Program XSpectra v.5.2.0 (svn rev. 11610M) starts on 20Aug2015 at 16:21:49 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 1 processors ------------------------------------------------------------------------- __ ____ _ \ \/ / _\_ __ ___ ___| |_ _ __ __ _ \ /\ \| '_ \ / _ \/ __| __| '__/ _` | / \_\ \ |_) | __/ (__| |_| | | (_| | /_/\_\__/ .__/ \___|\___|\__|_| \__,_| |_| In publications arising from the use of XSpectra, please cite: - O. Bunau and M. Calandra, Phys. Rev. B 87, 205105 (2013) - Ch. Gougoussis, M. Calandra, A. P. Seitsonen, F. Mauri, Phys. Rev. B 80, 075102 (2009) - M. Taillefumier, D. Cabaret, A. M. Flank, and F. Mauri, Phys. Rev. B 66, 195107 (2002) ------------------------------------------------------------------------- Reading input_file ------------------------------------------------------------------------- calculation: xanes_dipole xepsilon [crystallographic coordinates]: 0.000000 0.000000 1.000000 xonly_plot: FALSE => complete calculation: Lanczos + spectrum plot filecore (core-wavefunction file): Si.wfc main plot parameters: cut_occ_states: TRUE gamma_mode: constant -> using xgamma [eV]: 0.80 xemin [eV]: -10.00 xemax [eV]: 100.00 xnepoint: 1000 energy zero automatically set to the Fermi level Fermi level determined from SCF save directory (SiO2.save) NB: For an insulator (SCF calculated with occupations="fixed") the Fermi level will be placed at the position of HOMO. WARNING: variable ef_r is obsolete ------------------------------------------------------------------------- Reading SCF save directory: SiO2.save ------------------------------------------------------------------------- Reading data from directory: /Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/results/tmp/SiO2.save Info: using nr1, nr2, nr3 values from input Info: using nr1, nr2, nr3 values from input IMPORTANT: XC functional enforced from input : Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0 0) Any further DFT definition will be discarded Please, verify this is what you really want WARNING: atomic wfc # 2 for atom type 1 has zero norm WARNING: atomic wfc # 2 for atom type 2 has zero norm file O_PBE_USPP.UPF: wavefunction(s) 2S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 889 475 151 23595 9203 1559 the Fermi energy is 6.4758 ev ------------------------------------------------------------------------- Getting the Fermi energy ------------------------------------------------------------------------- From SCF save directory: ef [eV]: 6.4758 -> ef (in eV) will be written in x_save_file ------------------------------------------------------------------------- Energy zero of the spectrum ------------------------------------------------------------------------- -> ef will be used as energy zero of the spectrum G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 889 475 169 23595 9203 2057 bravais-lattice index = 4 lattice parameter (alat) = 9.2863 a.u. unit-cell volume = 762.9417 (a.u.)^3 number of atoms/cell = 9 number of atomic types = 3 number of electrons = 48.00 number of Kohn-Sham states= 30 kinetic-energy cutoff = 20.0000 Ry charge density cutoff = 150.0000 Ry Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0 0) celldm(1)= 9.286303 celldm(2)= 0.000000 celldm(3)= 1.100100 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 1.100100 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.577350 -0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 -0.000000 0.909008 ) PseudoPot. # 1 for Si read from file: /Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/pseudo/Si_PBE_USPP.UPF MD5 check sum: 2fb286e7979bc4fe35b54746d77eb429 Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1141 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for Si read from file: /Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/pseudo/Si_PBE_USPP.UPF MD5 check sum: 2fb286e7979bc4fe35b54746d77eb429 Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1141 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 3 for O read from file: /Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/pseudo/O_PBE_USPP.UPF MD5 check sum: 390ba29e75625707450f3bd3f0eb6be9 Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Sih 4.00 28.08600 Si( 1.00) Si 4.00 28.08600 Si( 1.00) O 6.00 15.99940 O ( 1.00) 2 Sym. Ops. (no inversion) found Cartesian axes site n. atom positions (alat units) 1 Sih tau( 1) = ( 0.4700000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( -0.2350000 0.4070319 0.7334000 ) 3 Si tau( 3) = ( -0.2350000 -0.4070319 0.3667000 ) 4 O tau( 4) = ( 0.2792500 0.2318350 0.1308019 ) 5 O tau( 5) = ( 0.0611500 0.3577551 0.6025981 ) 6 O tau( 6) = ( -0.3404000 0.1259201 0.8642019 ) 7 O tau( 7) = ( -0.3404000 -0.1259201 0.2358981 ) 8 O tau( 8) = ( 0.0611500 -0.3577551 0.4975019 ) 9 O tau( 9) = ( 0.2792500 -0.2318350 -0.1308019 ) number of k points= 27 Methfessel-Paxton smearing, width (Ry)= 0.0300 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0740741 k( 2) = ( 0.0000000 0.0000000 0.3030028), wk = 0.0740741 k( 3) = ( 0.0000000 0.0000000 0.6060055), wk = 0.0740741 k( 4) = ( 0.0000000 0.3849002 0.0000000), wk = 0.0740741 k( 5) = ( 0.0000000 0.3849002 0.3030028), wk = 0.0740741 k( 6) = ( 0.0000000 0.3849002 0.6060055), wk = 0.0740741 k( 7) = ( 0.0000000 0.7698004 0.0000000), wk = 0.0740741 k( 8) = ( 0.0000000 0.7698004 0.3030028), wk = 0.0740741 k( 9) = ( 0.0000000 0.7698004 0.6060055), wk = 0.0740741 k( 10) = ( 0.3333333 0.1924501 0.0000000), wk = 0.0740741 k( 11) = ( 0.3333333 0.1924501 0.3030028), wk = 0.0740741 k( 12) = ( 0.3333333 0.1924501 0.6060055), wk = 0.0740741 k( 13) = ( 0.3333333 0.5773503 0.0000000), wk = 0.0740741 k( 14) = ( 0.3333333 0.5773503 0.3030028), wk = 0.0740741 k( 15) = ( 0.3333333 0.5773503 0.6060055), wk = 0.0740741 k( 16) = ( 0.3333333 0.9622504 0.0000000), wk = 0.0740741 k( 17) = ( 0.3333333 0.9622504 0.3030028), wk = 0.0740741 k( 18) = ( 0.3333333 0.9622504 0.6060055), wk = 0.0740741 k( 19) = ( 0.6666667 0.3849002 0.0000000), wk = 0.0740741 k( 20) = ( 0.6666667 0.3849002 0.3030028), wk = 0.0740741 k( 21) = ( 0.6666667 0.3849002 0.6060055), wk = 0.0740741 k( 22) = ( 0.6666667 0.7698004 0.0000000), wk = 0.0740741 k( 23) = ( 0.6666667 0.7698004 0.3030028), wk = 0.0740741 k( 24) = ( 0.6666667 0.7698004 0.6060055), wk = 0.0740741 k( 25) = ( 0.6666667 1.1547005 0.0000000), wk = 0.0740741 k( 26) = ( 0.6666667 1.1547005 0.3030028), wk = 0.0740741 k( 27) = ( 0.6666667 1.1547005 0.6060055), wk = 0.0740741 Dense grid: 23595 G-vectors FFT dimensions: ( 40, 40, 40) Smooth grid: 9203 G-vectors FFT dimensions: ( 27, 27, 30) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.54 Mb ( 1184, 30) NL pseudopotentials 1.30 Mb ( 1184, 72) Each V/rho on FFT grid 0.98 Mb ( 64000) Each G-vector array 0.18 Mb ( 23595) G-vector shells 0.01 Mb ( 1138) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.54 Mb ( 1184, 30) Each subspace H/S matrix 0.01 Mb ( 30, 30) Each matrix 0.03 Mb ( 72, 30) The potential is recalculated from file : /Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/results/tmp/SiO2.save/charge-density.dat Starting wfc are 60 atomic wfcs ------------------------------------------------------------------------- Reading core wavefunction file for the absorbing atom ------------------------------------------------------------------------- Si.wfc successfully read ------------------------------------------------------------------------- Attributing the PAW radii for the absorbing atom [units: Bohr radius] ------------------------------------------------------------------------- PAW proj 1: r_paw(l= 0)= 3.60 (1.5*r_cut) PAW proj 2: r_paw(l= 0)= 3.60 (1.5*r_cut) PAW proj 3: r_paw(l= 1)= 2.40 (from input file)) PAW proj 4: r_paw(l= 1)= 2.40 (from input file)) PAW proj 5: r_paw(l= 2)= 3.00 (1.5*r_cut) NB: The calculation will not necessary use all these r_paw values. - For a edge in the electric-dipole approximation, only the r_paw(l=1) values are used. - For a K edge in the electric-quadrupole approximation, only the r_paw(l=2) values are used. - For a L2 or L3 edge in the electric-quadrupole approximation, all projectors (s, p and d) are used. init_gipaw_1: projectors nearly linearly dependent: ntyp = 1, l/n1/n2 = 1 2 1 0.99554741 ------------------------------------------------------------------------- Starting XANES calculation in the electric dipole approximation ------------------------------------------------------------------------- Method of calculation based on the Lanczos recursion algorithm -------------------------------------------------------------- - STEP 1: Construction of a kpoint-dependent Lanczos basis, in which the Hamiltonian is tridiagonal (each 'iter' corresponds to the calculation of one more Lanczos vector) - STEP 2: Calculation of the cross-section as a continued fraction averaged over the k-points. ... Begin STEP 1 ... Radial transition matrix element(s) used in the calculation of the initial vector of the Lanczos basis (|tilde{phi}_abs> normalized) | For PAW proj. (l=1) #1: radial matrix element = 0.026695735 | For PAW proj. (l=1) #2: radial matrix element = 0.024893931 |------------------------------------------------------------- ! k-point # 1: ( 0.0000, 0.0000, 0.0000), 0.0741, 1 |------------------------------------------------------------- | Hilbert space is saturated | xniter is set equal to 1155 | Increase kinetic-energy cutoff in your SCF calculation! okvan= T | Norm of the initial Lanczos vector: 0.14417308E-01 | Estimated error at iter 50: 1.00277730 | Estimated error at iter 100: 0.07651864 | Estimated error at iter 150: 0.01420994 | Estimated error at iter 200: 0.00556253 | Estimated error at iter 250: 0.00125413 ! => CONVERGED at iter 300 with error= 0.00057385 |------------------------------------------------------------- ! k-point # 2: ( 0.0000, 0.0000, 0.3030), 0.0741, 1 |------------------------------------------------------------- okvan= T | Norm of the initial Lanczos vector: 0.14419098E-01 | Estimated error at iter 50: 1.00283537 | Estimated error at iter 100: 0.09044884 | Estimated error at iter 150: 0.02420809 | Estimated error at iter 200: 0.01220361 | Estimated error at iter 250: 0.00312395 | Estimated error at iter 300: 0.00112913 ! => CONVERGED at iter 350 with error= 0.00023178 |------------------------------------------------------------- ! k-point # 3: ( 0.0000, 0.0000, 0.6060), 0.0741, 1 |------------------------------------------------------------- okvan= T | Norm of the initial Lanczos vector: 0.14419098E-01 | Estimated error at iter 50: 1.00283537 | Estimated error at iter 100: 0.09044884 | Estimated error at iter 150: 0.02421656 | Estimated error at iter 200: 0.01237198 | Estimated error at iter 250: 0.00357142 | Estimated error at iter 300: 0.00113671 ! => CONVERGED at iter 350 with error= 0.00024485 |------------------------------------------------------------- ! k-point # 4: ( 0.0000, 0.3849, 0.0000), 0.0741, 1 |------------------------------------------------------------- | Hilbert space is saturated | xniter is set equal to 1150 | Increase kinetic-energy cutoff in your SCF calculation! okvan= T | Norm of the initial Lanczos vector: 0.14419678E-01 | Estimated error at iter 50: 1.00287354 | Estimated error at iter 100: 0.10922284 | Estimated error at iter 150: 0.02155831 | Estimated error at iter 200: 0.00899210 | Estimated error at iter 250: 0.00314158 | Estimated error at iter 300: 0.00122132 ! => CONVERGED at iter 350 with error= 0.00056770 |------------------------------------------------------------- ! k-point # 5: ( 0.0000, 0.3849, 0.3030), 0.0741, 1 |------------------------------------------------------------- okvan= T | Norm of the initial Lanczos vector: 0.14417436E-01 | Estimated error at iter 50: 1.00285922 | Estimated error at iter 100: 0.10769202 | Estimated error at iter 150: 0.02801034 | Estimated error at iter 200: 0.00771331 | Estimated error at iter 250: 0.00300996 | Estimated error at iter 300: 0.00126374 ! => CONVERGED at iter 350 with error= 0.00047347 |------------------------------------------------------------- ! k-point # 6: ( 0.0000, 0.3849, 0.6060), 0.0741, 1 |------------------------------------------------------------- okvan= T | Norm of the initial Lanczos vector: 0.14417348E-01 | Estimated error at iter 50: 1.00288690 | Estimated error at iter 100: 0.12309929 | Estimated error at iter 150: 0.02677024 | Estimated error at iter 200: 0.01060518 | Estimated error at iter 250: 0.00350476 ! => CONVERGED at iter 300 with error= 0.00095008 |------------------------------------------------------------- ! k-point # 7: ( 0.0000, 0.7698, 0.0000), 0.0741, 1 |------------------------------------------------------------- | Hilbert space is saturated | xniter is set equal to 1150 | Increase kinetic-energy cutoff in your SCF calculation! okvan= T | Norm of the initial Lanczos vector: 0.14419678E-01 | Estimated error at iter 50: 1.00287354 | Estimated error at iter 100: 0.10922284 | Estimated error at iter 150: 0.02156013 | Estimated error at iter 200: 0.00872405 | Estimated error at iter 250: 0.00363369 | Estimated error at iter 300: 0.00116392 ! => CONVERGED at iter 350 with error= 0.00044240 |------------------------------------------------------------- ! k-point # 8: ( 0.0000, 0.7698, 0.3030), 0.0741, 1 |------------------------------------------------------------- okvan= T | Norm of the initial Lanczos vector: 0.14417348E-01 | Estimated error at iter 50: 1.00288690 | Estimated error at iter 100: 0.12309929 | Estimated error at iter 150: 0.02659503 | Estimated error at iter 200: 0.00986091 | Estimated error at iter 250: 0.00345126 ! => CONVERGED at iter 300 with error= 0.00087137 |------------------------------------------------------------- ! k-point # 9: ( 0.0000, 0.7698, 0.6060), 0.0741, 1 |------------------------------------------------------------- okvan= T | Norm of the initial Lanczos vector: 0.14417436E-01 | Estimated error at iter 50: 1.00285922 | Estimated error at iter 100: 0.10769202 | Estimated error at iter 150: 0.02799464 | Estimated error at iter 200: 0.00782435 | Estimated error at iter 250: 0.00291619 | Estimated error at iter 300: 0.00133196 ! => CONVERGED at iter 350 with error= 0.00056027 |------------------------------------------------------------- ! k-point # 10: ( 0.3333, 0.1925, 0.0000), 0.0741, 1 |------------------------------------------------------------- | Hilbert space is saturated | xniter is set equal to 1150 | Increase kinetic-energy cutoff in your SCF calculation! okvan= T | Norm of the initial Lanczos vector: 0.14419907E-01 | Estimated error at iter 50: 1.00282646 | Estimated error at iter 100: 0.07749673 | Estimated error at iter 150: 0.02524323 | Estimated error at iter 200: 0.01215333 | Estimated error at iter 250: 0.00355567 | Estimated error at iter 300: 0.00130152 ! => CONVERGED at iter 350 with error= 0.00035648 |------------------------------------------------------------- ! k-point # 11: ( 0.3333, 0.1925, 0.3030), 0.0741, 1 |------------------------------------------------------------- okvan= T | Norm of the initial Lanczos vector: 0.14417335E-01 | Estimated error at iter 50: 1.00283190 | Estimated error at iter 100: 0.10635822 | Estimated error at iter 150: 0.02091974 | Estimated error at iter 200: 0.00921490 | Estimated error at iter 250: 0.00325435 | Estimated error at iter 300: 0.00130754 ! => CONVERGED at iter 350 with error= 0.00043617 |------------------------------------------------------------- ! k-point # 12: ( 0.3333, 0.1925, 0.6060), 0.0741, 1 |------------------------------------------------------------- okvan= T | Norm of the initial Lanczos vector: 0.14417428E-01 | Estimated error at iter 50: 1.00285415 | Estimated error at iter 100: 0.10430261 | Estimated error at iter 150: 0.02684842 | Estimated error at iter 200: 0.01211073 | Estimated error at iter 250: 0.00406251 | Estimated error at iter 300: 0.00109834 ! => CONVERGED at iter 350 with error= 0.00049478 |------------------------------------------------------------- ! k-point # 13: ( 0.3333, 0.5774, 0.0000), 0.0741, 1 |------------------------------------------------------------- Calculation not finished Results of STEP 1 successfully written in x_save_file x_save_file name: -> SiO2.xspectra_dip_restart_1.sav x_save_file version: 2 ... End STEP 1 ...