Dynamical matrix file Phonon dispersions for Al 1 1 2 7.5000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 1 'Al ' 24590.765652728711 1 1 0.0000000000 0.0000000000 0.0000000000 Dynamical Matrix in cartesian axes q = ( 0.750000000 0.750000000 0.000000000 ) 1 1 0.10931537 0.00000000 0.03099054 0.00000000 0.00000000 0.00000000 0.03099054 0.00000000 0.10931537 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.18213771 0.00000000 Dynamical Matrix in cartesian axes q = ( -0.750000000 -0.750000000 0.000000000 ) 1 1 0.10931537 0.00000000 0.03099054 0.00000000 0.00000000 0.00000000 0.03099054 0.00000000 0.10931537 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.18213771 0.00000000 Dynamical Matrix in cartesian axes q = ( -0.750000000 0.750000000 0.000000000 ) 1 1 0.10931537 0.00000000 -0.03099054 0.00000000 0.00000000 0.00000000 -0.03099054 0.00000000 0.10931537 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.18213771 0.00000000 Dynamical Matrix in cartesian axes q = ( 0.750000000 -0.750000000 0.000000000 ) 1 1 0.10931537 0.00000000 -0.03099054 0.00000000 0.00000000 0.00000000 -0.03099054 0.00000000 0.10931537 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.18213771 0.00000000 Dynamical Matrix in cartesian axes q = ( 0.000000000 -0.750000000 -0.750000000 ) 1 1 0.18213771 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.10931537 0.00000000 0.03099054 0.00000000 0.00000000 0.00000000 0.03099054 0.00000000 0.10931537 0.00000000 Dynamical Matrix in cartesian axes q = ( -0.750000000 0.000000000 -0.750000000 ) 1 1 0.10931537 0.00000000 0.00000000 0.00000000 0.03099054 0.00000000 0.00000000 0.00000000 0.18213771 0.00000000 0.00000000 0.00000000 0.03099054 0.00000000 0.00000000 0.00000000 0.10931537 0.00000000 Dynamical Matrix in cartesian axes q = ( 0.750000000 0.000000000 -0.750000000 ) 1 1 0.10931537 0.00000000 0.00000000 0.00000000 -0.03099054 0.00000000 0.00000000 0.00000000 0.18213771 0.00000000 0.00000000 0.00000000 -0.03099054 0.00000000 0.00000000 0.00000000 0.10931537 0.00000000 Dynamical Matrix in cartesian axes q = ( -0.750000000 0.000000000 0.750000000 ) 1 1 0.10931537 0.00000000 0.00000000 0.00000000 -0.03099054 0.00000000 0.00000000 0.00000000 0.18213771 0.00000000 0.00000000 0.00000000 -0.03099054 0.00000000 0.00000000 0.00000000 0.10931537 0.00000000 Dynamical Matrix in cartesian axes q = ( 0.750000000 0.000000000 0.750000000 ) 1 1 0.10931537 0.00000000 0.00000000 0.00000000 0.03099054 0.00000000 0.00000000 0.00000000 0.18213771 0.00000000 0.00000000 0.00000000 0.03099054 0.00000000 0.00000000 0.00000000 0.10931537 0.00000000 Dynamical Matrix in cartesian axes q = ( 0.000000000 -0.750000000 0.750000000 ) 1 1 0.18213771 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.10931537 0.00000000 -0.03099054 0.00000000 0.00000000 0.00000000 -0.03099054 0.00000000 0.10931537 0.00000000 Dynamical Matrix in cartesian axes q = ( 0.000000000 0.750000000 -0.750000000 ) 1 1 0.18213771 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.10931537 0.00000000 -0.03099054 0.00000000 0.00000000 0.00000000 -0.03099054 0.00000000 0.10931537 0.00000000 Dynamical Matrix in cartesian axes q = ( 0.000000000 0.750000000 0.750000000 ) 1 1 0.18213771 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.10931537 0.00000000 0.03099054 0.00000000 0.00000000 0.00000000 0.03099054 0.00000000 0.10931537 0.00000000 Diagonalizing the dynamical matrix q = ( 0.750000000 0.750000000 0.000000000 ) ************************************************************************** freq ( 1) = 5.871361 [THz] = 195.847507 [cm-1] ( -0.707107 0.000000 0.707107 0.000000 0.000000 0.000000 ) freq ( 2) = 7.858271 [THz] = 262.123697 [cm-1] ( 0.707107 0.000000 0.707107 0.000000 0.000000 0.000000 ) freq ( 3) = 8.953420 [THz] = 298.653933 [cm-1] ( 0.000000 0.000000 0.000000 0.000000 1.000000 0.000000 ) **************************************************************************