Dynamical matrix file 1 1 2 9.2700000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 1 'Pb ' 188851.24696980685 1 1 0.0000000000 0.0000000000 0.0000000000 Dynamical Matrix in cartesian axes q = ( 0.666666667 0.000000000 0.666666667 ) 1 1 0.07279470 0.00000000 0.00000000 0.00000000 0.01833076 0.00000000 0.00000000 0.00000000 0.08816963 0.00000000 0.00000000 0.00000000 0.01833076 0.00000000 0.00000000 0.00000000 0.07279470 0.00000000 Dynamical Matrix in cartesian axes q = ( 0.666666667 0.000000000 -0.666666667 ) 1 1 0.07279470 0.00000000 0.00000000 0.00000000 -0.01833076 0.00000000 0.00000000 0.00000000 0.08816963 0.00000000 0.00000000 0.00000000 -0.01833076 0.00000000 -0.00000000 0.00000000 0.07279470 0.00000000 Dynamical Matrix in cartesian axes q = ( -0.666666667 0.000000000 -0.666666667 ) 1 1 0.07279470 0.00000000 0.00000000 0.00000000 0.01833076 0.00000000 0.00000000 0.00000000 0.08816963 0.00000000 0.00000000 0.00000000 0.01833076 0.00000000 0.00000000 0.00000000 0.07279470 0.00000000 Dynamical Matrix in cartesian axes q = ( -0.666666667 0.000000000 0.666666667 ) 1 1 0.07279470 0.00000000 0.00000000 0.00000000 -0.01833076 0.00000000 0.00000000 0.00000000 0.08816963 0.00000000 0.00000000 0.00000000 -0.01833076 0.00000000 -0.00000000 0.00000000 0.07279470 0.00000000 Dynamical Matrix in cartesian axes q = ( 0.000000000 -0.666666667 0.666666667 ) 1 1 0.08816963 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.07279470 0.00000000 -0.01833076 0.00000000 0.00000000 0.00000000 -0.01833076 0.00000000 0.07279470 0.00000000 Dynamical Matrix in cartesian axes q = ( -0.666666667 0.666666667 0.000000000 ) 1 1 0.07279470 0.00000000 -0.01833076 0.00000000 0.00000000 0.00000000 -0.01833076 0.00000000 0.07279470 0.00000000 -0.00000000 0.00000000 0.00000000 0.00000000 -0.00000000 0.00000000 0.08816963 0.00000000 Dynamical Matrix in cartesian axes q = ( -0.666666667 -0.666666667 0.000000000 ) 1 1 0.07279470 0.00000000 0.01833076 0.00000000 0.00000000 0.00000000 0.01833076 0.00000000 0.07279470 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.08816963 0.00000000 Dynamical Matrix in cartesian axes q = ( 0.666666667 0.666666667 0.000000000 ) 1 1 0.07279470 0.00000000 0.01833076 0.00000000 0.00000000 0.00000000 0.01833076 0.00000000 0.07279470 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.08816963 0.00000000 Dynamical Matrix in cartesian axes q = ( 0.666666667 -0.666666667 0.000000000 ) 1 1 0.07279470 0.00000000 -0.01833076 0.00000000 0.00000000 0.00000000 -0.01833076 0.00000000 0.07279470 0.00000000 -0.00000000 0.00000000 0.00000000 0.00000000 -0.00000000 0.00000000 0.08816963 0.00000000 Dynamical Matrix in cartesian axes q = ( 0.000000000 0.666666667 0.666666667 ) 1 1 0.08816963 0.00000000 -0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.07279470 0.00000000 0.01833076 0.00000000 0.00000000 0.00000000 0.01833076 0.00000000 0.07279470 0.00000000 Dynamical Matrix in cartesian axes q = ( 0.000000000 0.666666667 -0.666666667 ) 1 1 0.08816963 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.07279470 0.00000000 -0.01833076 0.00000000 0.00000000 0.00000000 -0.01833076 0.00000000 0.07279470 0.00000000 Dynamical Matrix in cartesian axes q = ( 0.000000000 -0.666666667 -0.666666667 ) 1 1 0.08816963 0.00000000 -0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.07279470 0.00000000 0.01833076 0.00000000 0.00000000 0.00000000 0.01833076 0.00000000 0.07279470 0.00000000 Diagonalizing the dynamical matrix q = ( 0.666666667 -0.000000000 0.666666667 ) ************************************************************************** freq ( 1) = 1.766728 [THz] = 58.931691 [cm-1] ( 0.707107 0.000000 -0.000000 -0.000000 -0.707107 0.000000 ) freq ( 2) = 2.247888 [THz] = 74.981463 [cm-1] ( -0.000000 0.000000 -0.000000 -1.000000 0.000000 0.000000 ) freq ( 3) = 2.285257 [THz] = 76.227956 [cm-1] ( 0.707107 0.000000 0.000000 -0.000000 0.707107 0.000000 ) **************************************************************************