Program XSpectra v.5.2.0 (svn rev. 11610M) starts on 20Aug2015 at 16:29:51 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 1 processors ------------------------------------------------------------------------- __ ____ _ \ \/ / _\_ __ ___ ___| |_ _ __ __ _ \ /\ \| '_ \ / _ \/ __| __| '__/ _` | / \_\ \ |_) | __/ (__| |_| | | (_| | /_/\_\__/ .__/ \___|\___|\__|_| \__,_| |_| In publications arising from the use of XSpectra, please cite: - O. Bunau and M. Calandra, Phys. Rev. B 87, 205105 (2013) - Ch. Gougoussis, M. Calandra, A. P. Seitsonen, F. Mauri, Phys. Rev. B 80, 075102 (2009) - M. Taillefumier, D. Cabaret, A. M. Flank, and F. Mauri, Phys. Rev. B 66, 195107 (2002) ------------------------------------------------------------------------- Reading input_file ------------------------------------------------------------------------- calculation: xanes_qyadrupole xepsilon [crystallographic coordinates]: 1.000000 -1.000000 0.000000 xonly_plot: FALSE => complete calculation: Lanczos + spectrum plot filecore (core-wavefunction file): Ni.wfc main plot parameters: cut_occ_states: TRUE gamma_mode: constant -> using xgamma [eV]: 0.80 xemin [eV]: -10.00 xemax [eV]: 20.00 xnepoint: 300 energy zero automatically set to the Fermi level Fermi level determined from SCF save directory (NiO.save) NB: For an insulator (SCF calculated with occupations="fixed") the Fermi level will be placed at the position of HOMO. WARNING: variable ef_r is obsolete ------------------------------------------------------------------------- Reading SCF save directory: NiO.save ------------------------------------------------------------------------- Reading data from directory: /Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/results/tmp/NiO.save Info: using nr1, nr2, nr3 values from input Info: using nr1, nr2, nr3 values from input IMPORTANT: XC functional enforced from input : Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0 0) Any further DFT definition will be discarded Please, verify this is what you really want file Ni_PBE_TM_2pj.UPF: wavefunction(s) 3S 3P 3D renormalized file Ni_PBE_TM_2pj.UPF: wavefunction(s) 3S 3P 3D renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1151 1151 287 19477 19477 2437 Generating pointlists ... new r_m : 0.1684 (alat units) 1.6287 (a.u.) for type 1 new r_m : 0.1684 (alat units) 1.6287 (a.u.) for type 2 new r_m : 0.1684 (alat units) 1.6287 (a.u.) for type 3 highest occupied level (ev): 13.9509 ------------------------------------------------------------------------- Getting the Fermi energy ------------------------------------------------------------------------- From SCF save directory (spin polarized work): ehomo [eV]: 13.9509 (highest occupied level:max of up and down) No LUMO values in SCF calculation ef [eV]: 13.9509 -> ef (in eV) will be written in x_save_file ------------------------------------------------------------------------- Energy zero of the spectrum ------------------------------------------------------------------------- -> ef will be used as energy zero of the spectrum G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1151 1151 331 19477 19477 3009 Generating pointlists ... bravais-lattice index = 5 lattice parameter (alat) = 9.6715 a.u. unit-cell volume = 246.2189 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 3 number of electrons = 48.00 (up: 24.00, down: 24.00) number of Kohn-Sham states= 24 kinetic-energy cutoff = 70.0000 Ry charge density cutoff = 280.0000 Ry Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0 0) celldm(1)= 9.671550 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.833333 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.288675 -0.166667 0.942809 ) a(2) = ( 0.000000 0.333333 0.942809 ) a(3) = ( -0.288675 -0.166667 0.942809 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.732051 -1.000000 0.353553 ) b(2) = ( 0.000000 2.000000 0.353553 ) b(3) = ( -1.732051 -1.000000 0.353553 ) PseudoPot. # 1 for Ni read from file: /Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/pseudo/Ni_PBE_TM_2pj.UPF MD5 check sum: 3fd375d40f68096c892dcf97f555543a Pseudo is Norm-conserving, Zval = 18.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1195 points, 2 beta functions with: l(1) = 0 l(2) = 1 PseudoPot. # 2 for Ni read from file: /Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/pseudo/Ni_PBE_TM_2pj.UPF MD5 check sum: 3fd375d40f68096c892dcf97f555543a Pseudo is Norm-conserving, Zval = 18.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1195 points, 2 beta functions with: l(1) = 0 l(2) = 1 PseudoPot. # 3 for O read from file: /Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/pseudo/O_PBE_TM.UPF MD5 check sum: 7269e4db10efbd9bf64de7c8e654fab0 Pseudo is Norm-conserving, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1095 points, 1 beta functions with: l(1) = 0 atomic species valence mass pseudopotential Ni 18.00 58.69340 Ni( 1.00) NiB 18.00 58.69340 Ni( 1.00) O 6.00 15.99940 O ( 1.00) Starting magnetic structure atomic species magnetization Ni 1.000 NiB -1.000 O 0.000 Simplified LDA+U calculation (l_max = 2) with parameters (eV): atomic species L U alpha J0 beta Ni 2 7.6000 0.0000 0.0000 0.0000 NiB 2 7.6000 0.0000 0.0000 0.0000 12 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 NiB tau( 2) = ( 0.0000000 0.6666667 0.4714045 ) 3 O tau( 3) = ( 0.2886751 -0.1666667 0.2357023 ) 4 O tau( 4) = ( -0.2886751 0.1666667 -0.2357023 ) number of k points= 16 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 2) = ( -0.8660254 -0.5000000 0.1767767), wk = 0.1250000 k( 3) = ( 0.0000000 1.0000000 0.1767767), wk = 0.1250000 k( 4) = ( -0.8660254 0.5000000 0.3535534), wk = 0.1250000 k( 5) = ( 0.8660254 -0.5000000 0.1767767), wk = 0.1250000 k( 6) = ( 0.0000000 -1.0000000 0.3535534), wk = 0.1250000 k( 7) = ( 0.8660254 0.5000000 0.3535534), wk = 0.1250000 k( 8) = ( 0.0000000 0.0000000 0.5303301), wk = 0.1250000 k( 9) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 10) = ( -0.8660254 -0.5000000 0.1767767), wk = 0.1250000 k( 11) = ( 0.0000000 1.0000000 0.1767767), wk = 0.1250000 k( 12) = ( -0.8660254 0.5000000 0.3535534), wk = 0.1250000 k( 13) = ( 0.8660254 -0.5000000 0.1767767), wk = 0.1250000 k( 14) = ( 0.0000000 -1.0000000 0.3535534), wk = 0.1250000 k( 15) = ( 0.8660254 0.5000000 0.3535534), wk = 0.1250000 k( 16) = ( 0.0000000 0.0000000 0.5303301), wk = 0.1250000 Dense grid: 19477 G-vectors FFT dimensions: ( 54, 54, 54) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.90 Mb ( 2454, 24) Atomic Hubbard wavefuncts 0.37 Mb ( 2454, 10) NL pseudopotentials 0.37 Mb ( 2454, 10) Each V/rho on FFT grid 4.81 Mb ( 157464, 2) Each G-vector array 0.15 Mb ( 19477) G-vector shells 0.01 Mb ( 1293) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.90 Mb ( 2454, 24) Each subspace H/S matrix 0.01 Mb ( 24, 24) Each matrix 0.00 Mb ( 10, 24) The potential is recalculated from file : /Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/results/tmp/NiO.save/charge-density.dat Number of +U iterations with fixed ns = 0 Starting occupations: --- enter write_ns --- LDA+U parameters: U( 1) = 7.60000000 alpha( 1) = 0.00000000 U( 2) = 7.60000000 alpha( 2) = 0.00000000 atom 1 Tr[ns(na)] (up, down, total) = 4.69493 3.56013 8.25506 spin 1 eigenvalues: 0.907 0.907 0.956 0.956 0.970 eigenvectors: 0.000 0.000 0.000 0.000 1.000 0.722 0.044 0.018 0.215 0.000 0.044 0.722 0.215 0.018 0.000 0.014 0.220 0.706 0.060 0.000 0.220 0.014 0.060 0.706 0.000 occupations: 0.970 0.000 0.000 0.000 0.000 0.000 0.918 0.000 -0.000 -0.021 0.000 0.000 0.918 -0.021 -0.000 0.000 -0.000 -0.021 0.944 -0.000 0.000 -0.021 -0.000 -0.000 0.944 spin 2 eigenvalues: 0.345 0.345 0.952 0.952 0.966 eigenvectors: 0.000 0.000 0.000 0.000 1.000 0.422 0.210 0.018 0.351 0.000 0.210 0.422 0.351 0.018 0.000 0.122 0.246 0.602 0.030 0.000 0.246 0.122 0.030 0.602 0.000 occupations: 0.966 0.000 0.000 0.000 0.000 0.000 0.569 0.000 -0.000 -0.292 0.000 0.000 0.569 -0.292 0.000 0.000 -0.000 -0.292 0.729 -0.000 0.000 -0.292 0.000 -0.000 0.729 atomic mag. moment = 1.134809 atom 2 Tr[ns(na)] (up, down, total) = 3.56017 4.69490 8.25507 spin 1 eigenvalues: 0.345 0.345 0.952 0.952 0.966 eigenvectors: 0.000 0.000 0.000 0.000 1.000 0.424 0.208 0.018 0.350 0.000 0.208 0.424 0.350 0.018 0.000 0.121 0.246 0.602 0.030 0.000 0.246 0.121 0.030 0.602 0.000 occupations: 0.966 0.000 0.000 0.000 0.000 0.000 0.568 0.000 -0.000 -0.292 0.000 0.000 0.568 -0.292 0.000 0.000 -0.000 -0.292 0.729 -0.000 0.000 -0.292 0.000 -0.000 0.729 spin 2 eigenvalues: 0.907 0.907 0.956 0.956 0.970 eigenvectors: 0.000 0.000 0.000 0.000 1.000 0.721 0.045 0.018 0.216 0.000 0.045 0.721 0.216 0.018 0.000 0.014 0.221 0.706 0.060 0.000 0.221 0.014 0.060 0.706 0.000 occupations: 0.970 0.000 0.000 0.000 0.000 0.000 0.918 0.000 -0.000 -0.021 0.000 0.000 0.918 -0.021 -0.000 0.000 -0.000 -0.021 0.944 -0.000 0.000 -0.021 -0.000 -0.000 0.944 atomic mag. moment = -1.134731 N of occupied +U levels = 16.510133 --- exit write_ns --- Atomic wfc used for LDA+U Projector are NOT orthogonalized Starting wfc are 26 atomic wfcs ------------------------------------------------------------------------- Reading core wavefunction file for the absorbing atom ------------------------------------------------------------------------- Ni.wfc successfully read ------------------------------------------------------------------------- Attributing the PAW radii for the absorbing atom [units: Bohr radius] ------------------------------------------------------------------------- PAW proj 1: r_paw(l= 0)= 1.88 (1.5*r_cut) PAW proj 2: r_paw(l= 1)= 1.88 (1.5*r_cut) PAW proj 3: r_paw(l= 2)= 1.50 (from input file)) PAW proj 4: r_paw(l= 0)= 1.88 (1.5*r_cut) PAW proj 5: r_paw(l= 1)= 1.88 (1.5*r_cut) PAW proj 6: r_paw(l= 2)= 1.50 (from input file)) NB: The calculation will not necessary use all these r_paw values. - For a edge in the electric-dipole approximation, only the r_paw(l=1) values are used. - For a K edge in the electric-quadrupole approximation, only the r_paw(l=2) values are used. - For a L2 or L3 edge in the electric-quadrupole approximation, all projectors (s, p and d) are used. ------------------------------------------------------------------------- Starting XANES calculation in the electric quadrupole approximation ------------------------------------------------------------------------- Method of calculation based on the Lanczos recursion algorithm -------------------------------------------------------------- - STEP 1: Construction of a kpoint-dependent Lanczos basis, in which the Hamiltonian is tridiagonal (each 'iter' corresponds to the calculation of one more Lanczos vector) - STEP 2: Calculation of the cross-section as a continued fraction averaged over the k-points. ... Begin STEP 1 ... | For PAW proj. (l=2) #1: radial matrix element = 0.000829385 | For PAW proj. (l=2) #2: radial matrix element = 0.001056836 |------------------------------------------------------------- ! k-point # 1: ( 0.0000, 0.0000, 0.0000) ! weight: 0.1250 spin state: 1 |------------------------------------------------------------- ! Atomic wfc used for LDA+U Projector are NOT orthogonalized | Norm of the initial Lanczos vector: 0.15959612E-03 | Estimated error at iter 50: 1.01015177 | Estimated error at iter 100: 0.03639657 ! => CONVERGED at iter 150 with error= 0.00000000 |------------------------------------------------------------- ! k-point # 2: (-0.8660, -0.5000, 0.1768) ! weight: 0.1250 spin state: 1 |------------------------------------------------------------- ! Atomic wfc used for LDA+U Projector are NOT orthogonalized | Norm of the initial Lanczos vector: 0.15957056E-03 | Estimated error at iter 50: 1.00984206 | Estimated error at iter 100: 0.00102906 ! => CONVERGED at iter 150 with error= 0.00000000 |------------------------------------------------------------- ! k-point # 3: ( 0.0000, 1.0000, 0.1768) ! weight: 0.1250 spin state: 1 |------------------------------------------------------------- ! Atomic wfc used for LDA+U Projector are NOT orthogonalized | Norm of the initial Lanczos vector: 0.15961957E-03 | Estimated error at iter 50: 1.00972064 | Estimated error at iter 100: 0.22411524 | Estimated error at iter 150: 0.04229935 ! => CONVERGED at iter 200 with error= 0.00015468 |------------------------------------------------------------- ! k-point # 4: (-0.8660, 0.5000, 0.3536) ! weight: 0.1250 spin state: 1 |------------------------------------------------------------- ! Atomic wfc used for LDA+U Projector are NOT orthogonalized | Norm of the initial Lanczos vector: 0.15959003E-03 | Estimated error at iter 50: 1.00972305 | Estimated error at iter 100: 0.26360588 | Estimated error at iter 150: 0.01144988 | Estimated error at iter 200: 0.00115452 ! => CONVERGED at iter 250 with error= 0.00010445 |------------------------------------------------------------- ! k-point # 5: ( 0.8660, -0.5000, 0.1768) ! weight: 0.1250 spin state: 1 |------------------------------------------------------------- ! Atomic wfc used for LDA+U Projector are NOT orthogonalized | Norm of the initial Lanczos vector: 0.15961957E-03 | Estimated error at iter 50: 1.00972064 | Estimated error at iter 100: 0.22407817 | Estimated error at iter 150: 0.04222384 ! => CONVERGED at iter 200 with error= 0.00014794 |------------------------------------------------------------- ! k-point # 6: ( 0.0000, -1.0000, 0.3536) ! weight: 0.1250 spin state: 1 |------------------------------------------------------------- ! Atomic wfc used for LDA+U Projector are NOT orthogonalized | Norm of the initial Lanczos vector: 0.15959003E-03 | Estimated error at iter 50: 1.00972305 | Estimated error at iter 100: 0.26363718 | Estimated error at iter 150: 0.01147764 | Estimated error at iter 200: 0.00105824 ! => CONVERGED at iter 250 with error= 0.00010593 |------------------------------------------------------------- ! k-point # 7: ( 0.8660, 0.5000, 0.3536) ! weight: 0.1250 spin state: 1 |------------------------------------------------------------- ! Atomic wfc used for LDA+U Projector are NOT orthogonalized | Norm of the initial Lanczos vector: 0.15955058E-03 | Estimated error at iter 50: 1.00999218 | Estimated error at iter 100: 0.01991907 ! => CONVERGED at iter 150 with error= 0.00000000 |------------------------------------------------------------- ! k-point # 8: ( 0.0000, 0.0000, 0.5303) ! weight: 0.1250 spin state: 1 |------------------------------------------------------------- ! Atomic wfc used for LDA+U Projector are NOT orthogonalized | Norm of the initial Lanczos vector: 0.15962985E-03 | Estimated error at iter 50: 1.00995113 | Estimated error at iter 100: 0.00252388 ! => CONVERGED at iter 150 with error= 0.00000000 |------------------------------------------------------------- ! k-point # 9: ( 0.0000, 0.0000, 0.0000) ! weight: 0.1250 spin state: 2 |------------------------------------------------------------- ! Atomic wfc used for LDA+U Projector are NOT orthogonalized | Norm of the initial Lanczos vector: 0.15959612E-03 | Estimated error at iter 50: 1.01358767 | Estimated error at iter 100: 0.00343507 ! => CONVERGED at iter 150 with error= 0.00000000 |------------------------------------------------------------- ! k-point # 10: (-0.8660, -0.5000, 0.1768) ! weight: 0.1250 spin state: 2 |------------------------------------------------------------- ! Atomic wfc used for LDA+U Projector are NOT orthogonalized | Norm of the initial Lanczos vector: 0.15957056E-03 | Estimated error at iter 50: 1.01241320 ! => CONVERGED at iter 100 with error= 0.00088773 |------------------------------------------------------------- ! k-point # 11: ( 0.0000, 1.0000, 0.1768) ! weight: 0.1250 spin state: 2 |------------------------------------------------------------- ! Atomic wfc used for LDA+U Projector are NOT orthogonalized | Norm of the initial Lanczos vector: 0.15961957E-03 | Estimated error at iter 50: 1.01275726 | Estimated error at iter 100: 0.13431535 | Estimated error at iter 150: 0.00961795 ! => CONVERGED at iter 200 with error= 0.00029583 |------------------------------------------------------------- ! k-point # 12: (-0.8660, 0.5000, 0.3536) ! weight: 0.1250 spin state: 2 |------------------------------------------------------------- ! Atomic wfc used for LDA+U Projector are NOT orthogonalized | Norm of the initial Lanczos vector: 0.15959003E-03 | Estimated error at iter 50: 1.01397946 | Estimated error at iter 100: 0.01640859 | Estimated error at iter 150: 0.00551590 ! => CONVERGED at iter 200 with error= 0.00032148 |------------------------------------------------------------- ! k-point # 13: ( 0.8660, -0.5000, 0.1768) ! weight: 0.1250 spin state: 2 |------------------------------------------------------------- ! Atomic wfc used for LDA+U Projector are NOT orthogonalized | Norm of the initial Lanczos vector: 0.15961957E-03 | Estimated error at iter 50: 1.01275726 | Estimated error at iter 100: 0.13425131 | Estimated error at iter 150: 0.00958480 ! => CONVERGED at iter 200 with error= 0.00026684 |------------------------------------------------------------- ! k-point # 14: ( 0.0000, -1.0000, 0.3536) ! weight: 0.1250 spin state: 2 |------------------------------------------------------------- ! Atomic wfc used for LDA+U Projector are NOT orthogonalized | Norm of the initial Lanczos vector: 0.15959003E-03 | Estimated error at iter 50: 1.01397946 | Estimated error at iter 100: 0.01638551 | Estimated error at iter 150: 0.00550691 ! => CONVERGED at iter 200 with error= 0.00024701 |------------------------------------------------------------- ! k-point # 15: ( 0.8660, 0.5000, 0.3536) ! weight: 0.1250 spin state: 2 |------------------------------------------------------------- ! Atomic wfc used for LDA+U Projector are NOT orthogonalized | Norm of the initial Lanczos vector: 0.15955058E-03 | Estimated error at iter 50: 1.01416847 | Estimated error at iter 100: 0.00310721 ! => CONVERGED at iter 150 with error= 0.00000000 |------------------------------------------------------------- ! k-point # 16: ( 0.0000, 0.0000, 0.5303) ! weight: 0.1250 spin state: 2 |------------------------------------------------------------- ! Atomic wfc used for LDA+U Projector are NOT orthogonalized | Norm of the initial Lanczos vector: 0.15962985E-03 | Estimated error at iter 50: 1.01222746 | Estimated error at iter 100: 0.00398105 ! => CONVERGED at iter 150 with error= 0.00000000 Results of STEP 1 successfully written in x_save_file x_save_file name: -> NiO.xspectra_qua.sav x_save_file version: 2 ... End STEP 1 ... ... Begin STEP 2 ... The spectrum is calculated using the following parameters: energy-zero of the spectrum [eV]: 13.9509 the occupied states are cut xemin [eV]: -10.00 xemax [eV]: 20.00 xnepoint: 300 constant broadening parameter [eV]: 0.800 Core level energy [eV]: -8333. (from electron binding energy of neutral atoms in X-ray data booklet) Cross-section successfully written in xanes.dat ... End STEP 2 ... xanes : 28.26s CPU 28.51s WALL ( 1 calls) ------------------------------------------------------------------------- END JOB XSpectra -------------------------------------------------------------------------