnetization"=='total' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lambda Type: REAL See: constrained_magnetization Default: 1.d0 Description: parameter used for constrained_magnetization calculations N.B.: if the scf calculation does not converge, try to reduce lambda to obtain convergence, then restart the run with a larger lambda +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: report Type: INTEGER Default: 100 Description: Number of iterations after which the program writes all the atomic magnetic moments. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lspinorb Type: LOGICAL Description: if .TRUE. the noncollinear code can use a pseudopotential with spin-orbit. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: assume_isolated Type: CHARACTER Default: 'none' Description: Used to perform calculation assuming the system to be isolated (a molecule or a cluster in a 3D supercell). Currently available choices: 'none' : (default): regular periodic calculation w/o any correction. 'makov-payne', 'm-p', 'mp' : the Makov-Payne correction to the total energy is computed. An estimate of the vacuum level is also calculated so that eigenvalues can be properly aligned. ONLY FOR CUBIC SYSTEMS ("ibrav"=1,2,3). Theory: G.Makov, and M.C.Payne, "Periodic boundary conditions in ab initio calculations" , PRB 51, 4014 (1995). 'martyna-tuckerman', 'm-t', 'mt' : Martyna-Tuckerman correction to both total energy and scf potential. Adapted from: G.J. Martyna, and M.E. Tuckerman, "A reciprocal space based method for treating long range interactions in ab-initio and force-field-based calculation in clusters", J. Chem. Phys. 110, 2810 (1999), doi:10.1063/1.477923. 'esm' : Effective Screening Medium Method. For polarized or charged slab calculation, embeds the simulation cell within an effective semi- infinite medium in the perpendicular direction (along z). Embedding regions can be vacuum or semi-infinite metal electrodes (use "esm_bc" to choose boundary conditions). If between two electrodes, an optional electric field ('esm_efield') may be applied. Method described in M. Otani and O. Sugino, "First-principles calculations of charged surfaces and interfaces: A plane-wave nonrepeated slab approach", PRB 73, 115407 (2006). NB: - Two dimensional (xy plane) average charge density and electrostatic potentials are printed out to 'prefix.esm1'. - Requires cell with a_3 lattice vector along z, normal to the xy plane, with the slab centered around z=0. Also requires symmetry checking to be disabled along z, either by setting "nosym" = .TRUE. or by very slight displacement (i.e., 5e-4 a.u.) of the slab along z. See "esm_bc", "esm_efield", "esm_w", "esm_nfit". +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: esm_bc Type: CHARACTER See: assume_isolated Default: 'pbc' Description: If "assume_isolated" = 'esm', determines the boundary conditions used for either side of the slab. Currently available choices: 'pbc' : (default): regular periodic calculation (no ESM). 'bc1' : Vacuum-slab-vacuum (open boundary conditions). 'bc2' : Metal-slab-metal (dual electrode configuration). See also "esm_efield". 'bc3' : Vacuum-slab-metal +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: esm_w Type: REAL See: assume_isolated Default: 0.d0 Description: If "assume_isolated" = 'esm', determines the position offset [in a.u.] of the start of the effective screening region, measured relative to the cell edge. (ESM region begins at z = +/- [L_z/2 + esm_w] ). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: esm_efield Type: REAL See: assume_isolated Default: 0.d0 Description: If "assume_isolated" = 'esm' and "esm_bc" = 'bc2', gives the magnitude of the electric field [Ry/a.u.] to be applied between semi-infinite ESM electrodes. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: esm_nfit Type: INTEGER See: assume_isolated Default: 4 Description: If "assume_isolated" = 'esm', gives the number of z-grid points for the polynomial fit along the cell edge. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: fcp_mu Type: REAL See: lfcpopt Default: 0.d0 Description: If "lfcpopt" = .TRUE., gives the target Fermi energy [Ry]. One can start with appropriate total charge of the system by giving 'tot_charge'. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: vdw_corr Type: CHARACTER Default: 'none' See: london_s6, london_rcut, london_c6, london_rvdw, ts_vdw_econv_thr, ts_vdw_isolated, xdm_a1, xdm_a2 Description: Type of Van der Waals correction. Allowed values: 'grimme-d2', 'Grimme-D2', 'DFT-D', 'dft-d' : Semiempirical Grimme's DFT-D2. Optional variables: "london_s6", "london_rcut", "london_c6", "london_rvdw", S. Grimme, J. Comp. Chem. 27, 1787 (2006), doi:10.1002/jcc.20495 V. Barone et al., J. Comp. Chem. 30, 934 (2009), doi:10.1002/jcc.21112 'TS', 'ts', 'ts-vdw', 'ts-vdW', 'tkatchenko-scheffler' : Tkatchenko-Scheffler dispersion corrections with first-principle derived C6 coefficients (implemented in CP only). Optional variables: "ts_vdw_econv_thr", "ts_vdw_isolated" See A. Tkatchenko and M. Scheffler, PRL 102, 073005 (2009). 'XDM', 'xdm' : Exchange-hole dipole-moment model. Optional variables: "xdm_a1", "xdm_a2" A. D. Becke et al., J. Chem. Phys. 127, 154108 (2007), doi:10.1063/1.2795701 A. Otero de la Roza et al., J. Chem. Phys. 136, 174109 (2012), doi:10.1063/1.4705760 Note that non-local functionals (eg vdw-DF) are NOT specified here but in "input_dft" +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: london Type: LOGICAL Default: .FALSE. Status: OBSOLESCENT, same as "vdw_corr"='DFT-D' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: london_s6 Type: REAL Default: 0.75 Description: global scaling parameter for DFT-D. Default is good for PBE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: london_c6(i), i=1,ntyp Type: REAL Default: standard Grimme-D2 values Description: atomic C6 coefficient of each atom type ( if not specified default values from S. Grimme, J. Comp. Chem. 27, 1787 (2006), doi:10.1002/jcc.20495 are used; see file Modules/mm_dispersion.f90 ) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: london_rvdw(i), i=1,ntyp Type: REAL Default: standard Grimme-D2 values Description: atomic vdw radii of each atom type ( if not specified default values from S. Grimme, J. Comp. Chem. 27, 1787 (2006), doi:10.1002/jcc.20495 are used; see file Modules/mm_dispersion.f90 ) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: london_rcut Type: REAL Default: 200 Description: cutoff radius (a.u.) for dispersion interactions +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ts_vdw_econv_thr Type: REAL Default: 1.D-6 Description: Optional: controls the convergence of the vdW energy (and forces). The default value is a safe choice, likely too safe, but you do not gain much in increasing it +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ts_vdw_isolated Type: LOGICAL Default: .FALSE. Description: Optional: set it to .TRUE. when computing the Tkatchenko-Scheffler vdW energy for an isolated (non-periodic) system. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: xdm Type: LOGICAL Default: .FALSE. Status: OBSOLESCENT, same as "vdw_corr"='xdm' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: xdm_a1 Type: REAL Default: 0.6836 Description: Damping function parameter a1 (adimensional). This value should change with the exchange-correlation functional. The default corresponds to PW86PBE. For other functionals, see: http://schooner.chem.dal.ca/wiki/XDM A. Otero de la Roza, E. R. Johnson, J. Chem. Phys. 138, 204109 (2013), doi:10.1063/1.4705760 +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: xdm_a2 Type: REAL Default: 1.5045 Description: Damping function parameter a2 (angstrom). This value should change with the exchange-correlation functional. The default corresponds to PW86PBE. For other functionals, see: http://schooner.chem.dal.ca/wiki/XDM A. Otero de la Roza, E. R. Johnson, J. Chem. Phys. 138, 204109 (2013), doi:10.1063/1.4705760 +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: space_group Type: INTEGER Default: 0 Description: The number of the space group of the crystal, as given in the International Tables of Crystallography A (ITA). This allows to give in input only the inequivalent atomic positions. The positions of all the symmetry equivalent atoms are calculated by the code. Used only when the atomic positions are of type crystal_sg. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: uniqueb Type: LOGICAL Default: .FALSE. Description: Used only for monoclinic lattices. If .TRUE. the b unique ibrav (-12 or -13) are used, and symmetry equivalent positions are chosen assuming that the two fold axis or the mirror normal is parallel to the b axis. If .FALSE. it is parallel to the c axis. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: origin_choice Type: INTEGER Default: 1 Description: Used only for space groups that in the ITA allow the use of two different origins. origin_choice=1, means the first origin, while origin_choice=2 is the second origin. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: rhombohedral Type: LOGICAL Default: .TRUE. Description: Used only for rhombohedral space groups. When .TRUE. the coordinates of the inequivalent atoms are given with respect to the rhombohedral axes, when .FALSE. the coordinates of the inequivalent atoms are given with respect to the hexagonal axes. They are converted internally to the rhombohedral axes and "ibrav"=5 is used in both cases. +-------------------------------------------------------------------- ///--- BELOW VARIABLES ARE USED ONLY IF "MONOPOLE" = .TRUE. +-------------------------------------------------------------------- Variable: zmon Type: REAL Default: 0.5 Description: used only if "monopole" = .TRUE. Specifies the position of the charged plate which represents the counter charge in doped systems ("tot_charge" .ne. 0). In units of the unit cell length in z direction, "zmon" in ]0,1[ Details of the monopole potential can be found in T. Brumme, M. Calandra, F. Mauri; PRB 89, 245406 (2014). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: realxz Type: LOGICAL Default: .FALSE. Description: used only if "monopole" = .TRUE. Allows the relaxation of the system towards the charged plate. Use carefully and utilize either a layer of fixed atoms or a potential barrier ("block"=.TRUE.) to avoid the atoms moving to the position of the plate or the dipole of the dipole correction ("dipfield"=.TRUE.). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: block Type: LOGICAL Default: .FALSE. Description: used only if "monopole" = .TRUE. Adds a potential barrier to the total potential seen by the electrons to mimic a dielectric in field effect configuration and/or to avoid electrons spilling into the vacuum region for electron doping. Potential barrier is from "block_1" to "block_2" and has a height of block_height. If "dipfield" = .TRUE. then "eopreg" is used for a smooth increase and decrease of the potential barrier. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: block_1 Type: REAL Default: 0.45 Description: used only if "monopole" = .TRUE. and "block" = .TRUE. lower beginning of the potential barrier, in units of the unit cell size along z, "block_1" in ]0,1[ +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: block_2 Type: REAL Default: 0.55 Description: used only if "monopole" = .TRUE. and "block" = .TRUE. upper beginning of the potential barrier, in units of the unit cell size along z, "block_2" in ]0,1[ +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: block_height Type: REAL Default: 0.1 Description: used only if "monopole" = .TRUE. and "block" = .TRUE. Height of the potential barrier in Rydberg. +-------------------------------------------------------------------- \\\--- ===END OF NAMELIST====================================================== ======================================================================== NAMELIST: &ELECTRONS +-------------------------------------------------------------------- Variable: electron_maxstep Type: INTEGER Default: 100 Description: maximum number of iterations in a scf step +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: scf_must_converge Type: LOGICAL Default: .TRUE. Description: If .false. do not stop molecular dynamics or ionic relaxation when electron_maxstep is reached. Use with care. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: conv_thr Type: REAL Default: 1.D-6 Description: Convergence threshold for selfconsistency: estimated energy error < conv_thr (note that conv_thr is extensive, like the total energy). For non-self-consistent calculations, conv_thr is used to set the default value of the threshold (ethr) for iterative diagonalizazion: see "diago_thr_init" +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: adaptive_thr Type: LOGICAL Default: .FALSE Description: If .TRUE. this turns on the use of an adaptive "conv_thr" for the inner scf loops when using EXX. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: conv_thr_init Type: REAL Default: 1.D-3 Description: When "adaptive_thr" = .TRUE. this is the convergence threshold used for the first scf cycle. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: conv_thr_multi Type: REAL Default: 1.D-1 Description: When "adaptive_thr" = .TRUE. the convergence threshold for each scf cycle is given by: max( "conv_thr", "conv_thr_multi" * dexx ) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: mixing_mode Type: CHARACTER Default: 'plain' Description: Available options are: 'plain' : charge density Broyden mixing 'TF' : as above, with simple Thomas-Fermi screening (for highly homogeneous systems) 'local-TF' : as above, with local-density-dependent TF screening (for highly inhomogeneous systems) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: mixing_beta Type: REAL Default: 0.7D0 Description: mixing factor for self-consistency +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: mixing_ndim Type: INTEGER Default: 8 Description: number of iterations used in mixing scheme. If you are tight with memory, you may reduce it to 4 or so. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: mixing_fixed_ns Type: INTEGER Default: 0 Description: For DFT+U : number of iterations with fixed ns ( ns is the atomic density appearing in the Hubbard term ). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: diagonalization Type: CHARACTER Default: 'david' Description: Available options are: 'david' : Davidson iterative diagonalization with overlap matrix (default). Fast, may in some rare cases fail. 'cg' : Conjugate-gradient-like band-by-band diagonalization. Typically slower than 'david' but it uses less memory and is more robust (it seldom fails). 'cg-serial', 'david-serial' : OBSOLETE, use -ndiag 1 instead. The subspace diagonalization in Davidson is performed by a fully distributed-memory parallel algorithm on 4 or more processors, by default. The allocated memory scales down with the number of procs. Procs involved in diagonalization can be changed with command-line option -ndiag N. On multicore CPUs it is often convenient to let just one core per CPU to work on linear algebra. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ortho_para Type: INTEGER Default: 0 Status: OBSOLETE: use command-line option "-ndiag XX" instead +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: diago_thr_init Type: REAL Description: Convergence threshold (ethr) for iterative diagonalization (the check is on eigenvalue convergence). For scf calculations: default is 1.D-2 if starting from a superposition of atomic orbitals; 1.D-5 if starting from a charge density. During self consistency the threshold is automatically reduced (but never below 1.D-13) when approaching convergence. For non-scf calculations: default is ("conv_thr"/N elec)/10. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: diago_cg_maxiter Type: INTEGER Description: For conjugate gradient diagonalization: max number of iterations +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: diago_david_ndim Type: INTEGER Default: 4 Description: For Davidson diagonalization: dimension of workspace (number of wavefunction packets, at least 2 needed). A larger value may yield a smaller number of iterations in the algorithm but uses more memory and more CPU time in subspace diagonalization. Try "diago_david_ndim"=2 if you are tight on memory or if the time spent in subspace diagonalization (cdiaghg/rdiaghg) is significant compared to the time spent in h_psi +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: diago_full_acc Type: LOGICAL Default: .FALSE. Description: If .TRUE. all the empty states are diagonalized at the same level of accuracy of the occupied ones. Otherwise the empty states are diagonalized using a larger threshold (this should not affect total energy, forces, and other ground-state properties). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: efield Type: REAL Default: 0.D0 Description: Amplitude of the finite electric field (in Ry a.u.; 1 a.u. = 36.3609*10^10 V/m). Used only if "lelfield"==.TRUE. and if k-points ("K_POINTS" card) are not automatic. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: efield_cart(i), i=1,3 Type: REAL Default: (0.D0, 0.D0, 0.D0) Description: Finite electric field (in Ry a.u.=36.3609*10^10 V/m) in cartesian axis. Used only if "lelfield"==.TRUE. and if k-points ("K_POINTS" card) are automatic. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: efield_phase Type: CHARACTER Default: 'none' Description: Available options are: 'read' : set the zero of the electronic polarization (with "lelfield"==.true..) to the result of a previous calculation 'write' : write on disk data on electronic polarization to be read in another calculation 'none' : none of the above points +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: startingpot Type: CHARACTER Description: Available options are: 'atomic' : starting potential from atomic charge superposition (default for scf, *relax, *md) 'file' : start from existing "charge-density.xml" file in the directory specified by variables "prefix" and "outdir" For nscf and bands calculation this is the default and the only sensible possibility. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: startingwfc Type: CHARACTER Default: 'atomic+random' Description: Available options are: 'atomic' : Start from superposition of atomic orbitals. If not enough atomic orbitals are available, fill with random numbers the remaining wfcs The scf typically starts better with this option, but in some high-symmetry cases one can "loose" valence states, ending up in the wrong ground state. 'atomic+random' : As above, plus a superimposed "randomization" of atomic orbitals. Prevents the "loss" of states mentioned above. 'random' : Start from random wfcs. Slower start of scf but safe. It may also reduce memory usage in conjunction with "diagonalization"='cg'. 'file' : Start from an existing wavefunction file in the directory specified by variables "prefix" and "outdir". +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tqr Type: LOGICAL Default: .FALSE. Description: If .true., use the real-space algorithm for augmentation charges in ultrasoft pseudopotentials. Must faster execution of ultrasoft-related calculations, but numerically less accurate than the default algorithm. Use with care and after testing! +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== ======================================================================== NAMELIST: &IONS INPUT THIS NAMELIST ONLY IF "CALCULATION" == 'RELAX', 'MD', 'VC-RELAX', OR 'VC-MD' +-------------------------------------------------------------------- Variable: ion_dynamics Type: CHARACTER Description: Specify the type of ionic dynamics. For different type of calculation different possibilities are allowed and different default values apply: CASE ( "calculation" == 'relax' ) 'bfgs' : (default) use BFGS quasi-newton algorithm, based on the trust radius procedure, for structural relaxation 'damp' : use damped (quick-min Verlet) dynamics for structural relaxation Can be used for constrained optimisation: see "CONSTRAINTS" card CASE ( "calculation" == 'md' ) 'verlet' : (default) use Verlet algorithm to integrate Newton's equation. For constrained dynamics, see "CONSTRAINTS" card 'langevin' : ion dynamics is over-damped Langevin 'langevin-smc' : over-damped Langevin with Smart Monte Carlo: see R.J. Rossky, JCP, 69, 4628 (1978), doi:10.1063/1.436415 CASE ( "calculation" == 'vc-relax' ) 'bfgs' : (default) use BFGS quasi-newton algorithm; cell_dynamics must be 'bfgs' too 'damp' : use damped (Beeman) dynamics for structural relaxation CASE ( "calculation" == 'vc-md' ) 'beeman' : (default) use Beeman algorithm to integrate Newton's equation +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ion_positions Type: CHARACTER Default: 'default' Description: Available options are: 'default' : if restarting, use atomic positions read from the restart file; in all other cases, use atomic positions from standard input. 'from_input' : restart the simulation with atomic positions read from standard input, even if restarting. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: pot_extrapolation Type: CHARACTER Default: 'atomic' Description: Used to extrapolate the potential from preceding ionic steps. 'none' : no extrapolation 'atomic' : extrapolate the potential as if it was a sum of atomic-like orbitals 'first_order' : extrapolate the potential with first-order formula 'second_order' : as above, with second order formula Note: 'first_order' and 'second-order' extrapolation make sense only for molecular dynamics calculations +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wfc_extrapolation Type: CHARACTER Default: 'none' Description: Used to extrapolate the wavefunctions from preceding ionic steps. 'none' : no extrapolation 'first_order' : extrapolate the wave-functions with first-order formula. 'second_order' : as above, with second order formula. Note: 'first_order' and 'second-order' extrapolation make sense only for molecular dynamics calculations +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: remove_rigid_rot Type: LOGICAL Default: .FALSE. Description: This keyword is useful when simulating the dynamics and/or the thermodynamics of an isolated system. If set to true the total torque of the internal forces is set to zero by adding new forces that compensate the spurious interaction with the periodic images. This allows for the use of smaller supercells. BEWARE: since the potential energy is no longer consistent with the forces (it still contains the spurious interaction with the repeated images), the total energy is not conserved anymore. However the dynamical and thermodynamical properties should be in closer agreement with those of an isolated system. Also the final energy of a structural relaxation will be higher, but the relaxation itself should be faster. +-------------------------------------------------------------------- ///--- VARIABLES USED FOR MOLECULAR DYNAMICS +-------------------------------------------------------------------- Variable: ion_temperature Type: CHARACTER Default: 'not_controlled' Description: Available options are: 'rescaling' : control ionic temperature via velocity rescaling (first method) see parameters "tempw", "tolp", and "nraise" (for VC-MD only). This rescaling method is the only one currently implemented in VC-MD 'rescale-v' : control ionic temperature via velocity rescaling (second method) see parameters "tempw" and "nraise" 'rescale-T' : control ionic temperature via velocity rescaling (third method) see parameter "delta_t" 'reduce-T' : reduce ionic temperature every "nraise" steps by the (negative) value "delta_t" 'berendsen' : control ionic temperature using "soft" velocity rescaling - see parameters "tempw" and "nraise" 'andersen' : control ionic temperature using Andersen thermostat see parameters "tempw" and "nraise" 'initial' : initialize ion velocities to temperature "tempw" and leave uncontrolled further on 'not_controlled' : (default) ionic temperature is not controlled +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tempw Type: REAL Default: 300.D0 Description: Starting temperature (Kelvin) in MD runs target temperature for most thermostats. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tolp Type: REAL Default: 100.D0 Description: Tolerance for velocity rescaling. Velocities are rescaled if the run-averaged and target temperature differ more than tolp. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: delta_t Type: REAL Default: 1.D0 Description: if "ion_temperature" == 'rescale-T' : at each step the instantaneous temperature is multiplied by delta_t; this is done rescaling all the velocities. if "ion_temperature" == 'reduce-T' : every 'nraise' steps the instantaneous temperature is reduced by -"delta_t" (i.e. "delta_t" < 0 is added to T) The instantaneous temperature is calculated at the end of every ionic move and BEFORE rescaling. This is the temperature reported in the main output. For "delta_t" < 0, the actual average rate of heating or cooling should be roughly C*delta_t/(nraise*dt) (C=1 for an ideal gas, C=0.5 for a harmonic solid, theorem of energy equipartition between all quadratic degrees of freedom). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nraise Type: INTEGER Default: 1 Description: if "ion_temperature" == 'reduce-T' : every "nraise" steps the instantaneous temperature is reduced by -"delta_t" (i.e. "delta_t" is added to the temperature) if "ion_temperature" == 'rescale-v' : every "nraise" steps the average temperature, computed from the last "nraise" steps, is rescaled to "tempw" if "ion_temperature" == 'rescaling' and "calculation" == 'vc-md' : every "nraise" steps the instantaneous temperature is rescaled to "tempw" if "ion_temperature" == 'berendsen' : the "rise time" parameter is given in units of the time step: tau = nraise*dt, so dt/tau = 1/nraise if "ion_temperature" == 'andersen' : the "collision frequency" parameter is given as nu=1/tau defined above, so nu*dt = 1/nraise +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: refold_pos Type: LOGICAL Default: .FALSE. Description: This keyword applies only in the case of molecular dynamics or damped dynamics. If true the ions are refolded at each step into the supercell. +-------------------------------------------------------------------- \\\--- ///--- KEYWORDS USED ONLY IN BFGS CALCULATIONS +-------------------------------------------------------------------- Variable: upscale Type: REAL Default: 100.D0 Description: Max reduction factor for "conv_thr" during structural optimization "conv_thr" is automatically reduced when the relaxation approaches convergence so that forces are still accurate, but "conv_thr" will not be reduced to less that "conv_thr" / "upscale". +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: bfgs_ndim Type: INTEGER Default: 1 Description: Number of old forces and displacements vectors used in the PULAY mixing of the residual vectors obtained on the basis of the inverse hessian matrix given by the BFGS algorithm. When "bfgs_ndim" = 1, the standard quasi-Newton BFGS method is used. (bfgs only) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: trust_radius_max Type: REAL Default: 0.8D0 Description: Maximum ionic displacement in the structural relaxation. (bfgs only) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: trust_radius_min Type: REAL Default: 1.D-3 Description: Minimum ionic displacement in the structural relaxation BFGS is reset when "trust_radius" < "trust_radius_min". (bfgs only) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: trust_radius_ini Type: REAL Default: 0.5D0 Description: Initial ionic displacement in the structural relaxation. (bfgs only) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: w_1 Type: REAL Default: 0.01D0 See: w_2 +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: w_2 Type: REAL Default: 0.5D0 Description: Parameters used in line search based on the Wolfe conditions. (bfgs only) +-------------------------------------------------------------------- \\\--- ===END OF NAMELIST====================================================== ======================================================================== NAMELIST: &CELL INPUT THIS NAMELIST ONLY IF "CALCULATION" == 'VC-RELAX' OR 'VC-MD' +-------------------------------------------------------------------- Variable: cell_dynamics Type: CHARACTER Description: Specify the type of dynamics for the cell. For different type of calculation different possibilities are allowed and different default values apply: CASE ( "calculation" == 'vc-relax' ) 'none' : no dynamics 'sd' : steepest descent ( not implemented ) 'damp-pr' : damped (Beeman) dynamics of the Parrinello-Rahman extended lagrangian 'damp-w' : damped (Beeman) dynamics of the new Wentzcovitch extended lagrangian 'bfgs' : BFGS quasi-newton algorithm (default) "ion_dynamics" must be 'bfgs' too CASE ( "calculation" == 'vc-md' ) 'none' : no dynamics 'pr' : (Beeman) molecular dynamics of the Parrinello-Rahman extended lagrangian 'w' : (Beeman) molecular dynamics of the new Wentzcovitch extended lagrangian +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: press Type: REAL Default: 0.D0 Description: Target pressure [KBar] in a variable-cell md or relaxation run. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wmass Type: REAL Default: 0.75*Tot_Mass/pi**2 for Parrinello-Rahman MD; 0.75*Tot_Mass/pi**2/Omega**(2/3) for Wentzcovitch MD Description: Fictitious cell mass [amu] for variable-cell simulations (both 'vc-md' and 'vc-relax') +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: cell_factor Type: REAL Default: 2.0 for variable-cell calculations, 1.0 otherwise Description: Used in the construction of the pseudopotential tables. It should exceed the maximum linear contraction of the cell during a simulation. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: press_conv_thr Type: REAL Default: 0.5D0 Kbar Description: Convergence threshold on the pressure for variable cell relaxation ('vc-relax' : note that the other convergence thresholds for ionic relaxation apply as well). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: cell_dofree Type: CHARACTER Default: 'all' Description: Select which of the cell parameters should be moved: 'all' : all axis and angles are moved 'x' : only the x component of axis 1 (v1_x) is moved 'y' : only the y component of axis 2 (v2_y) is moved 'z' : only the z component of axis 3 (v3_z) is moved 'xy' : only v1_x and v2_y are moved 'xz' : only v1_x and v3_z are moved 'yz' : only v2_y and v3_z are moved 'xyz' : only v1_x, v2_y, v3_z are moved 'shape' : all axis and angles, keeping the volume fixed 'volume' : the volume changes, keeping all angles fixed (i.e. only celldm(1) changes) '2Dxy' : only x and y components are allowed to change '2Dshape' : as above, keeping the area in xy plane fixed BEWARE: if axis are not orthogonal, some of these options do not work (symmetry is broken). If you are not happy with them, edit subroutine init_dofree in file Modules/cell_base.f90 +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== ======================================================================== CARD: ATOMIC_SPECIES ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// ATOMIC_SPECIES X(1) Mass_X(1) PseudoPot_X(1) X(2) Mass_X(2) PseudoPot_X(2) . . . X(ntyp) Mass_X(ntyp) PseudoPot_X(ntyp) ///////////////////////////////////////// DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Variable: X Type: CHARACTER Description: label of the atom. Acceptable syntax: chemical symbol X (1 or 2 characters, case-insensitive) or chemical symbol plus a number or a letter, as in "Xn" (e.g. Fe1) or "X_*" or "X-*" (e.g. C1, C_h; max total length cannot exceed 3 characters) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: Mass_X Type: REAL Description: mass of the atomic species [amu: mass of C = 12] Used only when performing Molecular Dynamics run or structural optimization runs using Damped MD. Not actually used in all other cases (but stored in data files, so phonon calculations will use these values unless other values are provided) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: PseudoPot_X Type: CHARACTER Description: File containing PP for this species. The pseudopotential file is assumed to be in the new UPF format. If it doesn't work, the pseudopotential format is determined by the file name: *.vdb or *.van Vanderbilt US pseudopotential code *.RRKJ3 Andrea Dal Corso's code (old format) none of the above old PWscf norm-conserving format +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: ATOMIC_POSITIONS { alat | bohr | angstrom | crystal | crystal_sg } ________________________________________________________________________ * IF calculation == 'bands' OR calculation == 'nscf' : Specified atomic positions will be IGNORED and those from the previous scf calculation will be used instead !!! * ELSE : ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// ATOMIC_POSITIONS { alat | bohr | angstrom | crystal | crystal_sg } X(1) x(1) y(1) z(1) { if_pos(1)(1) if_pos(2)(1) if_pos(3)(1) } X(2) x(2) y(2) z(2) { if_pos(1)(2) if_pos(2)(2) if_pos(3)(2) } . . . X(nat) x(nat) y(nat) z(nat) { if_pos(1)(nat) if_pos(2)(nat) if_pos(3)(nat) } ///////////////////////////////////////// ENDIF ________________________________________________________________________ DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Card's flags: { alat | bohr | angstrom | crystal | crystal_sg } Default: (DEPRECATED) alat Description: Units for ATOMIC_POSITIONS: alat : atomic positions are in cartesian coordinates, in units of the lattice parameter (either celldm(1) or A). If no option is specified, 'alat' is assumed; not specifying units is DEPRECATED and will no longer be allowed in the future bohr : atomic positions are in cartesian coordinate, in atomic units (i.e. Bohr radii) angstrom : atomic positions are in cartesian coordinates, in Angstrom crystal : atomic positions are in crystal coordinates, i.e. in relative coordinates of the primitive lattice vectors as defined either in card "CELL_PARAMETERS" or via the ibrav + celldm / a,b,c... variables crystal_sg : atomic positions are in crystal coordinates, i.e. in relative coordinates of the primitive lattice. This option differs from the previous one because in this case only the symmetry inequivalent atoms are given. The variable space_group must indicate the space group number used to find the symmetry equivalent atoms. The other variables that control this option are uniqueb, origin_choice, and rhombohedral. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: X Type: CHARACTER Description: label of the atom as specified in "ATOMIC_SPECIES" +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: x, y, z Type: REAL Description: atomic positions NOTE: each atomic coordinate can also be specified as a simple algebraic expression. To be interpreted correctly expression must NOT contain any blank space and must NOT start with a "+" sign. The available expressions are: + (plus), - (minus), / (division), * (multiplication), ^ (power) All numerical constants included are considered as double-precision numbers; i.e. 1/2 is 0.5, not zero. Other functions, such as sin, sqrt or exp are not available, although sqrt can be replaced with ^(1/2). Example: C 1/3 1/2*3^(-1/2) 0 is equivalent to C 0.333333 0.288675 0.000000 Please note that this feature is NOT supported by XCrysDen (which will display a wrong structure, or nothing at all). When atomic positions are of type crystal_sg coordinates can be given in the following four forms (Wyckoff positions): C 1a C 8g x C 24m x y C 48n x y z The first form must be used when the Wyckoff letter determines uniquely all three coordinates, forms 2,3,4 when the Wyckoff letter and 1,2,3 coordinates respectively are needed. The forms: C 8g x x x C 24m x x y are not allowed, but C x x x C x x y C x y z are correct. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: if_pos(1), if_pos(2), if_pos(3) Type: INTEGER Default: 1 Description: component i of the force for this atom is multiplied by if_pos(i), which must be either 0 or 1. Used to keep selected atoms and/or selected components fixed in MD dynamics or structural optimization run. With crystal_sg atomic coordinates the constraints are copied in all equivalent atoms. +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: K_POINTS { tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c } ________________________________________________________________________ * IF tpiba OR crystal OR tpiba_b OR crystal_b OR tpiba_c OR crystal_c : ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// K_POINTS tpiba | crystal | tpiba_b | crystal_b | tpiba_c | crystal_c nks xk_x(1) xk_y(1) xk_z(1) wk(1) xk_x(2) xk_y(2) xk_z(2) wk(2) . . . xk_x(nks) xk_y(nks) xk_z(nks) wk(nks) ///////////////////////////////////////// * ELSE IF automatic : ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// K_POINTS automatic nk1 nk2 nk3 sk1 sk2 sk3 ///////////////////////////////////////// * ELSE IF gamma : ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// K_POINTS gamma ///////////////////////////////////////// ENDIF ________________________________________________________________________ DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Card's flags: { tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c } Default: tbipa Description: K_POINTS options are: tpiba : read k-points in cartesian coordinates, in units of 2 pi/a (default) automatic : automatically generated uniform grid of k-points, i.e, generates ( nk1, nk2, nk3 ) grid with ( sk1, sk2, sk3 ) offset. nk1, nk2, nk3 as in Monkhorst-Pack grids k1, k2, k3 must be 0 ( no offset ) or 1 ( grid displaced by half a grid step in the corresponding direction ) BEWARE: only grids having the full symmetry of the crystal work with tetrahedra. Some grids with offset may not work. crystal : read k-points in crystal coordinates, i.e. in relative coordinates of the reciprocal lattice vectors gamma : use k = 0 (no need to list k-point specifications after card) In this case wavefunctions can be chosen as real, and specialized subroutines optimized for calculations at the gamma point are used (memory and cpu requirements are reduced by approximately one half). tpiba_b : Used for band-structure plots. k-points are in units of 2 pi/a. nks points specify nks-1 lines in reciprocal space. Every couple of points identifies the initial and final point of a line. pw.x generates N intermediate points of the line where N is the weight of the first point. crystal_b : As tpiba_b, but k-points are in crystal coordinates. tpiba_c : Used for band-structure contour plots. k-points are in units of 2 pi/a. nks must be 3. 3 k-points k_0, k_1, and k_2 specify a rectangle in reciprocal space of vertices k_0, k_1, k_2, k_1 + k_2 - k_0: k_0 + \alpha (k_1-k_0)+ \beta (k_2-k_0) with 0 <\alpha,\beta < 1. The code produces a uniform mesh n1 x n2 k points in this rectangle. n1 and n2 are the weights of k_1 and k_2. The weight of k_0 is not used. crystal_c : As tpiba_c, but k-points are in crystal coordinates. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nks Type: INTEGER Description: Number of supplied special k-points. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: xk_x, xk_y, xk_z, wk Type: REAL Description: Special k-points (xk_x/y/z) in the irreducible Brillouin Zone (IBZ) of the lattice (with all symmetries) and weights (wk) See the literature for lists of special points and the corresponding weights. If the symmetry is lower than the full symmetry of the lattice, additional points with appropriate weights are generated. Notice that such procedure assumes that ONLY k-points in the IBZ are provided in input In a non-scf calculation, weights do not affect the results. If you just need eigenvalues and eigenvectors (for instance, for a band-structure plot), weights can be set to any value (for instance all equal to 1). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: nk1, nk2, nk3 Type: INTEGER Description: These parameters specify the k-point grid (nk1 x nk2 x nk3) as in Monkhorst-Pack grids. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: sk1, sk2, sk3 Type: INTEGER Description: The grid offsets; sk1, sk2, sk3 must be 0 ( no offset ) or 1 ( grid displaced by half a grid step in the corresponding direction ). +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: CELL_PARAMETERS { alat | bohr | angstrom } OPTIONAL CARD, NEEDED ONLY IF "IBRAV" == 0 IS SPECIFIED, IGNORED OTHERWISE ! ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// CELL_PARAMETERS { alat | bohr | angstrom } v1(1) v1(2) v1(3) v2(1) v2(2) v2(3) v3(1) v3(2) v3(3) ///////////////////////////////////////// DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Card's flags: { alat | bohr | angstrom } Description: Unit for lattice vectors; options are: 'bohr' / 'angstrom': lattice vectors in bohr-radii / angstrom. In this case the lattice parameter alat = sqrt(v1*v1). 'alat' / nothing specified: lattice vectors in units of the lattice parameter (either "celldm"(1) or "A"). Not specifying units is DEPRECATED and will not be allowed in the future. If neither unit nor lattice parameter are specified, 'bohr' is assumed - DEPRECATED, will no longer be allowed +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: v1, v2, v3 Type: REAL Description: Crystal lattice vectors (in cartesian axis): v1(1) v1(2) v1(3) ... 1st lattice vector v2(1) v2(2) v2(3) ... 2nd lattice vector v3(1) v3(2) v3(3) ... 3rd lattice vector +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: CONSTRAINTS OPTIONAL CARD, USED FOR CONSTRAINED DYNAMICS OR CONSTRAINED OPTIMISATIONS (ONLY IF "ION_DYNAMICS"=='DAMP' OR 'VERLET', VARIABLE-CELL EXCEPTED) When this card is present the SHAKE algorithm is automatically used. ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// CONSTRAINTS nconstr { constr_tol } constr_type(1) constr(1)(1) constr(2)(1) [ constr(3)(1) constr(4)(1) ] { constr_target(1) } constr_type(2) constr(1)(2) constr(2)(2) [ constr(3)(2) constr(4)(2) ] { constr_target(2) } . . . constr_type(nconstr) constr(1)(nconstr) constr(2)(nconstr) [ constr(3)(nconstr) constr(4)(nconstr) ] { constr_target(nconstr) } ///////////////////////////////////////// DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Variable: nconstr Type: INTEGER Description: Number of constraints. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: constr_tol Type: REAL Description: Tolerance for keeping the constraints satisfied. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: constr_type Type: CHARACTER Description: Type of constraint : 'type_coord' : constraint on global coordination-number, i.e. the average number of atoms of type B surrounding the atoms of type A. The coordination is defined by using a Fermi-Dirac. (four indexes must be specified). 'atom_coord' : constraint on local coordination-number, i.e. the average number of atoms of type A surrounding a specific atom. The coordination is defined by using a Fermi-Dirac. (four indexes must be specified). 'distance' : constraint on interatomic distance (two atom indexes must be specified). 'planar_angle' : constraint on planar angle (three atom indexes must be specified). 'torsional_angle' : constraint on torsional angle (four atom indexes must be specified). 'bennett_proj' : constraint on the projection onto a given direction of the vector defined by the position of one atom minus the center of mass of the others. G. Roma, J.P. Crocombette: J. Nucl. Mater. 403, 32 (2010), doi:10.1016/j.jnucmat.2010.06.001 +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: constr(1), constr(2), constr(3), constr(4) Description: These variables have different meanings for different constraint types: @b 'type_coord' : @i constr(1) is the first index of the atomic type involved @i constr(2) is the second index of the atomic type involved @i constr(3) is the cut-off radius for estimating the coordination @i constr(4) is a smoothing parameter @b 'atom_coord' : @i constr(1) is the atom index of the atom with constrained coordination @i constr(2) is the index of the atomic type involved in the coordination @i constr(3) is the cut-off radius for estimating the coordination @i constr(4) is a smoothing parameter @b 'distance' : atoms indices object of the constraint, as they appear in the @ref ATOMIC_POSITIONS card @b 'planar_angle', @b 'torsional_angle' : atoms indices object of the constraint, as they appear in the @ref ATOMIC_POSITIONS card (beware the order) @b 'bennett_proj' : @i constr(1) is the index of the atom whose position is constrained. @i constr(2:4) are the three coordinates of the vector that specifies the constraint direction. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: constr_target Type: REAL Description: Target for the constrain ( angles are specified in degrees ). This variable is optional. +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: OCCUPATIONS OPTIONAL CARD, USED ONLY IF "OCCUPATIONS" == 'FROM_INPUT', IGNORED OTHERWISE ! ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// OCCUPATIONS f_inp1(1) f_inp1(2) . . . f_inp1(nbnd) [ f_inp2(1) f_inp2(2) . . . f_inp2(nbnd) ] ///////////////////////////////////////// DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Variable: f_inp1 Type: REAL Description: Occupations of individual states (MAX 10 PER ROW). For spin-polarized calculations, these are majority spin states. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: f_inp2 Type: REAL Description: Occupations of minority spin states (MAX 10 PER ROW) To be specified only for spin-polarized calculations. +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: ATOMIC_FORCES OPTIONAL CARD USED TO SPECIFY EXTERNAL FORCES ACTING ON ATOMS. BEWARE: if the sum of external forces is not zero, the center of mass of the system will move ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// ATOMIC_FORCES X(1) fx(1) fy(1) fz(1) X(2) fx(2) fy(2) fz(2) . . . X(nat) fx(nat) fy(nat) fz(nat) ///////////////////////////////////////// DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Variable: X Type: CHARACTER Description: label of the atom as specified in "ATOMIC_SPECIES" +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: fx, fy, fz Type: REAL Description: external force on atom X (cartesian components, Ry/a.u. units) +-------------------------------------------------------------------- ===END OF CARD========================================================== This file has been created by helpdoc utility on Fri Mar 03 06:56:38 UTC 2017