ELFj4(UWVS$,-DŽ$4$DŽ$8*DŽ$\3$0DŽ$`DŽ$,D$*D$H$D$t$$$,u u׍$,$D$D$4$D$ D$t$$=DŽ$4D$DŽ$83DŽ$\3$0DŽ$`DŽ$,D$'D$$D$t$$$,u u׉$5`$DŽ$4DŽ$8@$0DŽ$\DŽ$`DŽ$,D$D$$$$DŽ$4DŽ$8B$0DŽ$\DŽ$`DŽ$,D$0D$$$$DŽ$4DŽ$8D$0DŽ$\@DŽ$` DŽ$,D$#D$L$D$D$$$f$DŽ$4DŽ$8F$0DŽ$\DŽ$`DŽ$,D$D$o$$$DŽ$4DŽ$8H$0DŽ$\DŽ$`DŽ$,D$D$$$$DŽ$4DŽ$8J$0DŽ$,$$DŽ$4DŽ$8L$0DŽ$\DŽ$`DŽ$,D$D$$$ DŽ$4$DŽ$8NDŽ$\$0DŽ$`DŽ$,D$D$$$t$,$DŽ$4DŽ$8R$0DŽ$\DŽ$` DŽ$,D$ D$$D$D$$$D$D$4$D$ D$t$$$DŽ$4DŽ$8T$0DŽ$\DŽ$` DŽ$,D$D$$D$D$$$$DŽ$4DŽ$8_$0DŽ$\DŽ$` DŽ$,D$ D$$D$D$$$$DŽ$4DŽ$8`$0DŽ$\DŽ$` DŽ$,D$ D$$D$D$$$$DŽ$4DŽ$8a$0DŽ$\DŽ$` DŽ$,D$ D$$D$D$$$DŽ$4%$DŽ$8eDŽ$\$0DŽ$`DŽ$,D$0D$$$DŽ$4D$DŽ$8gDŽ$\$0DŽ$`DŽ$,D$D$($$$DŽ$4DŽ$8n$0DŽ$\DŽ$`DŽ$,D$>D$$$$DŽ$4DŽ$8p$0DŽ$\DŽ$`DŽ$,D$;D$$$)$DŽ$8PDŽ$\$0DŽ$`DŽ$,D$D$$$v$DŽ$8sDŽ$\$0DŽ$`DŽ$,D$ D$$D$D$$D$D$$D$ D$2$D$D$$$$DŽ$4DŽ$8u$0DŽ$,$$DŽ$4DŽ$8v$0DŽ$\DŽ$`DŽ$,D$"D$<$$Č[^_]Í$,D$D$4$D$ D$t$$$DŽ$4DŽ$8V$0DŽ$\DŽ$` DŽ$,D$D$)$D$D$$$$,D$D$4$D$ >D$t$$$DŽ$4DŽ$8Z$0DŽ$\FDŽ$`DŽ$,D$ D$\$D$D$$D$D$|$D$D$$D$D$}$$$DŽ$4DŽ$8\$0DŽ$\FDŽ$`DŽ$,D$D$$D$D$$D$D$|$D$D$$D$D$}$$$DŽ$4DŽ$8]$0DŽ$\DŽ$`DŽ$,D$ D$$$v1$DŽ$8kDŽ$\G$0DŽ$`DŽ$,D$0D$P$D$$I~D‰$D$D$D$ t$<$ʼnD$|$l$$t,$D$D$$$$$DŽ$8-DŽ$\3$0DŽ$`DŽ$,D$#D$t$D$t$$$,uueČ[^_]$DŽ$86DŽ$\3$0DŽ$`DŽ$,D$D$$D$t$$$,uӉ$$,$DŽ$4DŽ$8!$0DŽ$\DŽ$` DŽ$,D$ D$ $D$ D$$$$DŽ$4DŽ$8#$0DŽ$\DŽ$` DŽ$,D$ D$ $D$D$#$$WVS$$\$,|$4$D$4D$8D$\`D$0D$`UD$,$$$D$4D$8D$0D$\D$`D$,D$/D$$$$D$4D$8D$0D$\D$`XD$,$D$4/$D$8D$\@D$0D$`D$,D$D$H$D$D$_$$<$D$4D$8D$0D$\D$` D$,D$ D$`$D$D$$$D$4D$8$D$8D$\D$0D$`D$,D$D$$$ ء$D$4D$8D$0D$\D$` D$,D$ D$`$D$D$$$D$4D$8$D$\lD$`D$0D$,D$,D$t$$$D$4D$8D$0D$\`D$`UD$,$$D$4D$8D$0D$\D$`D$,D$2D$ $$$D$4D$8D$0D$\D$`XD$,$D$4%$D$8D$\qD$0D$`D$,$D$5D$$D$D$$D$ D$2$D$D$$Ā[^_Ð$D$8D$\D$0D$`D$,$D$1D$@$Ā[^_Ðt&\$$D$4D$8D$0D$\vD$` D$,D$ D$$D$t$$D$,D$$$D$D$4M$D$8D$\vD$0D$` D$,D$ D$$D$|$$D$+D$$$v\$$D$4D$8D$0D$\vD$` D$,D$ D$$D$t$$D$D$$$D$D$4u$D$8D$\vD$0D$` D$,D$ D$$D$|$$D$D$$$vءt$ $D$4D$8D$0D$\D$` D$,D$ D$ $D$t$$ \$ $$D$4D$8D$0D$\D$` D$,D$ D$,$D$t$$ \$ $zvt&t& $D$4D$8D$0D$\D$` D$,D$(D$8$$>t&$D$8D$\D$0D$`D$,D$!D$$$f$D$8D$\D$0D$`D$,D$ D$$$fSx\$$D$$D$ D$(D$LD$P]D$$$D$$D$(D$ D$LD$PD$D$/D$,$$$@$G$D$$D$(D$LD$PhD$D$ $$D$$D$(D$ D$L0 D$P D$$D$>D$< $D$>D$| $D$>D$ $D$:D$ $D$?D$8 $D$ED$x $D$ D$ $$D$$D$(D$ D$L D$PD$$x[Ív$D$$D$(D$ D$LD$PD$D$4D$\$$d$D$$D$(D$ D$LD$PD$D$6D$$$f$D$$D$(D$ D$LD$PD$D$4D$\$$$R'VSt$DŽ$$$$DŽ$(DŽ$L$ DŽ$PDŽ$D$4D$ $$t$$DŽ$$DŽ$(!$ DŽ$LDŽ$P DŽ$D$ D$$D$D$$$$DŽ$$DŽ$("$ DŽ$LDŽ$P DŽ$D$ D$$D$D$$$$DŽ$$DŽ$(#$ DŽ$LDŽ$P DŽ$D$ D$$D$D$$$D$D$4$D$ D$t$$DŽ$$$$DŽ$('DŽ$L$ DŽ$PDŽ$D$&D$ $$D$D$4$D$ D$t$$$D$D$4$D$ >D$t$$w$DŽ$$DŽ$(4$ DŽ$LH DŽ$P'DŽ$$t$ݜ$$D$$$DŽ$$DŽ$(6$ DŽ$LDŽ$PDŽ$$D$FD$p $t[^f$$DŽ$(DŽ$L$ DŽ$PDŽ$D$8D$4 $$t&$$DŽ$$DŽ$()$ DŽ$L DŽ$P DŽ$D$D$ $D$D$$$$$DŽ$(%DŽ$Ll $ DŽ$P DŽ$D$$D$x $D$D$$$t&$DŽ$$DŽ$(-$ DŽ$LFDŽ$PDŽ$D$!D$ $D$D$$D$D$|$D$D$$D$D$}$$$DŽ$$DŽ$(0$ DŽ$LFDŽ$PDŽ$D$D$ $D$D$$D$D$|$D$D$$D$D$}$$$DŽ$$DŽ$(1$ DŽ$LDŽ$PDŽ$D$!D$$ $$stdout_routines.f90(5x,a,a,/)calculation: xanes_dipolexanes_qyadrupole(5x,a,3(f10.6,1x),/)xepsilon [crystallographic coordinates]: xepsilon [cartesian coordinates]: xanes_quadrupolexkvec [crystallographic coordinates]: xkvec [cartesian coordinates]: (5x,a)xonly_plot: FALSE(8x,a,/)=> complete calculation: Lanczos + spectrum plot(5x,a,a20)filecore (core-wavefunction file): xonly_plot: TRUE(8x,a)=> only the spectrum plotmain plot parameters:cut_occ_states: TRUEcut_occ_states: FALSE(8x,a,a8)gamma_mode: constant(8x,a,f5.2)-> using xgamma [eV]: file(8x,a,a50)-> using gamma_file: variable(8x,a,f5.2,a1,f5.2,a)-> first, constant up to point (,) [eV]-> then, linear up to point (-> finally, constant up to xemax(8x,a,f6.2)xemin [eV]: xemax [eV]: (8x,a,i4)xnepoint: energy zero automatically set to the Fermi levelFermi level read in x_save_file(5x,3a)Fermi level determined from SCF save directory (.save)NB: For an insulator (SCF calculated with occupations="fixed") the Fermi level will be placed at the position of HOMO.(8x,a,f10.6,3a)xe0 [eV]: (energy zero read in input fileWARNING: variable ef_r is obsolete(/,5x, '-------------------------------------------------------------------------') Getting the Fermi energy (5x, '-------------------------------------------------------------------------', /)(5x,a,a)From SCF save directory (spin polarized work):(8x,a,f9.4,a)ehomo [eV]: (highest occupied level:max of up and down)elumo [eV]: (lowest occupied level:min of up and down)No LUMO values in SCF calculation(8x,a,f9.4)ef_up [eV]: ef_dw [eV]: -> ef set to the max of ef_up and ef_dw ef [eV]: (/,5x,a)-> ef (in eV) will be written in x_save_fileFrom SCF save directory: (highest occupied level) (lowest occupied level)No LUMO value in SCF calculation Energy zero of the spectrum -> ef will be used as energy zero of the spectrum(5x,a,/,7x,3a)-> ef will NOT be used as energy zero of the spectrum(because xe0 read in (/,5x, '-------------------------------------------------------------------------') Starting XANES calculation in the electric dipole approximation in the electric quadrupole approximation(5x, '-------------------------------------------------------------------------', /)(7(5x,a,/))Method of calculation based on the Lanczos recursion algorithm-------------------------------------------------------------- - STEP 1: Construction of a kpoint-dependent Lanczos basis, in which the Hamiltonian is tridiagonal (each 'iter' corresponds to the calculation of one more Lanczos vector) - STEP 2: Calculation of the cross-section as a continued fraction averaged over the k-points.(5x,"... Begin STEP 1 ...",/)the occupied states are elimintate from the spectrumthe occupied states are NOT eliminated from the spectrum(8x,a,f8.3)constant broadening parameter [eV]: energy-dependent broadening parameter:(8x,a,a30) -> using gamma_file: -> first, constant up to point ( -> then, linear up to point ( -> finally, constant up to xemax(8x,"Core level energy [eV]:",1x,g11.4) (from electron binding energy of neutral atoms in X-ray data booklet)MbP?1@6+@$tI8&' "0(H h w    iX#tsl%tstHt*%tstvt8%ts% tvtI%8tItvt@t #Mtsl%ststt'%tstvt8%ts##ts;l%tsttAC%ts#tsl%4tstt0%Its#^tsl%tstLt#)l%tst 1%ts#tsl%tstot@%ts#tsl%?tsttI%TtsC#itsK%~ts#tsl%tsttE%ts#ts'l%tsttD/%ts~#1tsl%Vtstt=l%stst %ts%tvt %t tvt8t A#tsYl% tsttFq%'tst8y%<ts#Qtsl%vtstt<%tst8%tsG#ts_l%tstt<w%tst8%ts#%tsl%Jtstt:%etst4%ztsk#tsl%tstt0%ts#tsl%tst(tO %tsO #.tsg l%Ttstt>o %its #~ts l%tstt; %ts #ts8 l%tsttE@ %ts #ts l%Btstt: %]tst8 l%tsttF l%tst2t: l%tstt1 %ts= #tsE % ts # ts l%F tst<t" %[ ts %x tvt  % t tvt4t Z # tsr l% tst)tE l% tst  % ts %. tvt  %[ t tvt8t >* #p tsB l% tst\t Z % tst8r l% tst|t1 % tst8 l% tst}t6 %+ ts #@ ts l%e tsttM%% tst8=l% tst|t1U% tst8ml% tst}t6u% ts# tsl%5 tstt %J ts*#_ tsBl% tstPt0V& t u& tw5$1w5$0.(;& twtutvt5tl% tstutwc&) tul%N tstt1%c ts%#x ts=l% tsttt#Q% tstvt8x&# tsl%tsttO%%tstvt8%:tsj#Otsl%ttst t=l%tstt<%ts#ts l%tst t=#l% tst#t@ +%ts 8 8  RX X     <   R E v X j       FX  / X  &I^0N  H /Hu]&tvtw#ts%ts#tsl%tstt/ %tsD#1tsL%Fts#[tsl%tstHtGl%tst_tG%tsC#ts[l%tst`t<s%tst8{%$ts#9tsl%^tsttH%stsB#tsZl%tst`t<r%tst8z%ts#tsl%tsttt,%-ts #Bts%WtsM#ltsel%tst t2m%ts#ts%ts#tsl% tstt55l%1tsttEMl%Vtst2t:el%{tstt1m%ts#tsl%tst@t1%ts#ts-l%tstt<A%<tstvt8Yl%btstt,a%wts#tsl%tstt<%tstwt8l%tstt+%tsE##ts]l%Htstt<q%jtstvt8l%tsttI%ts#tsl%tstt<%tstwt8(l%%tsttH0%:tsw#Otsl%ttst t<%tstvt8%ts#ts l%tst,t<0%tstvt88%ts#1tsl%Wtst8t(%lts#tsl%tstt!!%tsY#tsql%tstt y%ts ?ef  I X w8wHX#ts%ts#tsl%tst,t/%%ts#%ts%:ts#Otsl%utst< t>l%tst| t>l%tst t>,l%tst t:Dl% tst8 t?\l%3tstx tEtl%Ytst t |%nts#ts%ts #ts"l%tst\t4*%tsi#tsl%#tstt6%8ts#Mtsl%stst\t4 %ts XX5 #hwH8-k #,ts l%Rtst t4 %gts #|ts l%tstt< !%tst8!%ts]!#tsu!l% tstt<!%&tst8!%;ts!#Pts!l%utstt:"%tst4"%ts0"%tvt P"%t tvt8t "#ts"l%*tst t&"%?ts"%\tvt #%t tvt4t )#%tvt I#%t tvt8t >##ts#% tstvt8#% ts$#4 ts-$l%Z tstp tF5$%o ts$# ts$l% tst4 t8$% ts%# ts%l% tst tF2%l%!tst :%%+!ts%#@!ts%l%f!tstx t$%%!tst8%%!ts&#!ts+&l%!tst t!C&%!tst8[&l%"tst|t1s&%,"tst8&l%Q"tst}t6&%f"ts&#{"ts&l%"tst tN'%"tst8&'l%"tst|t1>'%"tst8V'l% #tst}t6^'%5#ts'#J#ts'l%p#tst$ t! '%ts###T$$rec@%G%$G%(-%,-%0xX4X8O-%<!-%@XD\XH-%LuM%Pid:%pos@%-%X X$-%(T-%,=X0X4s-%8pad-%<LX@XD-%H-%LWXP-%XyX-%~X X-%q:%3% X %@% e%^%^% { 5%#%X%#%X%#4%-%X-% X%X-%X-%&#%X nX&X-%!n%4&4& a:c&X-%X-%X-%"x&%"}P&#$`#% B .?: ; n@B: ; :: ; 4: ; I1BB1 1 < 4: ; nI?< $ >  I!I/  : ; I4: ; nI?<.?: ;n@B: ;: ;I.?<I I  I8  I8  I8 I8 !I" /  .?I<!.?: ; nI<".?: ; n<#$.?: ; n<'8 stdout_routines.f90h]q@h] kkKu'kk=kg`YI~@ `g`k`q#h@0P=kVGGKuhsBuqB%]%f]%k tt.tyJ//)~/YAZ1u XqLQ! XqYAYA1u Ps QA=,僼h1,(=,僼h1,m*}*ggxFX!X{EY!"Az9uuuuuu Ad_`#p g[G~8Ys[@ Gykg pK0PK0Ppxspectralogical(kind=4)lsda_modwrite_sym_param_to_stdout_decimal_lenef_dwadvancesign_lenget_homo_lumomallocehomosizetypexnepointiomsg_gfortran_transfer_real_writexgammafilenamestdout_routines.f90gamma_valuegamma_variable_modinteger(kind=4)cut_valence_greenget_homo_lumo_integer(kind=8)_gfortran_transfer_character_writeio_filescharacter(kind=4)delimunitlinefreewrite_calculation_type_asynchronous_gfortran_transfer_integer_write__cut_valence_green_MOD_cut_occ_states__ener_MOD_ef_upiomsg_lenformat__builtin_free__io_files_MOD_prefixgamma_energycalculate_and_write_homo_lumo_to_stdoutiostatformat_leninternal_unit_len_gfortran_st_write_doneprefixcut_occ_states__xspectra_MOD_xemaxxang_momlsdacharacter(kind=1)elumo/mit/espresso_v6.1/i386_ubuntu1404/qe-6.1/XSpectra/srcwrite_report_cut_occ_states___gamma_variable_mod_MOD_gamma_mode__gamma_variable_mod_MOD_gamma_filewrite_status_of_the_codenamelist_name__xspectra_MOD_xeminroundflagseneriolengthdelim_lenxemaxef_upasynchronous_len__st_parameter_commone_core_gfortran_adjustl__xspectra_MOD_xnepointcalculate_and_write_homo_lumo_to_stdout__gfortran_compare_stringxeminblank_lenround_leninternal_unit_descGNU Fortran 4.8.4 -mtune=generic -march=i686 -g -O3 -fopenmp -fintrinsic-modules-path /usr/lib/gcc/i686-linux-gnu/4.8/fincludepad_lendecimalnamelist_name_len_gfortran_string_len_trimnl_initc_charsigncommonwrite_calculation_typesize__ener_MOD_ef_dw__io_global_MOD_stdout_gfortran_st_writewrite_report_cut_occ_statesgamma_modeinternal_unit__xspectra_MOD_xgammagamma_filewrite_status_of_the_code_real(kind=8)__lsda_mod_MOD_lsda__gamma_variable_mod_MOD_gamma_value__builtin_malloc__ener_MOD_efblank__st_parameter_dtadvance_len__gamma_variable_mod_MOD_gamma_energystdoutwrite_sym_param_to_stdout_gfortran_concat_stringio_globalGCC: (Ubuntu 4.8.4-2ubuntu1~14.04.3) 4.8.4zR| X0AA AAF  AA AAA  AA AAF Hx0N AA AF: A AAB W A AAF $wAF< AD , AA F 3  AAC .symtab.strtab.shstrtab.rel.text.data.bss.rodata.str1.1.rodata.rodata.cst8.rodata.cst4.rel.debug_info.debug_abbrev.rel.debug_aranges.rel.debug_line.debug_str.comment.note.GNU-stack.rel.eh_frame@' ux%(+(02(?$( G4T4e4&a ( q[j]  @ ]  P0`\0g,hh X 4im xq%   00Hb|2D]r-Na|6=UZt0N w stdout_routines.f90write_sym_param_to_stdout___xspectra_MOD_xang_mom__xspectra_MOD_xonly_plot__xspectra_MOD_xcoordcrys__io_global_MOD_stdout__xspectra_MOD_xepsilon_gfortran_st_write_gfortran_transfer_character_write_gfortran_transfer_real_write_gfortran_st_write_done__xspectra_MOD_calculation_gfortran_adjustl_gfortran_compare_string__xspectra_MOD_xkvec__xspectra_MOD_filecore__cut_valence_green_MOD_cut_occ_states__gamma_variable_mod_MOD_gamma_mode__xspectra_MOD_xgamma__xspectra_MOD_xemin__xspectra_MOD_xemax__xspectra_MOD_xnepoint_gfortran_transfer_integer_write__xspectra_MOD_xe0__xspectra_MOD_xe0_default__xspectra_MOD_show_status__gamma_variable_mod_MOD_gamma_file__gamma_variable_mod_MOD_gamma_energy__gamma_variable_mod_MOD_gamma_value__io_files_MOD_prefix_gfortran_string_len_trimmalloc_gfortran_concat_stringfreewrite_status_of_the_code_calculate_and_write_homo_lumo_to_stdout_get_homo_lumo___lsda_mod_MOD_lsda__ener_MOD_ef__ener_MOD_ef_up__ener_MOD_ef_dwwrite_calculation_type_write_report_cut_occ_states_ )7BOTm%0=B[}/7?DRo %-9Gd ?GLZw  #+0B_z!!"=MUe"muz# (CS[k$s{%& '(,Egw   0 K [ c k p ~         , 4 < I b     '          9 A F T q      ) !     ; V f n ~ *   !      & 6 > N +V f n ~ ,         +!19I,Qaiqv&6>F-R.q/y-01!19Md.Kfv~'Y4^fv +@HM5Ubu66 *?OWg6ow66 )>NVf6nv~ 4IYainy'(,1DI\aiy!)=MU]e6y ,AQYm}6 $,;J^s7#8,4:8@7dit6 )<Uemu!S^n #(;@SXkpx}&1<Peu} % E g w          #!!!!!>!Y!i!q!!$!!!!!!!!"% "&""!,"4"L"W"d"""""""!"""#!%#-#E#R#`#}#######$$$)$1$A$a$$$$$$$$$%%&%*.%6%A%a%%%%%"%%%%%&&'&7&+?&O&W&g&,o&&&&&&&&&&'+ ''"'2',:'J'R'Z'_'m''''''{2    " ' - 139Ngt(5J_x4@Uj2KWt (=Rkw&?Kf{/HUj 7C^w ! : G \ y        / V \ q         , A Z f         ) 6 K ` y       * C O d y       &;Piu  ) / ; @ I O [ ` i o x ~                   % )i x 2G\u%:S_t .CXm &2KWp|=Vcx$=Ik&;Piu2KXm   ! ' 0 6 @ I O Y _ cy  &;Piv'4MZo$9Ngt    -FSh} '<Qjv+@]  5 N [ p        !,!A!Z!g!!!!!!!""-"F"R"g"|"""""""#!#6#K#d#q## # # # # # # # # # # $ $ $ B$ M$ X$ c$ n$ y$ $ $ $ $ $ $ $ $ $ $ $ % % % #% 6% C% a% h% m% % % % % % & & "& 7& <& d& j& y& & & &  E |