Program PWSCF v.6.0 starts on 5Feb2017 at 21: 3:27 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Serial multi-threaded version, running on 1 processor cores Waiting for input... Reading input from standard input Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 379 379 121 6657 6657 1179 bravais-lattice index = 4 lattice parameter (alat) = 5.8260 a.u. unit-cell volume = 195.5871 (a.u.)^3 number of atoms/cell = 3 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 40.0000 Ry charge density cutoff = 160.0000 Ry convergence threshold = 1.0E-09 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0 0) celldm(1)= 5.826025 celldm(2)= 0.000000 celldm(3)= 1.142069 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 1.142069 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.577350 -0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 -0.000000 0.875604 ) PseudoPot. # 1 for Mg read from file: ./Mg.pz-n-vbc.UPF MD5 check sum: 51ac066f8f4bf7da60c51ce0af5caf3d Pseudo is Norm-conserving + core correction, Zval = 2.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 PseudoPot. # 2 for B read from file: ./B.pz-vbc.UPF MD5 check sum: b59596b5d63edeea6a2b3a0beace49c5 Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 157 points, 1 beta functions with: l(1) = 0 atomic species valence mass pseudopotential Mg 2.00 24.30500 Mg( 1.00) B 3.00 10.81100 B ( 1.00) 24 Sym. Ops., with inversion, found s frac. trans. isym = 1 identity cryst. s( 1) = ( 1 0 0 ) ( 0 1 0 ) ( 0 0 1 ) cart. s( 1) = ( 1.0000000 0.0000000 0.0000000 ) ( 0.0000000 1.0000000 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) isym = 2 180 deg rotation - cart. axis [0,0,1] cryst. s( 2) = ( -1 0 0 ) ( 0 -1 0 ) ( 0 0 1 ) cart. s( 2) = ( -1.0000000 0.0000000 0.0000000 ) ( 0.0000000 -1.0000000 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) isym = 3 180 deg rotation - cart. axis [0,1,0] cryst. s( 3) = ( -1 0 0 ) ( 1 1 0 ) ( 0 0 -1 ) cart. s( 3) = ( -1.0000000 0.0000000 0.0000000 ) ( 0.0000000 1.0000000 0.0000000 ) ( 0.0000000 0.0000000 -1.0000000 ) isym = 4 180 deg rotation - cart. axis [1,0,0] cryst. s( 4) = ( 1 0 0 ) ( -1 -1 0 ) ( 0 0 -1 ) cart. s( 4) = ( 1.0000000 0.0000000 0.0000000 ) ( 0.0000000 -1.0000000 0.0000000 ) ( 0.0000000 0.0000000 -1.0000000 ) isym = 5 60 deg rotation - cryst. axis [0,0,1] cryst. s( 5) = ( 1 1 0 ) ( -1 0 0 ) ( 0 0 1 ) cart. s( 5) = ( 0.5000000 -0.8660254 0.0000000 ) ( 0.8660254 0.5000000 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) isym = 6 60 deg rotation - cryst. axis [0,0,-1] cryst. s( 6) = ( 0 -1 0 ) ( 1 1 0 ) ( 0 0 1 ) cart. s( 6) = ( 0.5000000 0.8660254 0.0000000 ) ( -0.8660254 0.5000000 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) isym = 7 120 deg rotation - cryst. axis [0,0,1] cryst. s( 7) = ( 0 1 0 ) ( -1 -1 0 ) ( 0 0 1 ) cart. s( 7) = ( -0.5000000 -0.8660254 0.0000000 ) ( 0.8660254 -0.5000000 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) isym = 8 120 deg rotation - cryst. axis [0,0,-1] cryst. s( 8) = ( -1 -1 0 ) ( 1 0 0 ) ( 0 0 1 ) cart. s( 8) = ( -0.5000000 0.8660254 0.0000000 ) ( -0.8660254 -0.5000000 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) isym = 9 180 deg rotation - cryst. axis [1,-1,0] cryst. s( 9) = ( 0 -1 0 ) ( -1 0 0 ) ( 0 0 -1 ) cart. s( 9) = ( 0.5000000 -0.8660254 0.0000000 ) ( -0.8660254 -0.5000000 0.0000000 ) ( 0.0000000 0.0000000 -1.0000000 ) isym = 10 180 deg rotation - cryst. axis [2,1,0] cryst. s(10) = ( 1 1 0 ) ( 0 -1 0 ) ( 0 0 -1 ) cart. s(10) = ( 0.5000000 0.8660254 0.0000000 ) ( 0.8660254 -0.5000000 0.0000000 ) ( 0.0000000 0.0000000 -1.0000000 ) isym = 11 180 deg rotation - cryst. axis [0,1,0] cryst. s(11) = ( -1 -1 0 ) ( 0 1 0 ) ( 0 0 -1 ) cart. s(11) = ( -0.5000000 -0.8660254 0.0000000 ) ( -0.8660254 0.5000000 0.0000000 ) ( 0.0000000 0.0000000 -1.0000000 ) isym = 12 180 deg rotation - cryst. axis [1,1,0] cryst. s(12) = ( 0 1 0 ) ( 1 0 0 ) ( 0 0 -1 ) cart. s(12) = ( -0.5000000 0.8660254 0.0000000 ) ( 0.8660254 0.5000000 0.0000000 ) ( 0.0000000 0.0000000 -1.0000000 ) isym = 13 inversion cryst. s(13) = ( -1 0 0 ) ( 0 -1 0 ) ( 0 0 -1 ) cart. s(13) = ( -1.0000000 0.0000000 0.0000000 ) ( 0.0000000 -1.0000000 0.0000000 ) ( 0.0000000 0.0000000 -1.0000000 ) isym = 14 inv. 180 deg rotation - cart. axis [0,0,1] cryst. s(14) = ( 1 0 0 ) ( 0 1 0 ) ( 0 0 -1 ) cart. s(14) = ( 1.0000000 0.0000000 0.0000000 ) ( 0.0000000 1.0000000 0.0000000 ) ( 0.0000000 0.0000000 -1.0000000 ) isym = 15 inv. 180 deg rotation - cart. axis [0,1,0] cryst. s(15) = ( 1 0 0 ) ( -1 -1 0 ) ( 0 0 1 ) cart. s(15) = ( 1.0000000 0.0000000 0.0000000 ) ( 0.0000000 -1.0000000 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) isym = 16 inv. 180 deg rotation - cart. axis [1,0,0] cryst. s(16) = ( -1 0 0 ) ( 1 1 0 ) ( 0 0 1 ) cart. s(16) = ( -1.0000000 0.0000000 0.0000000 ) ( 0.0000000 1.0000000 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) isym = 17 inv. 60 deg rotation - cryst. axis [0,0,1] cryst. s(17) = ( -1 -1 0 ) ( 1 0 0 ) ( 0 0 -1 ) cart. s(17) = ( -0.5000000 0.8660254 0.0000000 ) ( -0.8660254 -0.5000000 0.0000000 ) ( 0.0000000 0.0000000 -1.0000000 ) isym = 18 inv. 60 deg rotation - cryst. axis [0,0,-1] cryst. s(18) = ( 0 1 0 ) ( -1 -1 0 ) ( 0 0 -1 ) cart. s(18) = ( -0.5000000 -0.8660254 0.0000000 ) ( 0.8660254 -0.5000000 0.0000000 ) ( 0.0000000 0.0000000 -1.0000000 ) isym = 19 inv. 120 deg rotation - cryst. axis [0,0,1] cryst. s(19) = ( 0 -1 0 ) ( 1 1 0 ) ( 0 0 -1 ) cart. s(19) = ( 0.5000000 0.8660254 0.0000000 ) ( -0.8660254 0.5000000 0.0000000 ) ( 0.0000000 0.0000000 -1.0000000 ) isym = 20 inv. 120 deg rotation - cryst. axis [0,0,-1] cryst. s(20) = ( 1 1 0 ) ( -1 0 0 ) ( 0 0 -1 ) cart. s(20) = ( 0.5000000 -0.8660254 0.0000000 ) ( 0.8660254 0.5000000 0.0000000 ) ( 0.0000000 0.0000000 -1.0000000 ) isym = 21 inv. 180 deg rotation - cryst. axis [1,-1,0] cryst. s(21) = ( 0 1 0 ) ( 1 0 0 ) ( 0 0 1 ) cart. s(21) = ( -0.5000000 0.8660254 0.0000000 ) ( 0.8660254 0.5000000 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) isym = 22 inv. 180 deg rotation - cryst. axis [2,1,0] cryst. s(22) = ( -1 -1 0 ) ( 0 1 0 ) ( 0 0 1 ) cart. s(22) = ( -0.5000000 -0.8660254 0.0000000 ) ( -0.8660254 0.5000000 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) isym = 23 inv. 180 deg rotation - cryst. axis [0,1,0] cryst. s(23) = ( 1 1 0 ) ( 0 -1 0 ) ( 0 0 1 ) cart. s(23) = ( 0.5000000 0.8660254 0.0000000 ) ( 0.8660254 -0.5000000 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) isym = 24 inv. 180 deg rotation - cryst. axis [1,1,0] cryst. s(24) = ( 0 -1 0 ) ( -1 0 0 ) ( 0 0 1 ) cart. s(24) = ( 0.5000000 -0.8660254 0.0000000 ) ( -0.8660254 -0.5000000 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) point group D_6h(6/mmm) there are 12 classes the character table: E 2C6 2C3 C2 3C2' 3C2'' i 2S3 2S6 s_h 3s_d 3s_v A_1g 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 A_2g 1.00 1.00 1.00 1.00 -1.00 -1.00 1.00 1.00 1.00 1.00 -1.00 -1.00 B_1g 1.00 -1.00 1.00 -1.00 1.00 -1.00 1.00 -1.00 1.00 -1.00 1.00 -1.00 B_2g 1.00 -1.00 1.00 -1.00 -1.00 1.00 1.00 -1.00 1.00 -1.00 -1.00 1.00 E_1g 2.00 1.00 -1.00 -2.00 0.00 0.00 2.00 1.00 -1.00 -2.00 0.00 0.00 E_2g 2.00 -1.00 -1.00 2.00 0.00 0.00 2.00 -1.00 -1.00 2.00 0.00 0.00 A_1u 1.00 1.00 1.00 1.00 1.00 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 A_2u 1.00 1.00 1.00 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 1.00 1.00 B_1u 1.00 -1.00 1.00 -1.00 1.00 -1.00 -1.00 1.00 -1.00 1.00 -1.00 1.00 B_2u 1.00 -1.00 1.00 -1.00 -1.00 1.00 -1.00 1.00 -1.00 1.00 1.00 -1.00 E_1u 2.00 1.00 -1.00 -2.00 0.00 0.00 -2.00 -1.00 1.00 2.00 0.00 0.00 E_2u 2.00 -1.00 -1.00 2.00 0.00 0.00 -2.00 1.00 1.00 -2.00 0.00 0.00 the symmetry operations in each class and the name of the first element: E 1 identity 2C6 5 6 60 deg rotation - cryst. axis [0,0,1] 2C3 7 8 120 deg rotation - cryst. axis [0,0,1] C2 2 180 deg rotation - cart. axis [0,0,1] 3C2' 4 12 11 180 deg rotation - cart. axis [1,0,0] 3C2'' 3 9 10 180 deg rotation - cart. axis [0,1,0] i 13 inversion 2S3 17 18 inv. 60 deg rotation - cryst. axis [0,0,1] 2S6 19 20 inv. 120 deg rotation - cryst. axis [0,0,1] s_h 14 inv. 180 deg rotation - cart. axis [0,0,1] 3s_d 16 24 23 inv. 180 deg rotation - cart. axis [1,0,0] 3s_v 15 21 22 inv. 180 deg rotation - cart. axis [0,1,0] Cartesian axes site n. atom positions (alat units) 1 Mg tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 B tau( 2) = ( -0.0000000 0.5773503 0.5710347 ) 3 B tau( 3) = ( 0.5000000 0.2886751 0.5710347 ) Crystallographic axes site n. atom positions (cryst. coord.) 1 Mg tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 B tau( 2) = ( 0.3333333 0.6666667 0.5000000 ) 3 B tau( 3) = ( 0.6666667 0.3333333 0.5000000 ) number of k points= 6 Methfessel-Paxton smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0740741 k( 2) = ( 0.0000000 0.0000000 0.2918678), wk = 0.1481481 k( 3) = ( 0.0000000 0.3849002 0.0000000), wk = 0.4444444 k( 4) = ( 0.0000000 0.3849002 0.2918678), wk = 0.8888889 k( 5) = ( 0.3333333 0.5773503 0.0000000), wk = 0.1481481 k( 6) = ( 0.3333333 0.5773503 0.2918678), wk = 0.2962963 cryst. coord. k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0740741 k( 2) = ( 0.0000000 0.0000000 0.3333333), wk = 0.1481481 k( 3) = ( 0.0000000 0.3333333 0.0000000), wk = 0.4444444 k( 4) = ( 0.0000000 0.3333333 0.3333333), wk = 0.8888889 k( 5) = ( 0.3333333 0.3333333 0.0000000), wk = 0.1481481 k( 6) = ( 0.3333333 0.3333333 0.3333333), wk = 0.2962963 Dense grid: 6657 G-vectors FFT dimensions: ( 24, 24, 27) Estimated max dynamical RAM per process > 5.07MB Initial potential from superposition of free atoms starting charge 7.99827, renormalised to 8.00000 Starting wfc are 12 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 4.0 Mb Self-consistent Calculation iteration # 1 ecut= 40.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.8 total cpu time spent up to now is 0.3 secs total energy = -13.47130312 Ry Harris-Foulkes estimate = -13.69290532 Ry estimated scf accuracy < 0.32326100 Ry iteration # 2 ecut= 40.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.04E-03, avg # of iterations = 2.7 total cpu time spent up to now is 0.3 secs total energy = -13.55866448 Ry Harris-Foulkes estimate = -13.57564536 Ry estimated scf accuracy < 0.02994766 Ry iteration # 3 ecut= 40.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.74E-04, avg # of iterations = 1.8 total cpu time spent up to now is 0.4 secs total energy = -13.56425396 Ry Harris-Foulkes estimate = -13.56427486 Ry estimated scf accuracy < 0.00026195 Ry iteration # 4 ecut= 40.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.27E-06, avg # of iterations = 3.5 total cpu time spent up to now is 0.5 secs total energy = -13.56430557 Ry Harris-Foulkes estimate = -13.56430566 Ry estimated scf accuracy < 0.00000247 Ry iteration # 5 ecut= 40.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.09E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs total energy = -13.56430604 Ry Harris-Foulkes estimate = -13.56430604 Ry estimated scf accuracy < 0.00000005 Ry iteration # 6 ecut= 40.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.20E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -13.56430605 Ry Harris-Foulkes estimate = -13.56430605 Ry estimated scf accuracy < 2.1E-09 Ry iteration # 7 ecut= 40.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.60E-11, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 823 PWs) bands (ev): -4.8621 4.5223 7.9192 7.9192 9.1774 13.7912 13.7912 15.6720 occupation numbers 1.0000 1.0000 1.0179 1.0179 -0.0000 -0.0000 -0.0000 -0.0000 k = 0.0000 0.0000 0.2919 ( 842 PWs) bands (ev): -4.0086 0.9521 8.1783 8.1783 14.1537 14.1537 14.9459 15.5160 occupation numbers 1.0000 1.0000 0.4910 0.4910 -0.0000 -0.0000 -0.0000 -0.0000 k = 0.0000 0.3849 0.0000 ( 838 PWs) bands (ev): -2.9652 2.4587 5.7844 6.4012 10.8021 12.5241 12.7481 16.1060 occupation numbers 1.0000 1.0000 1.0000 1.0000 -0.0000 -0.0000 -0.0000 -0.0000 k = 0.0000 0.3849 0.2919 ( 835 PWs) bands (ev): -2.1907 2.8817 3.1270 6.0437 9.4977 13.1187 16.4554 17.8107 occupation numbers 1.0000 1.0000 1.0000 1.0000 -0.0000 -0.0000 -0.0000 -0.0000 k = 0.3333 0.5774 0.0000 ( 840 PWs) bands (ev): 0.3111 0.3111 1.6240 9.4092 9.4092 13.6712 13.6712 16.2806 occupation numbers 1.0000 1.0000 1.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 k = 0.3333 0.5774 0.2919 ( 843 PWs) bands (ev): 0.9735 0.9735 2.0974 6.2420 6.2420 11.5948 18.2936 18.2936 occupation numbers 1.0000 1.0000 1.0000 1.0000 1.0000 -0.0000 -0.0000 -0.0000 the Fermi energy is 8.1754 ev ! total energy = -13.56430605 Ry Harris-Foulkes estimate = -13.56430605 Ry estimated scf accuracy < 4.2E-12 Ry The total energy is the sum of the following terms: one-electron contribution = 4.60712138 Ry hartree contribution = 1.97256122 Ry xc contribution = -5.73772440 Ry ewald contribution = -14.40556183 Ry smearing contrib. (-TS) = -0.00070242 Ry convergence has been achieved in 7 iterations Forces acting on atoms (cartesian axes, Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.00000000 -0.00000000 -0.00000000 atom 3 type 2 force = -0.00000000 -0.00000000 0.00000000 The non-local contrib. to forces atom 1 type 1 force = -0.00000000 0.00000000 -0.00000000 atom 2 type 2 force = 0.00000000 -0.00000000 0.00000000 atom 3 type 2 force = 0.00000000 0.00000000 0.00000000 The ionic contribution to forces atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.00000001 -0.00000000 0.00000000 atom 3 type 2 force = -0.00000001 0.00000000 -0.00000000 The local contribution to forces atom 1 type 1 force = -0.00000000 -0.00000000 0.00000000 atom 2 type 2 force = -0.00000000 0.00000000 0.00000000 atom 3 type 2 force = 0.00000000 -0.00000000 0.00000000 The core correction contribution to forces atom 1 type 1 force = 0.00000000 -0.00000000 -0.00000000 atom 2 type 2 force = 0.00000000 0.00000000 0.00000000 atom 3 type 2 force = 0.00000000 0.00000000 0.00000000 The Hubbard contrib. to forces atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.00000000 0.00000000 0.00000000 atom 3 type 2 force = 0.00000000 0.00000000 0.00000000 The SCF correction term to forces atom 1 type 1 force = -0.00000000 0.00000000 -0.00000000 atom 2 type 2 force = 0.00000000 -0.00000000 0.00000000 atom 3 type 2 force = -0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 Computing stress (Cartesian axis) and pressure total stress (Ry/bohr**3) (kbar) P= -113.86 -0.00090103 0.00000000 0.00000000 -132.55 0.00 0.00 0.00000000 -0.00090103 0.00000000 0.00 -132.55 0.00 0.00000000 0.00000000 -0.00052004 0.00 0.00 -76.50 kinetic stress (kbar) 4595.53 -0.00 0.00 -0.00 4595.53 0.00 0.00 0.00 4364.16 local stress (kbar) -3693.36 -0.00 -0.00 -0.00 -3693.36 0.00 -0.00 0.00 2386.15 nonloc. stress (kbar) 1459.40 0.00 0.00 0.00 1459.40 0.00 0.00 0.00 1415.07 hartree stress (kbar) 1175.52 0.00 -0.00 0.00 1175.52 0.00 -0.00 0.00 -867.44 exc-cor stress (kbar) -950.85 0.00 0.00 0.00 -950.85 0.00 0.00 0.00 -950.85 corecor stress (kbar) -339.80 0.00 0.00 0.00 -339.80 -0.00 0.00 -0.00 -346.86 ewald stress (kbar) -2378.99 0.00 0.00 0.00 -2378.99 0.00 0.00 0.00 -6076.73 hubbard stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 london stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 XDM stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 dft-nl stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 TS-vdW stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Writing output data file MgB2.save init_run : 0.09s CPU 0.09s WALL ( 1 calls) electrons : 0.65s CPU 0.66s WALL ( 1 calls) forces : 0.02s CPU 0.02s WALL ( 1 calls) stress : 0.05s CPU 0.06s WALL ( 1 calls) Called by init_run: wfcinit : 0.05s CPU 0.05s WALL ( 1 calls) wfcinit:atom : 0.00s CPU 0.00s WALL ( 6 calls) wfcinit:wfcr : 0.04s CPU 0.04s WALL ( 6 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.53s CPU 0.54s WALL ( 7 calls) sum_band : 0.10s CPU 0.10s WALL ( 7 calls) v_of_rho : 0.02s CPU 0.02s WALL ( 8 calls) v_h : 0.00s CPU 0.00s WALL ( 8 calls) v_xc : 0.02s CPU 0.02s WALL ( 10 calls) mix_rho : 0.00s CPU 0.01s WALL ( 7 calls) Called by c_bands: init_us_2 : 0.02s CPU 0.02s WALL ( 102 calls) cegterg : 0.52s CPU 0.52s WALL ( 42 calls) Called by sum_band: Called by *egterg: h_psi : 0.45s CPU 0.45s WALL ( 155 calls) g_psi : 0.00s CPU 0.00s WALL ( 107 calls) cdiaghg : 0.02s CPU 0.02s WALL ( 149 calls) cegterg:over : 0.03s CPU 0.03s WALL ( 107 calls) cegterg:upda : 0.02s CPU 0.02s WALL ( 107 calls) cegterg:last : 0.01s CPU 0.01s WALL ( 42 calls) Called by h_psi: h_psi:pot : 0.45s CPU 0.45s WALL ( 155 calls) h_psi:calbec : 0.01s CPU 0.01s WALL ( 155 calls) vloc_psi : 0.43s CPU 0.43s WALL ( 155 calls) add_vuspsi : 0.01s CPU 0.01s WALL ( 155 calls) General routines calbec : 0.01s CPU 0.01s WALL ( 185 calls) fft : 0.01s CPU 0.01s WALL ( 39 calls) fftw : 0.46s CPU 0.45s WALL ( 2240 calls) PWSCF : 0.83s CPU 0.96s WALL This run was terminated on: 21: 3:28 5Feb2017 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------=