``:oss/ `.+s+. .+ys--yh+ `./ss+. -sh//yy+` +yy +yy -+h+-oyy -yh- .oyy/.-sh. .syo-.:sy- /yh `.-.` `yh+ -oyyyo. `/syys: oys `.` `/+ssys+-` `sh+ ` oys` .:osyo` -yh- ./syyooyo` .sys+/oyo--yh/ `yy+ .-:-. `-/+/:` -sh- /yh. oys ``..---hho---------` .---------..` `.-----.` -hd+---. `./osmNMMMMMMMMMMMMMMMs. +NNMMMMMMMMNNmh+. yNMMMMMNm- oNMMMMMNmo++:` +sy--/sdMMMhyyyyyyyNMMh- .oyNMMmyyyyyhNMMm+` -yMMMdyyo:` .oyyNMMNhs+syy` -yy/ /MMM+.`-+/``mMMy- `mMMh:`````.dMMN:` `MMMy-`-dhhy```mMMy:``+hs -yy+` /MMMo:-mMM+`-oo/. mMMh: `dMMN/` dMMm:`dMMMMy..MMMo-.+yo` .sys`/MMMMNNMMMs- mMMmyooooymMMNo: oMMM/sMMMMMM++MMN//oh: `sh+/MMMhyyMMMs- `-` mMMMMMMMMMNmy+-` -MMMhMMMsmMMmdMMd/yy+ `-/+++oyy-/MMM+.`/hh/.`mNm:` mMMd+/////:-.` NMMMMMd/:NMMMMMy:/yyo/:.` +os+//:-..-oMMMo:--:::-/MMMo. .-mMMd+---` hMMMMN+. oMMMMMo. `-+osyso:` syo `mNMMMMMNNNNNNNNMMMo.oNNMMMMMNNNN:` +MMMMs:` dMMMN/` ``:syo /yh` :syyyyyyyyyyyyyyyy+.`+syyyyyyyyo:` .oyys:` .oyys:` +yh -yh- ```````````````` ````````` `` `` oys -+h/------------------------::::::::://////++++++++++++++++++++++///////::::/yd: shdddddddddddddddddddddddddddddhhhhhhhhyyyyyssssssssssssssssyyyyyyyhhhhhhhddddh` S. Ponce, E. R. Margine, C. Verdi, and F. Giustino, Comput. Phys. Commun. 209, 116 (2016) Program EPW v.4.1.0 starts on 5Feb2017 at 21: 5:13 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Serial multi-threaded version, running on 1 processor cores Reading data from directory: ./MgB2.save Info: using nr1, nr2, nr3 values from input Info: using nr1, nr2, nr3 values from input IMPORTANT: XC functional enforced from input : Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0 0) Any further DFT definition will be discarded Please, verify this is what you really want G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 379 379 151 6657 6657 1631 -- bravais-lattice index = 4 lattice parameter (a_0) = 5.8260 a.u. unit-cell volume = 195.5871 (a.u.)^3 number of atoms/cell = 3 number of atomic types = 2 kinetic-energy cut-off = 40.0000 Ry charge density cut-off = 160.0000 Ry convergence threshold = 0.0E+00 beta = 0.0000 number of iterations used = 0 Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0 0) celldm(1)= 5.82603 celldm(2)= 0.00000 celldm(3)= 1.14207 celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.0000 0.0000 0.0000 ) a(2) = ( -0.5000 0.8660 0.0000 ) a(3) = ( 0.0000 0.0000 1.1421 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.0000 0.5774 -0.0000 ) b(2) = ( 0.0000 1.1547 0.0000 ) b(3) = ( 0.0000 -0.0000 0.8756 ) Atoms inside the unit cell: Cartesian axes site n. atom mass positions (a_0 units) 1 Mg 24.3071 tau( 1) = ( 0.00000 0.00000 0.00000 ) 2 B 10.8119 tau( 2) = ( -0.00000 0.57735 0.57103 ) 3 B 10.8119 tau( 3) = ( 0.50000 0.28868 0.57103 ) 25 Sym.Ops. (with q -> -q+G ) G cutoff = 137.5641 ( 6657 G-vectors) FFT grid: ( 24, 24, 27) number of k points= 27 gaussian broad. (Ry)= 0.0200 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0740741 k( 2) = ( 0.0000000 0.0000000 0.2918678), wk = 0.0740741 k( 3) = ( 0.0000000 0.0000000 0.5837357), wk = 0.0740741 k( 4) = ( 0.0000000 0.3849002 0.0000000), wk = 0.0740741 k( 5) = ( 0.0000000 0.3849002 0.2918678), wk = 0.0740741 k( 6) = ( 0.0000000 0.3849002 0.5837357), wk = 0.0740741 k( 7) = ( 0.0000000 0.7698004 0.0000000), wk = 0.0740741 k( 8) = ( 0.0000000 0.7698004 0.2918678), wk = 0.0740741 k( 9) = ( 0.0000000 0.7698004 0.5837357), wk = 0.0740741 k( 10) = ( 0.3333333 0.1924501 0.0000000), wk = 0.0740741 k( 11) = ( 0.3333333 0.1924501 0.2918678), wk = 0.0740741 k( 12) = ( 0.3333333 0.1924501 0.5837357), wk = 0.0740741 k( 13) = ( 0.3333333 0.5773503 0.0000000), wk = 0.0740741 k( 14) = ( 0.3333333 0.5773503 0.2918678), wk = 0.0740741 k( 15) = ( 0.3333333 0.5773503 0.5837357), wk = 0.0740741 k( 16) = ( 0.3333333 0.9622504 0.0000000), wk = 0.0740741 k( 17) = ( 0.3333333 0.9622504 0.2918678), wk = 0.0740741 k( 18) = ( 0.3333333 0.9622504 0.5837357), wk = 0.0740741 k( 19) = ( 0.6666667 0.3849002 0.0000000), wk = 0.0740741 k( 20) = ( 0.6666667 0.3849002 0.2918678), wk = 0.0740741 k( 21) = ( 0.6666667 0.3849002 0.5837357), wk = 0.0740741 k( 22) = ( 0.6666667 0.7698004 0.0000000), wk = 0.0740741 k( 23) = ( 0.6666667 0.7698004 0.2918678), wk = 0.0740741 k( 24) = ( 0.6666667 0.7698004 0.5837357), wk = 0.0740741 k( 25) = ( 0.6666667 1.1547005 0.0000000), wk = 0.0740741 k( 26) = ( 0.6666667 1.1547005 0.2918678), wk = 0.0740741 k( 27) = ( 0.6666667 1.1547005 0.5837357), wk = 0.0740741 PseudoPot. # 1 for Mg read from file: ./Mg.pz-n-vbc.UPF MD5 check sum: 51ac066f8f4bf7da60c51ce0af5caf3d Pseudo is Norm-conserving + core correction, Zval = 2.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 PseudoPot. # 2 for B read from file: ./B.pz-vbc.UPF MD5 check sum: b59596b5d63edeea6a2b3a0beace49c5 Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 157 points, 1 beta functions with: l(1) = 0 EPW : 0.20s CPU 0.26s WALL EPW : 0.30s CPU 0.36s WALL No wavefunction gauge setting applied ------------------------------------------------------------------- Wannierization on 3 x 3 x 3 electronic grid ------------------------------------------------------------------- Spin CASE ( default = unpolarized ) Initializing Wannier90 Initial Wannier projections ( 0.33333 0.66667 0.50000) : l = 1 mr = 1 ( 0.66667 0.33333 0.50000) : l = 1 mr = 1 ( 0.50000 1.00000 0.50000) : l = 0 mr = 1 ( 0.00000 0.50000 0.50000) : l = 0 mr = 1 ( 0.50000 0.50000 0.50000) : l = 0 mr = 1 - Number of bands is ( 8) - Number of wannier functions is ( 5) - All guiding functions are given Reading data about k-point neighbours - All neighbours are found AMN 1 of 27 on ionode 2 of 27 on ionode 3 of 27 on ionode 4 of 27 on ionode 5 of 27 on ionode 6 of 27 on ionode 7 of 27 on ionode 8 of 27 on ionode 9 of 27 on ionode 10 of 27 on ionode 11 of 27 on ionode 12 of 27 on ionode 13 of 27 on ionode 14 of 27 on ionode 15 of 27 on ionode 16 of 27 on ionode 17 of 27 on ionode 18 of 27 on ionode 19 of 27 on ionode 20 of 27 on ionode 21 of 27 on ionode 22 of 27 on ionode 23 of 27 on ionode 24 of 27 on ionode 25 of 27 on ionode 26 of 27 on ionode 27 of 27 on ionode AMN calculated MMN 1 of 27 on ionode 2 of 27 on ionode 3 of 27 on ionode 4 of 27 on ionode 5 of 27 on ionode 6 of 27 on ionode 7 of 27 on ionode 8 of 27 on ionode 9 of 27 on ionode 10 of 27 on ionode 11 of 27 on ionode 12 of 27 on ionode 13 of 27 on ionode 14 of 27 on ionode 15 of 27 on ionode 16 of 27 on ionode 17 of 27 on ionode 18 of 27 on ionode 19 of 27 on ionode 20 of 27 on ionode 21 of 27 on ionode 22 of 27 on ionode 23 of 27 on ionode 24 of 27 on ionode 25 of 27 on ionode 26 of 27 on ionode 27 of 27 on ionode MMN calculated Running Wannier90 Wannier Function centers (cartesian, alat) and spreads (ang): ( -0.00000 0.57735 0.38316) : 1.77659 ( 0.50000 0.28868 0.38315) : 1.77661 ( 0.00000 0.86603 0.66488) : 1.07401 ( -0.25000 0.43301 0.66488) : 1.07401 ( 0.25000 0.43301 0.66488) : 1.07401 ------------------------------------------------------------------- WANNIER : 9.41s CPU 9.55s WALL ( 1 calls) ------------------------------------------------------------------- Dipole matrix elements calculated Calculating kmap and kgmap Progress kmap: ########################### Progress kgmap: ######################################## kmaps : 1.18s CPU 1.31s WALL ( 1 calls) Symmetries of bravais lattice: 24 Symmetries of crystal: 24 =================================================================== irreducible q point # 1 =================================================================== Symmetries of small group of q: 24 in addition sym. q -> -q+G: Number of q in the star = 1 List of q in the star: 1 0.000000000 0.000000000 0.000000000 Imposing acoustic sum rule on the dynamical matrix q( 1 ) = ( 0.0000000 0.0000000 0.0000000 ) =================================================================== irreducible q point # 2 =================================================================== Symmetries of small group of q: 12 Number of q in the star = 2 List of q in the star: 1 0.000000000 0.000000000 0.291867841 2 0.000000000 0.000000000 -0.291867841 q( 2 ) = ( 0.0000000 0.0000000 0.2918678 ) q( 3 ) = ( 0.0000000 0.0000000 -0.2918678 ) =================================================================== irreducible q point # 3 =================================================================== Symmetries of small group of q: 4 Number of q in the star = 6 List of q in the star: 1 0.000000000 0.384900179 0.000000000 2 0.333333333 0.192450090 0.000000000 3 -0.333333333 0.192450090 0.000000000 4 0.000000000 -0.384900179 0.000000000 5 -0.333333333 -0.192450090 0.000000000 6 0.333333333 -0.192450090 0.000000000 q( 4 ) = ( 0.0000000 0.3849002 0.0000000 ) q( 5 ) = ( 0.3333333 0.1924501 0.0000000 ) q( 6 ) = ( -0.3333333 0.1924501 0.0000000 ) q( 7 ) = ( 0.0000000 -0.3849002 0.0000000 ) q( 8 ) = ( -0.3333333 -0.1924501 0.0000000 ) q( 9 ) = ( 0.3333333 -0.1924501 0.0000000 ) =================================================================== irreducible q point # 4 =================================================================== Symmetries of small group of q: 2 Number of q in the star = 12 List of q in the star: 1 0.000000000 0.384900179 0.291867841 2 0.000000000 0.384900179 -0.291867841 3 0.333333333 0.192450090 0.291867841 4 -0.333333333 0.192450090 0.291867841 5 0.000000000 -0.384900179 0.291867841 6 -0.333333333 -0.192450090 0.291867841 7 0.333333333 -0.192450090 0.291867841 8 0.000000000 -0.384900179 -0.291867841 9 0.333333333 -0.192450090 -0.291867841 10 -0.333333333 -0.192450090 -0.291867841 11 0.333333333 0.192450090 -0.291867841 12 -0.333333333 0.192450090 -0.291867841 q( 10 ) = ( 0.0000000 0.3849002 0.2918678 ) q( 11 ) = ( 0.0000000 0.3849002 -0.2918678 ) q( 12 ) = ( 0.3333333 0.1924501 0.2918678 ) q( 13 ) = ( -0.3333333 0.1924501 0.2918678 ) q( 14 ) = ( 0.0000000 -0.3849002 0.2918678 ) q( 15 ) = ( -0.3333333 -0.1924501 0.2918678 ) q( 16 ) = ( 0.3333333 -0.1924501 0.2918678 ) q( 17 ) = ( 0.0000000 -0.3849002 -0.2918678 ) q( 18 ) = ( 0.3333333 -0.1924501 -0.2918678 ) q( 19 ) = ( -0.3333333 -0.1924501 -0.2918678 ) q( 20 ) = ( 0.3333333 0.1924501 -0.2918678 ) q( 21 ) = ( -0.3333333 0.1924501 -0.2918678 ) =================================================================== irreducible q point # 5 =================================================================== Symmetries of small group of q: 12 Number of q in the star = 2 List of q in the star: 1 0.333333333 0.577350269 0.000000000 2 -0.333333333 -0.577350269 0.000000000 q( 22 ) = ( 0.3333333 0.5773503 0.0000000 ) q( 23 ) = ( -0.3333333 -0.5773503 0.0000000 ) =================================================================== irreducible q point # 6 =================================================================== Symmetries of small group of q: 6 Number of q in the star = 4 List of q in the star: 1 0.333333333 0.577350269 0.291867841 2 0.333333333 -0.577350269 -0.291867841 3 -0.333333333 -0.577350269 -0.291867841 4 -0.333333333 0.577350269 0.291867841 q( 24 ) = ( 0.3333333 0.5773503 0.2918678 ) q( 25 ) = ( 0.3333333 -0.5773503 -0.2918678 ) q( 26 ) = ( -0.3333333 -0.5773503 -0.2918678 ) q( 27 ) = ( -0.3333333 0.5773503 0.2918678 ) Writing epmatq on .epb files The .epb files have been correctly written band disentanglement is used: nbndsub = 5 Writing Hamiltonian, Dynamical matrix and EP vertex in Wann rep to file Reading Hamiltonian, Dynamical matrix and EP vertex in Wann rep from file Finished reading Wann rep data from file Using uniform q-mesh: 6 6 6 Size of q point mesh for interpolation: 216 Using uniform MP k-mesh: 6 6 6 Size of k point mesh for interpolation: 56 Max number of k points per pool: 56 Fermi energy coarse grid = 8.175432 eV Fermi energy is calculated from the fine k-mesh: Ef = 7.664497 eV Warning: check if difference with Fermi level fine grid makes sense =================================================================== ibndmin = 3 ebndmin = 0.537 ibndmax = 5 ebndmax = 0.588 Number of ep-matrix elements per pool : 2268 ~= 17.72 Kb (@ 8 bytes/ DP) Nr. of irreducible k-points on the uniform grid: 28 Finished writing .ikmap file Finished mapping k+sign*q onto the fine irreducibe k-mesh Nr irreducible k-points within the Fermi shell = 9 out of 28 Progression iq (fine) = 100/ 216 Progression iq (fine) = 200/ 216 Fermi level (eV) = 0.766449682934360D+01 DOS(states/spin/eV/Unit Cell) = 0.913425064343650D+00 Electron smearing (eV) = 0.100000000000000D+00 Fermi window (eV) = 0.400000000000000D+00 Finished writing .ephmat files =================================================================== Solve anisotropic Eliashberg equations =================================================================== Finish reading .freq file Fermi level (eV) = 7.6644968293E+00 DOS(states/spin/eV/Unit Cell) = 9.1342506434E-01 Electron smearing (eV) = 1.0000000000E-01 Fermi window (eV) = 4.0000000000E-01 Nr irreducible k-points within the Fermi shell = 9 out of 28 2 bands within the Fermi window Finish reading .egnv file Max nr of q-points = 78 Finish reading .ikmap files Start reading .ephmat files Finish reading .ephmat files lambda_max = 5.1641613 lambda_k_max = 1.5104926 Electron-phonon coupling strength = 0.9394495 Estimated Allen-Dynes Tc = 31.8410329 K for muc = 0.16000 Estimated BCS superconducting gap = 0.0048292 eV temp( 1) = 25.0000 K Solve anisotropic Eliashberg equations on imaginary-axis Total number of frequency points nsiw ( 1 ) = 37 Cutoff frequency wscut = 0.5076 Size of allocated memory per pool : ~= 0.0018 Gb iter = 1 relerr = 2.2930159796E+00 abserr = 4.3876865010E-03 Znormi(1) = 1.9047075124E+00 Deltai(1) = 5.9287317150E-03 iter = 2 relerr = 1.0426937527E-01 abserr = 2.0881582310E-04 Znormi(1) = 1.8997411516E+00 Deltai(1) = 6.6383544884E-03 iter = 3 relerr = 1.0847650709E-01 abserr = 2.3833142878E-04 Znormi(1) = 1.8928897993E+00 Deltai(1) = 7.5165696336E-03 iter = 4 relerr = 5.3008148337E-02 abserr = 1.2296053698E-04 Znormi(1) = 1.8896285852E+00 Deltai(1) = 7.9285474521E-03 iter = 5 relerr = 1.1105583431E-01 abserr = 2.8979441570E-04 Znormi(1) = 1.8818236519E+00 Deltai(1) = 8.8499555962E-03 iter = 6 relerr = 4.4414340479E-02 abserr = 1.2128364127E-04 Znormi(1) = 1.8785349391E+00 Deltai(1) = 9.2089540331E-03 iter = 7 relerr = 3.8342569694E-03 abserr = 1.0432922076E-05 Znormi(1) = 1.8790265050E+00 Deltai(1) = 9.1709477996E-03 Convergence was reached in nsiter = 7 iaxis_imag : 0.13s CPU 0.16s WALL ( 1 calls) Pade approximant of anisotropic Eliashberg equations from imaginary-axis to real-axis Cutoff frequency wscut = 0.5000 pade = 34 error = 1.3017706753E+00 Re[Znorm(1)] = 1.7370447987E+00 Re[Delta(1)] = 8.4967232902E-03 raxis_pade : 0.04s CPU 0.04s WALL ( 1 calls) itemp = 1 total cpu time : 0.20 secs Unfolding on the coarse grid elphon_wrap : 81.63s CPU 87.22s WALL ( 1 calls) INITIALIZATION: set_drhoc : 0.80s CPU 0.80s WALL ( 28 calls) init_vloc : 0.08s CPU 0.08s WALL ( 29 calls) init_us_1 : 0.30s CPU 0.30s WALL ( 29 calls) Electron-Phonon interpolation ephwann : 1.03s CPU 1.42s WALL ( 1 calls) ep-interp : 0.77s CPU 0.97s WALL ( 216 calls) Ham: step 1 : 0.00s CPU 0.00s WALL ( 1 calls) Ham: step 2 : 0.00s CPU 0.00s WALL ( 1 calls) ep: step 1 : 0.01s CPU 0.01s WALL ( 243 calls) ep: step 2 : 0.09s CPU 0.24s WALL ( 243 calls) DynW2B : 0.01s CPU 0.02s WALL ( 216 calls) HamW2B : 0.27s CPU 0.29s WALL ( 12152 calls) ephW2Bp : 0.16s CPU 0.19s WALL ( 216 calls) ELIASHBERG : 0.94s CPU 1.00s WALL ( 1 calls) Total program execution EPW : 1m33.32s CPU 1m39.55s WALL Please consider citing: S. Ponce, E. R. Margine, C. Verdi and F. Giustino, Comput. Phys. Commun. 209, 116 (2016)