Program PWSCF v.5.3.0 starts on 12Apr2016 at 18:23:42 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 4 processors R & G space division: proc/nbgrp/npool/nimage = 4 Waiting for input... Reading input from standard input Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 94 94 30 1664 1664 294 Max 97 97 31 1665 1665 297 Sum 379 379 121 6657 6657 1179 bravais-lattice index = 4 lattice parameter (alat) = 5.8260 a.u. unit-cell volume = 195.5871 (a.u.)^3 number of atoms/cell = 3 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 40.0000 Ry charge density cutoff = 160.0000 Ry convergence threshold = 1.0E-09 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0 0) celldm(1)= 5.826025 celldm(2)= 0.000000 celldm(3)= 1.142069 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 1.142069 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.577350 0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 0.000000 0.875604 ) PseudoPot. # 1 for Mg read from file: ../../pp/Mg.pz-n-vbc.UPF MD5 check sum: 51ac066f8f4bf7da60c51ce0af5caf3d Pseudo is Norm-conserving + core correction, Zval = 2.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 PseudoPot. # 2 for B read from file: ../../pp/B.pz-vbc.UPF MD5 check sum: b59596b5d63edeea6a2b3a0beace49c5 Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 157 points, 1 beta functions with: l(1) = 0 atomic species valence mass pseudopotential Mg 2.00 24.30500 Mg( 1.00) B 3.00 10.81100 B ( 1.00) 24 Sym. Ops., with inversion, found s frac. trans. isym = 1 identity cryst. s( 1) = ( 1 0 0 ) ( 0 1 0 ) ( 0 0 1 ) cart. s( 1) = ( 1.0000000 0.0000000 0.0000000 ) ( 0.0000000 1.0000000 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) isym = 2 180 deg rotation - cart. axis [0,0,1] cryst. s( 2) = ( -1 0 0 ) ( 0 -1 0 ) ( 0 0 1 ) cart. s( 2) = ( -1.0000000 0.0000000 0.0000000 ) ( 0.0000000 -1.0000000 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) isym = 3 180 deg rotation - cart. axis [0,1,0] cryst. s( 3) = ( -1 0 0 ) ( 1 1 0 ) ( 0 0 -1 ) cart. s( 3) = ( -1.0000000 0.0000000 0.0000000 ) ( 0.0000000 1.0000000 0.0000000 ) ( 0.0000000 0.0000000 -1.0000000 ) isym = 4 180 deg rotation - cart. axis [1,0,0] cryst. s( 4) = ( 1 0 0 ) ( -1 -1 0 ) ( 0 0 -1 ) cart. s( 4) = ( 1.0000000 0.0000000 0.0000000 ) ( 0.0000000 -1.0000000 0.0000000 ) ( 0.0000000 0.0000000 -1.0000000 ) isym = 5 60 deg rotation - cryst. axis [0,0,1] cryst. s( 5) = ( 1 1 0 ) ( -1 0 0 ) ( 0 0 1 ) cart. s( 5) = ( 0.5000000 -0.8660254 0.0000000 ) ( 0.8660254 0.5000000 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) isym = 6 60 deg rotation - cryst. axis [0,0,-1] cryst. s( 6) = ( 0 -1 0 ) ( 1 1 0 ) ( 0 0 1 ) cart. s( 6) = ( 0.5000000 0.8660254 0.0000000 ) ( -0.8660254 0.5000000 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) isym = 7 120 deg rotation - cryst. axis [0,0,1] cryst. s( 7) = ( 0 1 0 ) ( -1 -1 0 ) ( 0 0 1 ) cart. s( 7) = ( -0.5000000 -0.8660254 0.0000000 ) ( 0.8660254 -0.5000000 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) isym = 8 120 deg rotation - cryst. axis [0,0,-1] cryst. s( 8) = ( -1 -1 0 ) ( 1 0 0 ) ( 0 0 1 ) cart. s( 8) = ( -0.5000000 0.8660254 0.0000000 ) ( -0.8660254 -0.5000000 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) isym = 9 180 deg rotation - cryst. axis [1,-1,0] cryst. s( 9) = ( 0 -1 0 ) ( -1 0 0 ) ( 0 0 -1 ) cart. s( 9) = ( 0.5000000 -0.8660254 0.0000000 ) ( -0.8660254 -0.5000000 0.0000000 ) ( 0.0000000 0.0000000 -1.0000000 ) isym = 10 180 deg rotation - cryst. axis [2,1,0] cryst. s(10) = ( 1 1 0 ) ( 0 -1 0 ) ( 0 0 -1 ) cart. s(10) = ( 0.5000000 0.8660254 0.0000000 ) ( 0.8660254 -0.5000000 0.0000000 ) ( 0.0000000 0.0000000 -1.0000000 ) isym = 11 180 deg rotation - cryst. axis [0,1,0] cryst. s(11) = ( -1 -1 0 ) ( 0 1 0 ) ( 0 0 -1 ) cart. s(11) = ( -0.5000000 -0.8660254 0.0000000 ) ( -0.8660254 0.5000000 0.0000000 ) ( 0.0000000 0.0000000 -1.0000000 ) isym = 12 180 deg rotation - cryst. axis [1,1,0] cryst. s(12) = ( 0 1 0 ) ( 1 0 0 ) ( 0 0 -1 ) cart. s(12) = ( -0.5000000 0.8660254 0.0000000 ) ( 0.8660254 0.5000000 0.0000000 ) ( 0.0000000 0.0000000 -1.0000000 ) isym = 13 inversion cryst. s(13) = ( -1 0 0 ) ( 0 -1 0 ) ( 0 0 -1 ) cart. s(13) = ( -1.0000000 0.0000000 0.0000000 ) ( 0.0000000 -1.0000000 0.0000000 ) ( 0.0000000 0.0000000 -1.0000000 ) isym = 14 inv. 180 deg rotation - cart. axis [0,0,1] cryst. s(14) = ( 1 0 0 ) ( 0 1 0 ) ( 0 0 -1 ) cart. s(14) = ( 1.0000000 0.0000000 0.0000000 ) ( 0.0000000 1.0000000 0.0000000 ) ( 0.0000000 0.0000000 -1.0000000 ) isym = 15 inv. 180 deg rotation - cart. axis [0,1,0] cryst. s(15) = ( 1 0 0 ) ( -1 -1 0 ) ( 0 0 1 ) cart. s(15) = ( 1.0000000 0.0000000 0.0000000 ) ( 0.0000000 -1.0000000 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) isym = 16 inv. 180 deg rotation - cart. axis [1,0,0] cryst. s(16) = ( -1 0 0 ) ( 1 1 0 ) ( 0 0 1 ) cart. s(16) = ( -1.0000000 0.0000000 0.0000000 ) ( 0.0000000 1.0000000 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) isym = 17 inv. 60 deg rotation - cryst. axis [0,0,1] cryst. s(17) = ( -1 -1 0 ) ( 1 0 0 ) ( 0 0 -1 ) cart. s(17) = ( -0.5000000 0.8660254 0.0000000 ) ( -0.8660254 -0.5000000 0.0000000 ) ( 0.0000000 0.0000000 -1.0000000 ) isym = 18 inv. 60 deg rotation - cryst. axis [0,0,-1] cryst. s(18) = ( 0 1 0 ) ( -1 -1 0 ) ( 0 0 -1 ) cart. s(18) = ( -0.5000000 -0.8660254 0.0000000 ) ( 0.8660254 -0.5000000 0.0000000 ) ( 0.0000000 0.0000000 -1.0000000 ) isym = 19 inv. 120 deg rotation - cryst. axis [0,0,1] cryst. s(19) = ( 0 -1 0 ) ( 1 1 0 ) ( 0 0 -1 ) cart. s(19) = ( 0.5000000 0.8660254 0.0000000 ) ( -0.8660254 0.5000000 0.0000000 ) ( 0.0000000 0.0000000 -1.0000000 ) isym = 20 inv. 120 deg rotation - cryst. axis [0,0,-1] cryst. s(20) = ( 1 1 0 ) ( -1 0 0 ) ( 0 0 -1 ) cart. s(20) = ( 0.5000000 -0.8660254 0.0000000 ) ( 0.8660254 0.5000000 0.0000000 ) ( 0.0000000 0.0000000 -1.0000000 ) isym = 21 inv. 180 deg rotation - cryst. axis [1,-1,0] cryst. s(21) = ( 0 1 0 ) ( 1 0 0 ) ( 0 0 1 ) cart. s(21) = ( -0.5000000 0.8660254 0.0000000 ) ( 0.8660254 0.5000000 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) isym = 22 inv. 180 deg rotation - cryst. axis [2,1,0] cryst. s(22) = ( -1 -1 0 ) ( 0 1 0 ) ( 0 0 1 ) cart. s(22) = ( -0.5000000 -0.8660254 0.0000000 ) ( -0.8660254 0.5000000 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) isym = 23 inv. 180 deg rotation - cryst. axis [0,1,0] cryst. s(23) = ( 1 1 0 ) ( 0 -1 0 ) ( 0 0 1 ) cart. s(23) = ( 0.5000000 0.8660254 0.0000000 ) ( 0.8660254 -0.5000000 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) isym = 24 inv. 180 deg rotation - cryst. axis [1,1,0] cryst. s(24) = ( 0 -1 0 ) ( -1 0 0 ) ( 0 0 1 ) cart. s(24) = ( 0.5000000 -0.8660254 0.0000000 ) ( -0.8660254 -0.5000000 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) point group D_6h(6/mmm) there are 12 classes the character table: E 2C6 2C3 C2 3C2' 3C2'' i 2S3 2S6 s_h 3s_d 3s_v A_1g 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 A_2g 1.00 1.00 1.00 1.00 -1.00 -1.00 1.00 1.00 1.00 1.00 -1.00 -1.00 B_1g 1.00 -1.00 1.00 -1.00 1.00 -1.00 1.00 -1.00 1.00 -1.00 1.00 -1.00 B_2g 1.00 -1.00 1.00 -1.00 -1.00 1.00 1.00 -1.00 1.00 -1.00 -1.00 1.00 E_1g 2.00 1.00 -1.00 -2.00 0.00 0.00 2.00 1.00 -1.00 -2.00 0.00 0.00 E_2g 2.00 -1.00 -1.00 2.00 0.00 0.00 2.00 -1.00 -1.00 2.00 0.00 0.00 A_1u 1.00 1.00 1.00 1.00 1.00 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 A_2u 1.00 1.00 1.00 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 1.00 1.00 B_1u 1.00 -1.00 1.00 -1.00 1.00 -1.00 -1.00 1.00 -1.00 1.00 -1.00 1.00 B_2u 1.00 -1.00 1.00 -1.00 -1.00 1.00 -1.00 1.00 -1.00 1.00 1.00 -1.00 E_1u 2.00 1.00 -1.00 -2.00 0.00 0.00 -2.00 -1.00 1.00 2.00 0.00 0.00 E_2u 2.00 -1.00 -1.00 2.00 0.00 0.00 -2.00 1.00 1.00 -2.00 0.00 0.00 the symmetry operations in each class and the name of the first element: E 1 identity 2C6 5 6 60 deg rotation - cryst. axis [0,0,1] 2C3 7 8 120 deg rotation - cryst. axis [0,0,1] C2 2 180 deg rotation - cart. axis [0,0,1] 3C2' 4 12 11 180 deg rotation - cart. axis [1,0,0] 3C2'' 3 9 10 180 deg rotation - cart. axis [0,1,0] i 13 inversion 2S3 17 18 inv. 60 deg rotation - cryst. axis [0,0,1] 2S6 19 20 inv. 120 deg rotation - cryst. axis [0,0,1] s_h 14 inv. 180 deg rotation - cart. axis [0,0,1] 3s_d 16 24 23 inv. 180 deg rotation - cart. axis [1,0,0] 3s_v 15 21 22 inv. 180 deg rotation - cart. axis [0,1,0] Cartesian axes site n. atom positions (alat units) 1 Mg tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 B tau( 2) = ( 0.0000000 0.5773503 0.5710347 ) 3 B tau( 3) = ( 0.5000000 0.2886751 0.5710347 ) Crystallographic axes site n. atom positions (cryst. coord.) 1 Mg tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 B tau( 2) = ( 0.3333333 0.6666667 0.5000000 ) 3 B tau( 3) = ( 0.6666667 0.3333333 0.5000000 ) number of k points= 6 Methfessel-Paxton smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0740741 k( 2) = ( 0.0000000 0.0000000 0.2918678), wk = 0.1481481 k( 3) = ( 0.0000000 0.3849002 0.0000000), wk = 0.4444444 k( 4) = ( 0.0000000 0.3849002 0.2918678), wk = 0.8888889 k( 5) = ( 0.3333333 0.5773503 0.0000000), wk = 0.1481481 k( 6) = ( 0.3333333 0.5773503 0.2918678), wk = 0.2962963 cryst. coord. k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0740741 k( 2) = ( 0.0000000 0.0000000 0.3333333), wk = 0.1481481 k( 3) = ( 0.0000000 0.3333333 0.0000000), wk = 0.4444444 k( 4) = ( 0.0000000 0.3333333 0.3333333), wk = 0.8888889 k( 5) = ( 0.3333333 0.3333333 0.0000000), wk = 0.1481481 k( 6) = ( 0.3333333 0.3333333 0.3333333), wk = 0.2962963 Dense grid: 6657 G-vectors FFT dimensions: ( 24, 24, 27) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.03 Mb ( 215, 8) NL pseudopotentials 0.02 Mb ( 215, 6) Each V/rho on FFT grid 0.06 Mb ( 4032) Each G-vector array 0.01 Mb ( 1665) G-vector shells 0.00 Mb ( 338) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.10 Mb ( 215, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 6, 8) Arrays for rho mixing 0.49 Mb ( 4032, 8) Initial potential from superposition of free atoms starting charge 7.99827, renormalised to 8.00000 Starting wfc are 12 randomized atomic wfcs total cpu time spent up to now is 0.1 secs Self-consistent Calculation iteration # 1 ecut= 40.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.3 total cpu time spent up to now is 0.2 secs total energy = -13.47126821 Ry Harris-Foulkes estimate = -13.69289486 Ry estimated scf accuracy < 0.32326494 Ry iteration # 2 ecut= 40.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.04E-03, avg # of iterations = 2.8 total cpu time spent up to now is 0.2 secs total energy = -13.55868552 Ry Harris-Foulkes estimate = -13.57568192 Ry estimated scf accuracy < 0.02998839 Ry iteration # 3 ecut= 40.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.75E-04, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs total energy = -13.56425524 Ry Harris-Foulkes estimate = -13.56427627 Ry estimated scf accuracy < 0.00026404 Ry iteration # 4 ecut= 40.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.30E-06, avg # of iterations = 3.5 total cpu time spent up to now is 0.4 secs total energy = -13.56430535 Ry Harris-Foulkes estimate = -13.56430555 Ry estimated scf accuracy < 0.00000268 Ry iteration # 5 ecut= 40.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.35E-08, avg # of iterations = 2.2 total cpu time spent up to now is 0.4 secs total energy = -13.56430605 Ry Harris-Foulkes estimate = -13.56430604 Ry estimated scf accuracy < 0.00000006 Ry iteration # 6 ecut= 40.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.18E-10, avg # of iterations = 1.7 total cpu time spent up to now is 0.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 823 PWs) bands (ev): -4.8621 4.5223 7.9193 7.9193 9.1774 13.7913 13.7913 15.6720 occupation numbers 1.0000 1.0000 1.0179 1.0179 0.0000 0.0000 0.0000 0.0000 k = 0.0000 0.0000 0.2919 ( 842 PWs) bands (ev): -4.0086 0.9521 8.1784 8.1784 14.1537 14.1537 14.9459 15.5161 occupation numbers 1.0000 1.0000 0.4910 0.4910 0.0000 0.0000 0.0000 0.0000 k = 0.0000 0.3849 0.0000 ( 838 PWs) bands (ev): -2.9652 2.4588 5.7845 6.4012 10.8021 12.5241 12.7482 16.1060 occupation numbers 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 k = 0.0000 0.3849 0.2919 ( 835 PWs) bands (ev): -2.1907 2.8818 3.1270 6.0438 9.4977 13.1188 16.4554 17.8105 occupation numbers 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 k = 0.3333 0.5774 0.0000 ( 840 PWs) bands (ev): 0.3111 0.3111 1.6240 9.4092 9.4092 13.6713 13.6713 16.2806 occupation numbers 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 k = 0.3333 0.5774 0.2919 ( 843 PWs) bands (ev): 0.9736 0.9736 2.0974 6.2420 6.2420 11.5947 18.2937 18.2937 occupation numbers 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 the Fermi energy is 8.1755 ev ! total energy = -13.56430605 Ry Harris-Foulkes estimate = -13.56430605 Ry estimated scf accuracy < 7.0E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 4.60713540 Ry hartree contribution = 1.97254280 Ry xc contribution = -5.73772000 Ry ewald contribution = -14.40556183 Ry smearing contrib. (-TS) = -0.00070242 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.00000000 0.00000000 0.00000000 atom 3 type 2 force = 0.00000000 0.00000000 0.00000000 The non-local contrib. to forces atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.00000000 0.00000000 0.00000000 atom 3 type 2 force = 0.00000000 0.00000000 0.00000000 The ionic contribution to forces atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.00000001 0.00000000 0.00000000 atom 3 type 2 force = -0.00000001 0.00000000 0.00000000 The local contribution to forces atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.00000000 0.00000000 0.00000000 atom 3 type 2 force = 0.00000000 0.00000000 0.00000000 The core correction contribution to forces atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.00000000 0.00000000 0.00000000 atom 3 type 2 force = 0.00000000 0.00000000 0.00000000 The Hubbard contrib. to forces atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.00000000 0.00000000 0.00000000 atom 3 type 2 force = 0.00000000 0.00000000 0.00000000 The SCF correction term to forces atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.00000000 0.00000000 0.00000000 atom 3 type 2 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -113.87 -0.00090102 0.00000000 0.00000000 -132.54 0.00 0.00 0.00000000 -0.00090102 0.00000000 0.00 -132.54 0.00 0.00000000 0.00000000 -0.00052018 0.00 0.00 -76.52 kinetic stress (kbar) 4595.53 0.00 0.00 0.00 4595.53 0.00 0.00 0.00 4364.14 local stress (kbar) -3693.34 0.00 0.00 0.00 -3693.34 0.00 0.00 0.00 2386.13 nonloc. stress (kbar) 1459.40 0.00 0.00 0.00 1459.40 0.00 0.00 0.00 1415.07 hartree stress (kbar) 1175.51 0.00 0.00 0.00 1175.51 0.00 0.00 0.00 -867.43 exc-cor stress (kbar) -950.85 0.00 0.00 0.00 -950.85 0.00 0.00 0.00 -950.85 corecor stress (kbar) -339.80 0.00 0.00 0.00 -339.80 0.00 0.00 0.00 -346.86 ewald stress (kbar) -2378.99 0.00 0.00 0.00 -2378.99 0.00 0.00 0.00 -6076.73 hubbard stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 london stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 XDM stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 dft-nl stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 TS-vdW stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Writing output data file MgB2.save init_run : 0.04s CPU 0.06s WALL ( 1 calls) electrons : 0.25s CPU 0.38s WALL ( 1 calls) forces : 0.00s CPU 0.01s WALL ( 1 calls) stress : 0.01s CPU 0.01s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.03s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.20s CPU 0.31s WALL ( 6 calls) sum_band : 0.04s CPU 0.05s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.01s WALL ( 7 calls) v_h : 0.00s CPU 0.00s WALL ( 7 calls) v_xc : 0.00s CPU 0.00s WALL ( 9 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.01s WALL ( 90 calls) cegterg : 0.19s CPU 0.31s WALL ( 36 calls) Called by sum_band: Called by *egterg: h_psi : 0.15s CPU 0.25s WALL ( 135 calls) g_psi : 0.00s CPU 0.00s WALL ( 93 calls) cdiaghg : 0.03s CPU 0.04s WALL ( 129 calls) cegterg:over : 0.01s CPU 0.02s WALL ( 93 calls) cegterg:upda : 0.01s CPU 0.00s WALL ( 93 calls) cegterg:last : 0.00s CPU 0.00s WALL ( 36 calls) Called by h_psi: h_psi:vloc : 0.15s CPU 0.23s WALL ( 135 calls) h_psi:vnl : 0.00s CPU 0.01s WALL ( 135 calls) add_vuspsi : 0.00s CPU 0.00s WALL ( 135 calls) General routines calbec : 0.00s CPU 0.01s WALL ( 165 calls) fft : 0.00s CPU 0.01s WALL ( 35 calls) fftw : 0.16s CPU 0.26s WALL ( 1948 calls) Parallel routines fft_scatter : 0.03s CPU 0.13s WALL ( 1983 calls) PWSCF : 0.37s CPU 0.58s WALL This run was terminated on: 18:23:43 12Apr2016 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------=