Program XSpectra v.5.2.0 (svn rev. 11610M) starts on 20Aug2015 at 16:31:54 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 1 processors ------------------------------------------------------------------------- __ ____ _ \ \/ / _\_ __ ___ ___| |_ _ __ __ _ \ /\ \| '_ \ / _ \/ __| __| '__/ _` | / \_\ \ |_) | __/ (__| |_| | | (_| | /_/\_\__/ .__/ \___|\___|\__|_| \__,_| |_| In publications arising from the use of XSpectra, please cite: - O. Bunau and M. Calandra, Phys. Rev. B 87, 205105 (2013) - Ch. Gougoussis, M. Calandra, A. P. Seitsonen, F. Mauri, Phys. Rev. B 80, 075102 (2009) - M. Taillefumier, D. Cabaret, A. M. Flank, and F. Mauri, Phys. Rev. B 66, 195107 (2002) ------------------------------------------------------------------------- Reading input_file ------------------------------------------------------------------------- calculation: xanes_dipole xepsilon [crystallographic coordinates]: 1.000000 0.000000 0.000000 xonly_plot: FALSE => complete calculation: Lanczos + spectrum plot filecore (core-wavefunction file): C.wfc main plot parameters: cut_occ_states: FALSE gamma_mode: constant -> using xgamma [eV]: 0.80 xemin [eV]: -10.00 xemax [eV]: 30.00 xnepoint: 300 energy zero automatically set to the Fermi level Fermi level determined from SCF save directory (diamond.save) NB: For an insulator (SCF calculated with occupations="fixed") the Fermi level will be placed at the position of HOMO. WARNING: variable ef_r is obsolete ------------------------------------------------------------------------- Reading SCF save directory: diamond.save ------------------------------------------------------------------------- Reading data from directory: /Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/results/tmp/diamond.save Info: using nr1, nr2, nr3 values from input Info: using nr1, nr2, nr3 values from input IMPORTANT: XC functional enforced from input : Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0 0) Any further DFT definition will be discarded Please, verify this is what you really want G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 577 577 185 10443 10443 1863 highest occupied level (ev): 13.3353 ------------------------------------------------------------------------- Getting the Fermi energy ------------------------------------------------------------------------- From SCF save directory: ehomo [eV]: 13.3353 (highest occupied level) No LUMO value in SCF calculation ef [eV]: 13.3353 -> ef (in eV) will be written in x_save_file ------------------------------------------------------------------------- Energy zero of the spectrum ------------------------------------------------------------------------- -> ef will be used as energy zero of the spectrum G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 577 577 221 10443 10443 2373 bravais-lattice index = 1 lattice parameter (alat) = 6.7403 a.u. unit-cell volume = 306.2169 (a.u.)^3 number of atoms/cell = 8 number of atomic types = 2 number of electrons = 32.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 40.0000 Ry charge density cutoff = 160.0000 Ry Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0 0) celldm(1)= 6.740256 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for C read from file: /Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/pseudo/C_PBE_TM_2pj.UPF MD5 check sum: e8858615eb0a4b79f05373b4879fdf67 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1073 points, 1 beta functions with: l(1) = 0 PseudoPot. # 2 for C read from file: /Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/pseudo/C_PBE_TM_2pj.UPF MD5 check sum: e8858615eb0a4b79f05373b4879fdf67 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1073 points, 1 beta functions with: l(1) = 0 atomic species valence mass pseudopotential C_h 4.00 12.00000 C ( 1.00) C 4.00 12.00000 C ( 1.00) 24 Sym. Ops. (no inversion) found Cartesian axes site n. atom positions (alat units) 1 C_h tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 C tau( 2) = ( 0.0000000 0.5000000 0.5000000 ) 3 C tau( 3) = ( 0.5000000 0.0000000 0.5000000 ) 4 C tau( 4) = ( 0.5000000 0.5000000 0.0000000 ) 5 C tau( 5) = ( 0.7500000 0.7500000 0.2500000 ) 6 C tau( 6) = ( 0.7500000 0.2500000 0.7500000 ) 7 C tau( 7) = ( 0.2500000 0.7500000 0.7500000 ) 8 C tau( 8) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 64 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.0312500 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.0312500 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.0312500 k( 5) = ( 0.1250000 0.3750000 0.1250000), wk = 0.0312500 k( 6) = ( 0.1250000 0.3750000 0.3750000), wk = 0.0312500 k( 7) = ( 0.1250000 0.3750000 0.6250000), wk = 0.0312500 k( 8) = ( 0.1250000 0.3750000 0.8750000), wk = 0.0312500 k( 9) = ( 0.1250000 0.6250000 0.1250000), wk = 0.0312500 k( 10) = ( 0.1250000 0.6250000 0.3750000), wk = 0.0312500 k( 11) = ( 0.1250000 0.6250000 0.6250000), wk = 0.0312500 k( 12) = ( 0.1250000 0.6250000 0.8750000), wk = 0.0312500 k( 13) = ( 0.1250000 0.8750000 0.1250000), wk = 0.0312500 k( 14) = ( 0.1250000 0.8750000 0.3750000), wk = 0.0312500 k( 15) = ( 0.1250000 0.8750000 0.6250000), wk = 0.0312500 k( 16) = ( 0.1250000 0.8750000 0.8750000), wk = 0.0312500 k( 17) = ( 0.3750000 0.1250000 0.1250000), wk = 0.0312500 k( 18) = ( 0.3750000 0.1250000 0.3750000), wk = 0.0312500 k( 19) = ( 0.3750000 0.1250000 0.6250000), wk = 0.0312500 k( 20) = ( 0.3750000 0.1250000 0.8750000), wk = 0.0312500 k( 21) = ( 0.3750000 0.3750000 0.1250000), wk = 0.0312500 k( 22) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 23) = ( 0.3750000 0.3750000 0.6250000), wk = 0.0312500 k( 24) = ( 0.3750000 0.3750000 0.8750000), wk = 0.0312500 k( 25) = ( 0.3750000 0.6250000 0.1250000), wk = 0.0312500 k( 26) = ( 0.3750000 0.6250000 0.3750000), wk = 0.0312500 k( 27) = ( 0.3750000 0.6250000 0.6250000), wk = 0.0312500 k( 28) = ( 0.3750000 0.6250000 0.8750000), wk = 0.0312500 k( 29) = ( 0.3750000 0.8750000 0.1250000), wk = 0.0312500 k( 30) = ( 0.3750000 0.8750000 0.3750000), wk = 0.0312500 k( 31) = ( 0.3750000 0.8750000 0.6250000), wk = 0.0312500 k( 32) = ( 0.3750000 0.8750000 0.8750000), wk = 0.0312500 k( 33) = ( 0.6250000 0.1250000 0.1250000), wk = 0.0312500 k( 34) = ( 0.6250000 0.1250000 0.3750000), wk = 0.0312500 k( 35) = ( 0.6250000 0.1250000 0.6250000), wk = 0.0312500 k( 36) = ( 0.6250000 0.1250000 0.8750000), wk = 0.0312500 k( 37) = ( 0.6250000 0.3750000 0.1250000), wk = 0.0312500 k( 38) = ( 0.6250000 0.3750000 0.3750000), wk = 0.0312500 k( 39) = ( 0.6250000 0.3750000 0.6250000), wk = 0.0312500 k( 40) = ( 0.6250000 0.3750000 0.8750000), wk = 0.0312500 k( 41) = ( 0.6250000 0.6250000 0.1250000), wk = 0.0312500 k( 42) = ( 0.6250000 0.6250000 0.3750000), wk = 0.0312500 k( 43) = ( 0.6250000 0.6250000 0.6250000), wk = 0.0312500 k( 44) = ( 0.6250000 0.6250000 0.8750000), wk = 0.0312500 k( 45) = ( 0.6250000 0.8750000 0.1250000), wk = 0.0312500 k( 46) = ( 0.6250000 0.8750000 0.3750000), wk = 0.0312500 k( 47) = ( 0.6250000 0.8750000 0.6250000), wk = 0.0312500 k( 48) = ( 0.6250000 0.8750000 0.8750000), wk = 0.0312500 k( 49) = ( 0.8750000 0.1250000 0.1250000), wk = 0.0312500 k( 50) = ( 0.8750000 0.1250000 0.3750000), wk = 0.0312500 k( 51) = ( 0.8750000 0.1250000 0.6250000), wk = 0.0312500 k( 52) = ( 0.8750000 0.1250000 0.8750000), wk = 0.0312500 k( 53) = ( 0.8750000 0.3750000 0.1250000), wk = 0.0312500 k( 54) = ( 0.8750000 0.3750000 0.3750000), wk = 0.0312500 k( 55) = ( 0.8750000 0.3750000 0.6250000), wk = 0.0312500 k( 56) = ( 0.8750000 0.3750000 0.8750000), wk = 0.0312500 k( 57) = ( 0.8750000 0.6250000 0.1250000), wk = 0.0312500 k( 58) = ( 0.8750000 0.6250000 0.3750000), wk = 0.0312500 k( 59) = ( 0.8750000 0.6250000 0.6250000), wk = 0.0312500 k( 60) = ( 0.8750000 0.6250000 0.8750000), wk = 0.0312500 k( 61) = ( 0.8750000 0.8750000 0.1250000), wk = 0.0312500 k( 62) = ( 0.8750000 0.8750000 0.3750000), wk = 0.0312500 k( 63) = ( 0.8750000 0.8750000 0.6250000), wk = 0.0312500 k( 64) = ( 0.8750000 0.8750000 0.8750000), wk = 0.0312500 Dense grid: 10443 G-vectors FFT dimensions: ( 27, 27, 27) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.32 Mb ( 1319, 16) NL pseudopotentials 0.16 Mb ( 1319, 8) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.08 Mb ( 10443) G-vector shells 0.00 Mb ( 156) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.32 Mb ( 1319, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 16) The potential is recalculated from file : /Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/results/tmp/diamond.save/charge-density.dat Starting wfc are 64 atomic wfcs ------------------------------------------------------------------------- Reading core wavefunction file for the absorbing atom ------------------------------------------------------------------------- C.wfc successfully read ------------------------------------------------------------------------- Attributing the PAW radii for the absorbing atom [units: Bohr radius] ------------------------------------------------------------------------- PAW proj 1: r_paw(l= 0)= 2.25 (1.5*r_cut) PAW proj 2: r_paw(l= 0)= 2.25 (1.5*r_cut) PAW proj 3: r_paw(l= 1)= 3.20 (from input file)) PAW proj 4: r_paw(l= 1)= 3.20 (from input file)) NB: The calculation will not necessary use all these r_paw values. - For a edge in the electric-dipole approximation, only the r_paw(l=1) values are used. - For a K edge in the electric-quadrupole approximation, only the r_paw(l=2) values are used. - For a L2 or L3 edge in the electric-quadrupole approximation, all projectors (s, p and d) are used. ------------------------------------------------------------------------- Starting XANES calculation in the electric dipole approximation ------------------------------------------------------------------------- Method of calculation based on the Lanczos recursion algorithm -------------------------------------------------------------- - STEP 1: Construction of a kpoint-dependent Lanczos basis, in which the Hamiltonian is tridiagonal (each 'iter' corresponds to the calculation of one more Lanczos vector) - STEP 2: Calculation of the cross-section as a continued fraction averaged over the k-points. ... Begin STEP 1 ... Radial transition matrix element(s) used in the calculation of the initial vector of the Lanczos basis (|tilde{phi}_abs> normalized) | For PAW proj. (l=1) #1: radial matrix element = 0.157804700 | For PAW proj. (l=1) #2: radial matrix element = 0.201849769 |------------------------------------------------------------- ! k-point # 1: ( 0.1250, 0.1250, 0.1250), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397814E+00 | Estimated error at iter 50: 1.00475617 | Estimated error at iter 100: 0.08785416 | Estimated error at iter 150: 0.00219795 ! => CONVERGED at iter 200 with error= 0.00000000 |------------------------------------------------------------- ! k-point # 2: ( 0.1250, 0.1250, 0.3750), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397812E+00 | Estimated error at iter 50: 1.00459257 | Estimated error at iter 100: 0.16937392 | Estimated error at iter 150: 0.02706932 | Estimated error at iter 200: 0.00433260 ! => CONVERGED at iter 250 with error= 0.00000073 |------------------------------------------------------------- ! k-point # 3: ( 0.1250, 0.1250, 0.6250), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397812E+00 | Estimated error at iter 50: 1.00459257 | Estimated error at iter 100: 0.16937392 | Estimated error at iter 150: 0.02712562 | Estimated error at iter 200: 0.00437076 ! => CONVERGED at iter 250 with error= 0.00000073 |------------------------------------------------------------- ! k-point # 4: ( 0.1250, 0.1250, 0.8750), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397814E+00 | Estimated error at iter 50: 1.00475617 | Estimated error at iter 100: 0.08785416 | Estimated error at iter 150: 0.00219795 ! => CONVERGED at iter 200 with error= 0.00000000 |------------------------------------------------------------- ! k-point # 5: ( 0.1250, 0.3750, 0.1250), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397812E+00 | Estimated error at iter 50: 1.00459257 | Estimated error at iter 100: 0.16937392 | Estimated error at iter 150: 0.02722663 | Estimated error at iter 200: 0.00446388 ! => CONVERGED at iter 250 with error= 0.00000073 |------------------------------------------------------------- ! k-point # 6: ( 0.1250, 0.3750, 0.3750), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397813E+00 | Estimated error at iter 50: 1.00439760 | Estimated error at iter 100: 0.15141316 | Estimated error at iter 150: 0.01978362 ! => CONVERGED at iter 200 with error= 0.00060718 |------------------------------------------------------------- ! k-point # 7: ( 0.1250, 0.3750, 0.6250), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397813E+00 | Estimated error at iter 50: 1.00439760 | Estimated error at iter 100: 0.15141316 | Estimated error at iter 150: 0.01985657 ! => CONVERGED at iter 200 with error= 0.00081333 |------------------------------------------------------------- ! k-point # 8: ( 0.1250, 0.3750, 0.8750), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397812E+00 | Estimated error at iter 50: 1.00459257 | Estimated error at iter 100: 0.16937392 | Estimated error at iter 150: 0.02719440 | Estimated error at iter 200: 0.00442260 ! => CONVERGED at iter 250 with error= 0.00000073 |------------------------------------------------------------- ! k-point # 9: ( 0.1250, 0.6250, 0.1250), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397812E+00 | Estimated error at iter 50: 1.00459257 | Estimated error at iter 100: 0.16937392 | Estimated error at iter 150: 0.02719448 | Estimated error at iter 200: 0.00442263 ! => CONVERGED at iter 250 with error= 0.00000072 |------------------------------------------------------------- ! k-point # 10: ( 0.1250, 0.6250, 0.3750), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397813E+00 | Estimated error at iter 50: 1.00439760 | Estimated error at iter 100: 0.15141316 | Estimated error at iter 150: 0.01981481 ! => CONVERGED at iter 200 with error= 0.00069273 |------------------------------------------------------------- ! k-point # 11: ( 0.1250, 0.6250, 0.6250), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397813E+00 | Estimated error at iter 50: 1.00439760 | Estimated error at iter 100: 0.15141316 | Estimated error at iter 150: 0.01985104 ! => CONVERGED at iter 200 with error= 0.00079660 |------------------------------------------------------------- ! k-point # 12: ( 0.1250, 0.6250, 0.8750), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397812E+00 | Estimated error at iter 50: 1.00459257 | Estimated error at iter 100: 0.16937392 | Estimated error at iter 150: 0.02720083 | Estimated error at iter 200: 0.00445999 ! => CONVERGED at iter 250 with error= 0.00000073 |------------------------------------------------------------- ! k-point # 13: ( 0.1250, 0.8750, 0.1250), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397814E+00 | Estimated error at iter 50: 1.00475617 | Estimated error at iter 100: 0.08785416 | Estimated error at iter 150: 0.00219795 ! => CONVERGED at iter 200 with error= 0.00000000 |------------------------------------------------------------- ! k-point # 14: ( 0.1250, 0.8750, 0.3750), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397812E+00 | Estimated error at iter 50: 1.00459257 | Estimated error at iter 100: 0.16937392 | Estimated error at iter 150: 0.02719749 | Estimated error at iter 200: 0.00445888 ! => CONVERGED at iter 250 with error= 0.00000072 |------------------------------------------------------------- ! k-point # 15: ( 0.1250, 0.8750, 0.6250), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397812E+00 | Estimated error at iter 50: 1.00459257 | Estimated error at iter 100: 0.16937392 | Estimated error at iter 150: 0.02713793 | Estimated error at iter 200: 0.00437952 ! => CONVERGED at iter 250 with error= 0.00000073 |------------------------------------------------------------- ! k-point # 16: ( 0.1250, 0.8750, 0.8750), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397814E+00 | Estimated error at iter 50: 1.00475617 | Estimated error at iter 100: 0.08785416 | Estimated error at iter 150: 0.00219795 ! => CONVERGED at iter 200 with error= 0.00000000 |------------------------------------------------------------- ! k-point # 17: ( 0.3750, 0.1250, 0.1250), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397742E+00 | Estimated error at iter 50: 1.00457637 | Estimated error at iter 100: 0.24363170 | Estimated error at iter 150: 0.04657900 ! => CONVERGED at iter 200 with error= 0.00004490 |------------------------------------------------------------- ! k-point # 18: ( 0.3750, 0.1250, 0.3750), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397747E+00 | Estimated error at iter 50: 1.00456327 | Estimated error at iter 100: 0.15707614 | Estimated error at iter 150: 0.03446802 | Estimated error at iter 200: 0.00569699 | Estimated error at iter 250: 0.00120992 ! => CONVERGED at iter 300 with error= 0.00000072 |------------------------------------------------------------- ! k-point # 19: ( 0.3750, 0.1250, 0.6250), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397747E+00 | Estimated error at iter 50: 1.00456327 | Estimated error at iter 100: 0.15707614 | Estimated error at iter 150: 0.03445044 | Estimated error at iter 200: 0.00566401 | Estimated error at iter 250: 0.00121257 ! => CONVERGED at iter 300 with error= 0.00000074 |------------------------------------------------------------- ! k-point # 20: ( 0.3750, 0.1250, 0.8750), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397742E+00 | Estimated error at iter 50: 1.00457637 | Estimated error at iter 100: 0.24363170 | Estimated error at iter 150: 0.04657893 ! => CONVERGED at iter 200 with error= 0.00004347 |------------------------------------------------------------- ! k-point # 21: ( 0.3750, 0.3750, 0.1250), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397747E+00 | Estimated error at iter 50: 1.00456327 | Estimated error at iter 100: 0.15707614 | Estimated error at iter 150: 0.03446292 | Estimated error at iter 200: 0.00550944 ! => CONVERGED at iter 250 with error= 0.00095928 |------------------------------------------------------------- ! k-point # 22: ( 0.3750, 0.3750, 0.3750), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397748E+00 | Estimated error at iter 50: 1.00470453 | Estimated error at iter 100: 0.18595285 | Estimated error at iter 150: 0.00349768 ! => CONVERGED at iter 200 with error= 0.00000002 |------------------------------------------------------------- ! k-point # 23: ( 0.3750, 0.3750, 0.6250), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397748E+00 | Estimated error at iter 50: 1.00470453 | Estimated error at iter 100: 0.18595285 | Estimated error at iter 150: 0.00349768 ! => CONVERGED at iter 200 with error= 0.00000002 |------------------------------------------------------------- ! k-point # 24: ( 0.3750, 0.3750, 0.8750), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397747E+00 | Estimated error at iter 50: 1.00456327 | Estimated error at iter 100: 0.15707614 | Estimated error at iter 150: 0.03446505 | Estimated error at iter 200: 0.00568932 | Estimated error at iter 250: 0.00120577 ! => CONVERGED at iter 300 with error= 0.00000072 |------------------------------------------------------------- ! k-point # 25: ( 0.3750, 0.6250, 0.1250), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397747E+00 | Estimated error at iter 50: 1.00456327 | Estimated error at iter 100: 0.15707614 | Estimated error at iter 150: 0.03443212 | Estimated error at iter 200: 0.00557259 | Estimated error at iter 250: 0.00108995 ! => CONVERGED at iter 300 with error= 0.00000074 |------------------------------------------------------------- ! k-point # 26: ( 0.3750, 0.6250, 0.3750), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397748E+00 | Estimated error at iter 50: 1.00470453 | Estimated error at iter 100: 0.18595285 | Estimated error at iter 150: 0.00349768 ! => CONVERGED at iter 200 with error= 0.00000002 |------------------------------------------------------------- ! k-point # 27: ( 0.3750, 0.6250, 0.6250), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397748E+00 | Estimated error at iter 50: 1.00470453 | Estimated error at iter 100: 0.18595285 | Estimated error at iter 150: 0.00349768 ! => CONVERGED at iter 200 with error= 0.00000002 |------------------------------------------------------------- ! k-point # 28: ( 0.3750, 0.6250, 0.8750), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397747E+00 | Estimated error at iter 50: 1.00456327 | Estimated error at iter 100: 0.15707614 | Estimated error at iter 150: 0.03446317 | Estimated error at iter 200: 0.00569241 | Estimated error at iter 250: 0.00122046 ! => CONVERGED at iter 300 with error= 0.00000073 |------------------------------------------------------------- ! k-point # 29: ( 0.3750, 0.8750, 0.1250), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397742E+00 | Estimated error at iter 50: 1.00457637 | Estimated error at iter 100: 0.24363170 | Estimated error at iter 150: 0.04657899 ! => CONVERGED at iter 200 with error= 0.00004482 |------------------------------------------------------------- ! k-point # 30: ( 0.3750, 0.8750, 0.3750), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397747E+00 | Estimated error at iter 50: 1.00456327 | Estimated error at iter 100: 0.15707614 | Estimated error at iter 150: 0.03446455 | Estimated error at iter 200: 0.00569316 | Estimated error at iter 250: 0.00121625 ! => CONVERGED at iter 300 with error= 0.00000073 |------------------------------------------------------------- ! k-point # 31: ( 0.3750, 0.8750, 0.6250), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397747E+00 | Estimated error at iter 50: 1.00456327 | Estimated error at iter 100: 0.15707614 | Estimated error at iter 150: 0.03437275 | Estimated error at iter 200: 0.00551003 | Estimated error at iter 250: 0.00119926 ! => CONVERGED at iter 300 with error= 0.00000080 |------------------------------------------------------------- ! k-point # 32: ( 0.3750, 0.8750, 0.8750), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397742E+00 | Estimated error at iter 50: 1.00457637 | Estimated error at iter 100: 0.24363170 | Estimated error at iter 150: 0.04657903 ! => CONVERGED at iter 200 with error= 0.00004485 |------------------------------------------------------------- ! k-point # 33: ( 0.6250, 0.1250, 0.1250), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397742E+00 | Estimated error at iter 50: 1.00457637 | Estimated error at iter 100: 0.24363170 | Estimated error at iter 150: 0.04657903 ! => CONVERGED at iter 200 with error= 0.00004489 |------------------------------------------------------------- ! k-point # 34: ( 0.6250, 0.1250, 0.3750), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397747E+00 | Estimated error at iter 50: 1.00456327 | Estimated error at iter 100: 0.15707614 | Estimated error at iter 150: 0.03446692 | Estimated error at iter 200: 0.00558960 ! => CONVERGED at iter 250 with error= 0.00098489 |------------------------------------------------------------- ! k-point # 35: ( 0.6250, 0.1250, 0.6250), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397747E+00 | Estimated error at iter 50: 1.00456327 | Estimated error at iter 100: 0.15707614 | Estimated error at iter 150: 0.03446534 | Estimated error at iter 200: 0.00566784 | Estimated error at iter 250: 0.00115745 ! => CONVERGED at iter 300 with error= 0.00000072 |------------------------------------------------------------- ! k-point # 36: ( 0.6250, 0.1250, 0.8750), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397742E+00 | Estimated error at iter 50: 1.00457637 | Estimated error at iter 100: 0.24363170 | Estimated error at iter 150: 0.04657901 ! => CONVERGED at iter 200 with error= 0.00004484 |------------------------------------------------------------- ! k-point # 37: ( 0.6250, 0.3750, 0.1250), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397747E+00 | Estimated error at iter 50: 1.00456327 | Estimated error at iter 100: 0.15707614 | Estimated error at iter 150: 0.03446664 | Estimated error at iter 200: 0.00551943 ! => CONVERGED at iter 250 with error= 0.00099067 |------------------------------------------------------------- ! k-point # 38: ( 0.6250, 0.3750, 0.3750), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397748E+00 | Estimated error at iter 50: 1.00470453 | Estimated error at iter 100: 0.18595285 | Estimated error at iter 150: 0.00349768 ! => CONVERGED at iter 200 with error= 0.00000002 |------------------------------------------------------------- ! k-point # 39: ( 0.6250, 0.3750, 0.6250), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397748E+00 | Estimated error at iter 50: 1.00470453 | Estimated error at iter 100: 0.18595285 | Estimated error at iter 150: 0.00349768 ! => CONVERGED at iter 200 with error= 0.00000002 |------------------------------------------------------------- ! k-point # 40: ( 0.6250, 0.3750, 0.8750), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397747E+00 | Estimated error at iter 50: 1.00456327 | Estimated error at iter 100: 0.15707614 | Estimated error at iter 150: 0.03446238 | Estimated error at iter 200: 0.00568745 | Estimated error at iter 250: 0.00121299 ! => CONVERGED at iter 300 with error= 0.00000072 |------------------------------------------------------------- ! k-point # 41: ( 0.6250, 0.6250, 0.1250), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397747E+00 | Estimated error at iter 50: 1.00456327 | Estimated error at iter 100: 0.15707614 | Estimated error at iter 150: 0.03446818 | Estimated error at iter 200: 0.00568558 | Estimated error at iter 250: 0.00118430 ! => CONVERGED at iter 300 with error= 0.00000072 |------------------------------------------------------------- ! k-point # 42: ( 0.6250, 0.6250, 0.3750), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397748E+00 | Estimated error at iter 50: 1.00470453 | Estimated error at iter 100: 0.18595285 | Estimated error at iter 150: 0.00349768 ! => CONVERGED at iter 200 with error= 0.00000002 |------------------------------------------------------------- ! k-point # 43: ( 0.6250, 0.6250, 0.6250), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397748E+00 | Estimated error at iter 50: 1.00470453 | Estimated error at iter 100: 0.18595285 | Estimated error at iter 150: 0.00349768 ! => CONVERGED at iter 200 with error= 0.00000002 |------------------------------------------------------------- ! k-point # 44: ( 0.6250, 0.6250, 0.8750), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397747E+00 | Estimated error at iter 50: 1.00456327 | Estimated error at iter 100: 0.15707614 | Estimated error at iter 150: 0.03446801 | Estimated error at iter 200: 0.00570236 | Estimated error at iter 250: 0.00122171 ! => CONVERGED at iter 300 with error= 0.00000073 |------------------------------------------------------------- ! k-point # 45: ( 0.6250, 0.8750, 0.1250), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397742E+00 | Estimated error at iter 50: 1.00457637 | Estimated error at iter 100: 0.24363170 | Estimated error at iter 150: 0.04657906 ! => CONVERGED at iter 200 with error= 0.00004490 |------------------------------------------------------------- ! k-point # 46: ( 0.6250, 0.8750, 0.3750), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397747E+00 | Estimated error at iter 50: 1.00456327 | Estimated error at iter 100: 0.15707614 | Estimated error at iter 150: 0.03446400 | Estimated error at iter 200: 0.00561377 | Estimated error at iter 250: 0.00104273 ! => CONVERGED at iter 300 with error= 0.00000072 |------------------------------------------------------------- ! k-point # 47: ( 0.6250, 0.8750, 0.6250), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397747E+00 | Estimated error at iter 50: 1.00456327 | Estimated error at iter 100: 0.15707614 | Estimated error at iter 150: 0.03446351 | Estimated error at iter 200: 0.00568995 | Estimated error at iter 250: 0.00121367 ! => CONVERGED at iter 300 with error= 0.00000073 |------------------------------------------------------------- ! k-point # 48: ( 0.6250, 0.8750, 0.8750), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397742E+00 | Estimated error at iter 50: 1.00457637 | Estimated error at iter 100: 0.24363170 | Estimated error at iter 150: 0.04657907 ! => CONVERGED at iter 200 with error= 0.00004480 |------------------------------------------------------------- ! k-point # 49: ( 0.8750, 0.1250, 0.1250), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397814E+00 | Estimated error at iter 50: 1.00475617 | Estimated error at iter 100: 0.08785416 | Estimated error at iter 150: 0.00219795 ! => CONVERGED at iter 200 with error= 0.00000000 |------------------------------------------------------------- ! k-point # 50: ( 0.8750, 0.1250, 0.3750), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397812E+00 | Estimated error at iter 50: 1.00459257 | Estimated error at iter 100: 0.16937392 | Estimated error at iter 150: 0.02715515 | Estimated error at iter 200: 0.00439207 ! => CONVERGED at iter 250 with error= 0.00000073 |------------------------------------------------------------- ! k-point # 51: ( 0.8750, 0.1250, 0.6250), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397812E+00 | Estimated error at iter 50: 1.00459257 | Estimated error at iter 100: 0.16937392 | Estimated error at iter 150: 0.02703847 | Estimated error at iter 200: 0.00431288 ! => CONVERGED at iter 250 with error= 0.00000073 |------------------------------------------------------------- ! k-point # 52: ( 0.8750, 0.1250, 0.8750), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397814E+00 | Estimated error at iter 50: 1.00475617 | Estimated error at iter 100: 0.08785416 | Estimated error at iter 150: 0.00219795 ! => CONVERGED at iter 200 with error= 0.00000000 |------------------------------------------------------------- ! k-point # 53: ( 0.8750, 0.3750, 0.1250), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397812E+00 | Estimated error at iter 50: 1.00459257 | Estimated error at iter 100: 0.16937392 | Estimated error at iter 150: 0.02718143 | Estimated error at iter 200: 0.00441211 ! => CONVERGED at iter 250 with error= 0.00000073 |------------------------------------------------------------- ! k-point # 54: ( 0.8750, 0.3750, 0.3750), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397813E+00 | Estimated error at iter 50: 1.00439760 | Estimated error at iter 100: 0.15141316 | Estimated error at iter 150: 0.01988706 ! => CONVERGED at iter 200 with error= 0.00091150 |------------------------------------------------------------- ! k-point # 55: ( 0.8750, 0.3750, 0.6250), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397813E+00 | Estimated error at iter 50: 1.00439760 | Estimated error at iter 100: 0.15141316 | Estimated error at iter 150: 0.01988209 ! => CONVERGED at iter 200 with error= 0.00089468 |------------------------------------------------------------- ! k-point # 56: ( 0.8750, 0.3750, 0.8750), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397812E+00 | Estimated error at iter 50: 1.00459257 | Estimated error at iter 100: 0.16937392 | Estimated error at iter 150: 0.02719951 | Estimated error at iter 200: 0.00442688 ! => CONVERGED at iter 250 with error= 0.00000073 |------------------------------------------------------------- ! k-point # 57: ( 0.8750, 0.6250, 0.1250), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397812E+00 | Estimated error at iter 50: 1.00459257 | Estimated error at iter 100: 0.16937392 | Estimated error at iter 150: 0.02712941 | Estimated error at iter 200: 0.00437344 ! => CONVERGED at iter 250 with error= 0.00000073 |------------------------------------------------------------- ! k-point # 58: ( 0.8750, 0.6250, 0.3750), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397813E+00 | Estimated error at iter 50: 1.00439760 | Estimated error at iter 100: 0.15141316 | Estimated error at iter 150: 0.01988346 ! => CONVERGED at iter 200 with error= 0.00089933 |------------------------------------------------------------- ! k-point # 59: ( 0.8750, 0.6250, 0.6250), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397813E+00 | Estimated error at iter 50: 1.00439760 | Estimated error at iter 100: 0.15141316 | Estimated error at iter 150: 0.01986553 ! => CONVERGED at iter 200 with error= 0.00084140 |------------------------------------------------------------- ! k-point # 60: ( 0.8750, 0.6250, 0.8750), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397812E+00 | Estimated error at iter 50: 1.00459257 | Estimated error at iter 100: 0.16937392 | Estimated error at iter 150: 0.02722534 | Estimated error at iter 200: 0.00445243 ! => CONVERGED at iter 250 with error= 0.00000073 |------------------------------------------------------------- ! k-point # 61: ( 0.8750, 0.8750, 0.1250), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397814E+00 | Estimated error at iter 50: 1.00475617 | Estimated error at iter 100: 0.08785416 | Estimated error at iter 150: 0.00219795 ! => CONVERGED at iter 200 with error= 0.00000000 |------------------------------------------------------------- ! k-point # 62: ( 0.8750, 0.8750, 0.3750), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397812E+00 | Estimated error at iter 50: 1.00459257 | Estimated error at iter 100: 0.16937392 | Estimated error at iter 150: 0.02704728 | Estimated error at iter 200: 0.00431842 ! => CONVERGED at iter 250 with error= 0.00000073 |------------------------------------------------------------- ! k-point # 63: ( 0.8750, 0.8750, 0.6250), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397812E+00 | Estimated error at iter 50: 1.00459257 | Estimated error at iter 100: 0.16937392 | Estimated error at iter 150: 0.02707594 | Estimated error at iter 200: 0.00433692 ! => CONVERGED at iter 250 with error= 0.00000072 |------------------------------------------------------------- ! k-point # 64: ( 0.8750, 0.8750, 0.8750), 0.0312, 1 |------------------------------------------------------------- okvan= F | Norm of the initial Lanczos vector: 0.11397814E+00 | Estimated error at iter 50: 1.00475617 | Estimated error at iter 100: 0.08785416 | Estimated error at iter 150: 0.00219795 ! => CONVERGED at iter 200 with error= 0.00000000 Results of STEP 1 successfully written in x_save_file x_save_file name: -> diamond.xspectra.sav x_save_file version: 2 ... End STEP 1 ... ... Begin STEP 2 ... The spectrum is calculated using the following parameters: energy-zero of the spectrum [eV]: 13.3353 the occupied states are NOT cut xemin [eV]: -10.00 xemax [eV]: 30.00 xnepoint: 300 constant broadening parameter [eV]: 0.800 Core level energy [eV]: -284.2 (from electron binding energy of neutral atoms in X-ray data booklet) Cross-section successfully written in xanes.dat ... End STEP 2 ... xanes : 15.05s CPU 15.23s WALL ( 1 calls) ------------------------------------------------------------------------- END JOB XSpectra -------------------------------------------------------------------------