Program LD1 v.4.2CVS starts on 8Feb2010 at 15:38:41 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Parallel version (MPI), running on 1 processors --------------------------- All-electron run ---------------------------- F atomic number is 9.00 dft =PBE lsd =0 sic =0 latt =0 beta=0.20 tr2=1.0E-14 mesh =1105 r(mesh) = 99.76081 xmin = -7.00 dx = 0.01250 1 Ry = 13.60569193 eV n l nl e(Ry) e(Ha) e(eV) 1 0 1S 1( 2.00) -48.7034 -24.3517 -662.6435 2 0 2S 1( 2.00) -2.1917 -1.0959 -29.8198 2 1 2P 1( 5.00) -0.8174 -0.4087 -11.1215 eps = 2.9E-15 iter = 35 Etot = -199.302123 Ry, -99.651061 Ha, -2711.643281 eV Ekin = 198.789676 Ry, 99.394838 Ha, 2704.671090 eV Encl = -476.948650 Ry, -238.474325 Ha, -6489.216399 eV Eh = 99.262081 Ry, 49.631041 Ha, 1350.529297 eV Exc = -20.405230 Ry, -10.202615 Ha, -277.627269 eV normalization and overlap integrals s(1S/1S) = 1.000000 = 0.1765 = 0.0421 r(max) = 0.1139 s(1S/2S) = -0.000000 s(2S/2S) = 1.000000 = 1.0049 = 1.2317 r(max) = 0.7617 s(2P/2P) = 1.000000 = 1.1050 = 1.6382 r(max) = 0.7066 ------------------------ End of All-electron run ------------------------ --------------------- Generating PAW atomic setup -------------------- Generating local pot.: lloc=2, matching radius rcloc = 1.3000 Computing core charge for nlcc: r > 0.80 : true rho core Core charge pseudized with two Bessel functions Integrated core pseudo-charge : 0.04 Wfc 2S rcut= 1.003 Using Troullier-Martins method Wfc-us 2S rcutus= 1.459 Estimated cut-off energy= 23.75 Ry Wfc 2S rcut= 1.003 Using Troullier-Martins method Wfc-us 2S rcutus= 1.459 Estimated cut-off energy= 43.61 Ry Wfc 2P rcut= 1.003 Using Troullier-Martins method Wfc-us 2P rcutus= 1.612 Estimated cut-off energy= 30.79 Ry Wfc 2P rcut= 1.003 Using Troullier-Martins method Wfc-us 2P rcutus= 1.612 Estimated cut-off energy= 44.83 Ry The bmat matrix 1.95983 1.94888 0.00000 0.00000 1.70002 1.59065 0.00000 0.00000 0.00000 0.00000 -0.54728 -0.48063 0.00000 0.00000 -0.27375 -0.27948 The bmat + epsilon qq matrix 2.10970 1.94333 0.00000 0.00000 1.94336 1.58415 0.00000 0.00000 0.00000 0.00000 -0.82416 -0.45808 0.00000 0.00000 -0.45807 -0.26439 The qq matrix -0.06838 -0.11103 0.00000 0.00000 -0.11103 -0.13014 0.00000 0.00000 0.00000 0.00000 0.33872 0.22550 0.00000 0.00000 0.22550 0.15091 multipoles (all-electron charge) - (pseudo charge) ns l1:ns1 l2 l=0 l=1 l=2 l=3 l=4 l=5 1 0: 1 0 -0.0684 2 0: 1 0 -0.1110 2 0: 2 0 -0.1301 3 1: 1 0 0.0000 -0.1186 3 1: 2 0 0.0000 -0.0602 3 1: 3 1 0.3387 0.0000 0.1390 4 1: 1 0 0.0000 -0.0684 4 1: 2 0 0.0000 -0.0332 4 1: 3 1 0.2255 0.0000 0.0859 4 1: 4 1 0.1509 0.0000 0.0536 Required augmentation: BESSEL Suggested rho cutoff for augmentation: 54.19 Ry Estimated PAW energy = -59.031316 Ryd The PAW screened D coefficients 2.10970 1.94333 0.00000 0.00000 1.94333 1.58415 0.00000 0.00000 0.00000 0.00000 -0.82414 -0.45808 0.00000 0.00000 -0.45808 -0.26439 The PAW descreened D coefficients (US) 1.73974 0.97566 0.00000 0.00000 0.97566 0.33310 0.00000 0.00000 0.00000 0.00000 3.39088 2.32633 0.00000 0.00000 2.32633 1.58668 ------------------- End of pseudopotential generation ------------------- --------------------------- All-electron run ---------------------------- F atomic number is 9.00 dft = SLA PW PBX PBC lsd =0 sic =0 latt =0 beta=0.20 tr2=1.0E-14 mesh =1105 r(mesh) = 99.76081 xmin = -7.00 dx = 0.01250 1 Ry = 13.60569193 eV n l nl e(Ry) e(Ha) e(eV) 1 0 1S 1( 2.00) -48.7034 -24.3517 -662.6435 2 0 2S 1( 2.00) -2.1917 -1.0959 -29.8198 2 1 2P 1( 5.00) -0.8174 -0.4087 -11.1215 eps = 2.9E-15 iter = 35 Etot = -199.302123 Ry, -99.651061 Ha, -2711.643281 eV Ekin = 198.789676 Ry, 99.394838 Ha, 2704.671090 eV Encl = -476.948650 Ry, -238.474325 Ha, -6489.216399 eV Eh = 99.262081 Ry, 49.631041 Ha, 1350.529297 eV Exc = -20.405230 Ry, -10.202615 Ha, -277.627269 eV normalization and overlap integrals s(1S/1S) = 1.000000 = 0.1765 = 0.0421 r(max) = 0.1139 s(1S/2S) = -0.000000 s(2S/2S) = 1.000000 = 1.0049 = 1.2317 r(max) = 0.7617 s(2P/2P) = 1.000000 = 1.1050 = 1.6382 r(max) = 0.7066 ------------------------ End of All-electron run ------------------------ Computing logarithmic derivative in 1.64303 Computing logarithmic derivative in 1.64303 Computing the partial wave expansion no projector for channel: 2 ---------------------- Testing the pseudopotential ---------------------- F atomic number is 9.00 valence charge is 7.00 dft = SLA PW PBX PBC lsd =0 sic =0 latt =0 beta=0.20 tr2=1.0E-14 mesh =1105 r(mesh) = 99.76081 xmin = -7.00 dx = 0.01250 n l nl e AE (Ry) e PS (Ry) De AE-PS (Ry) 1 0 2S 1( 2.00) -2.19171 -2.19171 0.00000 2 1 2P 1( 5.00) -0.81742 -0.81741 -0.00000 eps = 5.7E-15 iter = 3 Etot = -199.302123 Ry, -99.651061 Ha, -2711.643281 eV Etotps = -59.031303 Ry, -29.515651 Ha, -803.161722 eV Ekin = 50.319797 Ry, 25.159898 Ha, 684.635650 eV Encl = -131.379816 Ry, -65.689908 Ha, -1787.513297 eV Ehrt = 42.433944 Ry, 21.216972 Ha, 577.343171 eV Ecxc = -20.405228 Ry, -10.202614 Ha, -277.627246 eV (Ecc = -0.031434 Ry, -0.015717 Ha, -0.427688 eV) ---------------------- End of pseudopotential test ---------------------- -------------- Test with a basis set of Bessel functions ---------- Box size (a.u.) : 30.0 Cutoff (Ry) : 10.0 N = 1 N = 2 N = 3 E(L=0) = -2.1087 Ry -0.0085 Ry 0.0249 Ry E(L=1) = -0.5344 Ry 0.0213 Ry 0.0601 Ry E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry Cutoff (Ry) : 12.0 N = 1 N = 2 N = 3 E(L=0) = -2.1481 Ry -0.0095 Ry 0.0246 Ry E(L=1) = -0.6440 Ry 0.0211 Ry 0.0593 Ry E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry Cutoff (Ry) : 14.0 N = 1 N = 2 N = 3 E(L=0) = -2.1644 Ry -0.0100 Ry 0.0244 Ry E(L=1) = -0.7201 Ry 0.0210 Ry 0.0587 Ry E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry Cutoff (Ry) : 16.0 N = 1 N = 2 N = 3 E(L=0) = -2.1791 Ry -0.0106 Ry 0.0242 Ry E(L=1) = -0.7546 Ry 0.0210 Ry 0.0585 Ry E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry Cutoff (Ry) : 18.0 N = 1 N = 2 N = 3 E(L=0) = -2.1846 Ry -0.0108 Ry 0.0241 Ry E(L=1) = -0.7873 Ry 0.0210 Ry 0.0582 Ry E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry Cutoff (Ry) : 20.0 N = 1 N = 2 N = 3 E(L=0) = -2.1879 Ry -0.0110 Ry 0.0241 Ry E(L=1) = -0.7998 Ry 0.0209 Ry 0.0581 Ry E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry Cutoff (Ry) : 22.0 N = 1 N = 2 N = 3 E(L=0) = -2.1897 Ry -0.0112 Ry 0.0240 Ry E(L=1) = -0.8074 Ry 0.0209 Ry 0.0580 Ry E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry Cutoff (Ry) : 24.0 N = 1 N = 2 N = 3 E(L=0) = -2.1906 Ry -0.0113 Ry 0.0240 Ry E(L=1) = -0.8118 Ry 0.0209 Ry 0.0580 Ry E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry Cutoff (Ry) : 26.0 N = 1 N = 2 N = 3 E(L=0) = -2.1911 Ry -0.0114 Ry 0.0240 Ry E(L=1) = -0.8143 Ry 0.0209 Ry 0.0579 Ry E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry Cutoff (Ry) : 28.0 N = 1 N = 2 N = 3 E(L=0) = -2.1913 Ry -0.0114 Ry 0.0239 Ry E(L=1) = -0.8153 Ry 0.0209 Ry 0.0579 Ry E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry Cutoff (Ry) : 30.0 N = 1 N = 2 N = 3 E(L=0) = -2.1913 Ry -0.0115 Ry 0.0239 Ry E(L=1) = -0.8156 Ry 0.0209 Ry 0.0579 Ry E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry Cutoff (Ry) : 32.0 N = 1 N = 2 N = 3 E(L=0) = -2.1913 Ry -0.0115 Ry 0.0239 Ry E(L=1) = -0.8158 Ry 0.0209 Ry 0.0579 Ry E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry Cutoff (Ry) : 34.0 N = 1 N = 2 N = 3 E(L=0) = -2.1913 Ry -0.0115 Ry 0.0239 Ry E(L=1) = -0.8158 Ry 0.0209 Ry 0.0579 Ry E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry Cutoff (Ry) : 36.0 N = 1 N = 2 N = 3 E(L=0) = -2.1913 Ry -0.0115 Ry 0.0239 Ry E(L=1) = -0.8159 Ry 0.0209 Ry 0.0579 Ry E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry Cutoff (Ry) : 38.0 N = 1 N = 2 N = 3 E(L=0) = -2.1913 Ry -0.0115 Ry 0.0239 Ry E(L=1) = -0.8159 Ry 0.0209 Ry 0.0579 Ry E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry Cutoff (Ry) : 40.0 N = 1 N = 2 N = 3 E(L=0) = -2.1914 Ry -0.0115 Ry 0.0239 Ry E(L=1) = -0.8159 Ry 0.0209 Ry 0.0579 Ry E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry Cutoff (Ry) : 42.0 N = 1 N = 2 N = 3 E(L=0) = -2.1914 Ry -0.0115 Ry 0.0239 Ry E(L=1) = -0.8159 Ry 0.0209 Ry 0.0579 Ry E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry Cutoff (Ry) : 44.0 N = 1 N = 2 N = 3 E(L=0) = -2.1914 Ry -0.0115 Ry 0.0239 Ry E(L=1) = -0.8160 Ry 0.0209 Ry 0.0579 Ry E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry Cutoff (Ry) : 46.0 N = 1 N = 2 N = 3 E(L=0) = -2.1914 Ry -0.0115 Ry 0.0239 Ry E(L=1) = -0.8160 Ry 0.0209 Ry 0.0579 Ry E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry Cutoff (Ry) : 48.0 N = 1 N = 2 N = 3 E(L=0) = -2.1914 Ry -0.0115 Ry 0.0239 Ry E(L=1) = -0.8161 Ry 0.0209 Ry 0.0579 Ry E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry Cutoff (Ry) : 50.0 N = 1 N = 2 N = 3 E(L=0) = -2.1914 Ry -0.0115 Ry 0.0239 Ry E(L=1) = -0.8161 Ry 0.0209 Ry 0.0579 Ry E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry Cutoff (Ry) : 52.0 N = 1 N = 2 N = 3 E(L=0) = -2.1915 Ry -0.0115 Ry 0.0239 Ry E(L=1) = -0.8161 Ry 0.0209 Ry 0.0579 Ry E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry Cutoff (Ry) : 54.0 N = 1 N = 2 N = 3 E(L=0) = -2.1915 Ry -0.0115 Ry 0.0239 Ry E(L=1) = -0.8161 Ry 0.0209 Ry 0.0579 Ry E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry Cutoff (Ry) : 56.0 N = 1 N = 2 N = 3 E(L=0) = -2.1915 Ry -0.0115 Ry 0.0239 Ry E(L=1) = -0.8161 Ry 0.0209 Ry 0.0579 Ry E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry Cutoff (Ry) : 58.0 N = 1 N = 2 N = 3 E(L=0) = -2.1915 Ry -0.0115 Ry 0.0239 Ry E(L=1) = -0.8162 Ry 0.0209 Ry 0.0579 Ry E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry Cutoff (Ry) : 60.0 N = 1 N = 2 N = 3 E(L=0) = -2.1915 Ry -0.0115 Ry 0.0239 Ry E(L=1) = -0.8162 Ry 0.0209 Ry 0.0579 Ry E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry -------------- End of Bessel function test ------------------------