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ABSTRACT

Those who solve more of a given type of problem tend to get better at it - which suggests
that problems of any given type should be brought to specialists for a solution.
However, in this paper we argue that agency-related costs and information transfer costs
will tend to drive the locus of problem-solving in the opposite direction - away from
problem-solving by specialist suppliers, and towards those who directly benefit from a
solution, and who have difficult-to-transfer local information about a particular
application being solved, such as the direct users of a product or service.

We examine the actual location of design activities in two fields in which custom
products are produced by "mass-customization" methods: application-specific integrated
circuits (ASICs) and computer telephony integration systems (CTI).  In both, we find
that users rather than suppliers are the actual designers of the application-specific portion
of the product types examined. We offer anecdotal evidence that the pattern of user-
based customization we have documented in these two fields is in fact quite general, and
we discuss implications for research and practice.
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1. Problem Statement and Overview
Providers of software often note that their products "empower users" to develop

innovative solutions to their own problems.  Yet, given the supposed benefits of specialization,
one might legitimately ask why anyone, including users, would find this to be a good idea.  Does
one really want to be one's own architect or one's own doctor?  In this paper, we first consider
why it might indeed be attractive under some conditions to allocate the application-specific
portion of the problem-solving work of custom product and service design to users rather than
to specialist suppliers (section 1).  We then set the context for our empirical study of this
question (section 2) and explore the locus of design-related problem-solving in two industries
devoted to the production of "mass customized" products and services (sections 3 and 4).  We
find that in both, the application-specific portion of the problem-solving work of product
customization is carried out by users, with the aid of standard toolkits and components provided
to them by supplier firms.  Finally, we discuss our findings and consider whether and when this
form of partitioning of the product design process between user and supplier might be a
generally attractive way to organize the innovation process (section 5).

In production, an important benefit of specialization can be seen in the learning curve.
Beginning with Wright (1936) a number of studies have shown that the unit cost of producing a
given type of manufactured good tends to decline significantly as more are produced.  It has
been argued that this effect is the result of the development of increasing skill in production
attained by what Arrow (1962) has termed "learning by doing."  In problem-solving also, the
ability to solve a given type of problem has been shown to improve with practice.   Studies of
problem-solving expertise show that it contains elements such as an inventory of knowledge
regarding solutions that "work" for the problem type at issue, and a repertory of problem-solving
skills such as a facility at decomposing a new problem into subproblems that are similar to
previously-solved ones.  The net effect is that problem-solvers with expertise in problems of a
given type are able to solve that type of problem much more rapidly than can novices (Larkin et
al 1980).  This effect, in turn, would tend to reward bringing all problems of any given type to
appropriate specialists for a solution.

However, we propose that at least two important factors will tend to drive the locus of
problem-solving in the opposite direction - away from problem-solving by specialist suppliers,
and towards those who directly benefit from a solution such as the direct users of a product or
service.  The first factor is generally understood, and involves various kinds of agency-related
costs that might drive direct beneficiaries of a new product or service design to "do it
themselves."  For example, direct beneficiaries will be motivated to create a solution that will be
exactly right for their own very particular circumstances.  In contrast, supplier agents may have
an incentive to create solutions that are "good enough" for a wider range of potential users.

The second factor is less well understood, and involves the impact of what we call sticky
local information on the locus of problem-solving.  Consider that to solve a problem, needed
information and problem-solving capabilities (also a form of information) must be brought
together at a single locus.  The requirement to transfer information from its point of origin to a
specified problem-solving site will not affect the locus of problem-solving activity when that
information can be shifted at no or little cost.  However, when it is costly to transfer from one
site to another in useable form - is, in our terms sticky - the distribution of problem solving
activities can be significantly affected.

We define the stickiness of a given unit of information in a given instance as the
incremental expenditure required to transfer that unit of information to a specified locus in a
form useable by a given information seeker.  When this cost is low, information stickiness is
low; when it is high, stickiness is high (von Hippel 1994).  A number of researchers have both
argued and shown that information required by technical problem-solvers is indeed often costly
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to transfer for a range of reasons.  Information stickiness may be due to attributes of the
information itself such as the way it is encoded (Nelson 1982 & 1990, Pavitt 1987, Rosenberg
1982).  And/or it may be due to attributes of information seekers or providers.  For example, a
particular information seeker may be less able in acquiring information because of a lack of
certain tools or complementary information - a lack of "absorbtive capacity" in the terminology
of Cohen and Levinthal (1990).  Also, specialized personnel such as "technological gatekeepers"
(Katz and Allen 1982, Katz and Tushman 1980) and specialized organizational structures such
as transfer groups (Katz and Allen 1988) can significantly affect the information transfer costs
between and within organizations.  Recently, Szulanski (1996) explored the relative importance
of many of these factors in a study of transfers of information associated with 38 "best practices"
within firms.  He  found that the three largest contributors to information stickiness in that
sample were a lack of absorbtive capacity by the recipient, incomplete or poorly encoded
information, and a laborious and distant relationship between the information source and
recipient.

The link between information stickiness and the locus of problem-solving activities
involves two elements.  First, the stickiness of a given unit of information is not immutable.
Rather, it can be reduced by investments made to that end.  For example, firms may reduce the
stickiness of a critical form of technical expertise by investing in converting some of that
expertise from tacit knowledge to the more explicit and easily transferable form of a software
"expert system"(Davis 1986).  And/or they may invest in reducing the stickiness of information
of interest to a particular group of users by encoding it in the form of a remotely accessible
computer data base.  This is what the travel industry did, for example, when it invested
substantial sums to put its various data bases for airline schedules, hotel reservations, and car
rentals "on-line" in a user-accessible form.

Second, an investment in unsticking a unit of information is a one-time investment that
reduces the marginal cost of all succeeding transfers of that information.  Therefore, the
incentive to invest in reducing the stickiness of a given unit of information will vary according
to the number of times that one expects to transfer it.  As illustration, suppose that to solve a
particular problem, two units of equally sticky local information are required, one from a user
and one from a supplier.  In that case, there will be an equal incentive operating to unstick either
of these units of information in order to reduce the cost of transfer, other things (such as the cost
of unsticking) being equal.  But now suppose that there is reason to expect that one of the units
of information, say the supplier's, will be a candidate for transfer n times in the future, while the
user's unit of information will be of interest to problem solvers only once.  For example,
suppose that a supplier expects to have the same technical information called on repeatedly to
solve n user product application problems, and that each such problem involves unique user
information.  In that case, the total incentive to unstick the supplier's information across the
entire series of user problems is n times higher than the incentive for an individual user to
unstick its problem-related information.

In the case of the problem-solving work of product and service development, the
situation just described is the one often encountered in the real world.  Manufacturers do tend to
specialize in a given solution type, which they attempt to apply to the diverse application
problems of many users.  As we will see later, the local information required from a supplier to
solve each novel application problem tends to be the same, while the local information required
from the user tends to be novel or have novel components.  Under such conditions, and for the
reasons just described, we expect that sticky information transfer cost considerations will create
an incentive to shift the locus of problem-solving activity to the locus of the less frequently
called-upon information - in the case of our example, to the user.

In sum then, we propose that allocation of the application-specific portion of the
problem-solving work of custom product and service design to users will be economically
attractive for a supplier when: (1) the supplier faces heterogeneous demand for a given type of
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product or service (that is, many of the users served place a high value on custom solutions); (2)
agency costs experienced by users who outsource design activities are high; (3) the stickiness of
application-specific user information is high; and (4) the stickiness of information held by
suppliers that is relevant to application-specific problem-solving is low.

2. Context for Empirical Inquiry: "Mass Customized" Products
We have elected to explore the proposals just described by examining the locus of

product design activities in two industries devoted to the production of "mass customized"
products.  The first is the customer-specific integrated circuit (ASIC) industry.  This industry is
of substantial size and growing rapidly, with worldwide sales in 1994 of $13.5 billion - about
fifteen percent of worldwide IC sales (McClean 1995 figs. 4-13, 4-15).  The second industry
chosen for study is the computer-telephony integration industry (CTI).  Also growing rapidly,
this industry focuses on business computing systems that draw upon both computing and
telephony functions to accomplish a task.  The ordering of goods from a mail order firm via
telephone is an example of a task typically accomplished with the aid of a CTI system today.
Sales of CTI systems were about $1.2 billion in 1995 (Multimedia Telecommunications
Association 1996).

These two industries were chosen as appropriate for our present purpose because both
focus on the production of customized products rather than standard ones, and because both are
of substantial size, with many custom product variations being designed and produced.  As a
consequence, we expected that industry participants would have invested significant resources
to develop efficient methods for designing mass customized products.  Data was collected on
each of these industries through specialized literature as cited, and also via extensive semi-
structured interviews held with approximately 100 experts in user and supplier firms in the
ASIC and CTI industries.  Experts initially selected for interview were those mentioned in books
and specialized trade literature as having played important roles in the technical or business
aspects of the partitioning of product design activities between users and suppliers in their
respective industries.  Later interviewees were those identified by early interviewees as also very
knowledgeable on those matters.

Mass customization generally refers to the manufacture of one-of-a-kind, "custom"
products via the use of flexible, computer-controlled mass-production machinery.  Historically,
individual products built to the specifications of a particular customer were made by using
handwork-intensive processes - and were quite expensive.  In contrast, many identical products
could be "mass produced" on specialized production machinery at a much lower cost per unit.
Relatively recently, the introduction of computer-instructed process equipment has opened the
way to producing one-of-a kind products at mass production prices.  Such equipment follows
software instructions and can be instantly adjusted to new specifications for production of each
unit in a production run.  As a consequence, each item in that run can be unique - "mass
customized" to the specifications of a particular customer (Pine 1993).  One can also logically
extend the concept of mass customization to the production of customized services.  In that case,
software-based instructions are used to instruct a service delivery system - say, an automated
home banking system - rather than computerized production machinery.

Mass customization offers value when the demand for a final or intermediate good or
service is heterogeneous.  This is often the case:  Many consumers would like goods and
services ranging from their clothing to their houses to their telephone answering services to be in
some way different from standard offerings.  Similarly engineers, who specify intermediate
goods as components for more complex products that they are designing, often display
heterogeneous needs within even quite narrow product categories.  For example, a starter motor
or engine controller chip that is well-suited for an auto engine of design A will not be quite right
for many other engine designs.



6

The question we will explore in the case studies that follow is:  Who designs the
customized portion of the products that are built using mass-customization production methods?
The work of design involves collecting information on the unique needs of a customer; use of
that information to create a customized product design; and conversion of the design
information into a form suitable for driving a given manufacturer's computerized production
machinery or service delivery system.  In the case of mass customized production,
manufacturers of a particular type of mass-customized product and/or specialist design services
are the locus of expertise with respect to problems common to many designs.  In contrast, users
or system designers possess the deepest understanding of a particular application.  For example,
a book publisher will be the locus of expertise as to how to edit, design, print and distribute
books.  The author, on the other hand, will be the expert regarding the detailed content of his or
her specific book.

In the cases we will study, single suppliers of "mass customized" products or services are
in the business of applying a general solution to the unique needs of many users.  Under these
conditions, for reasons discussed earlier, we anticipate that we may find a user rather than a
supplier locus for application-specific problem-solving.  And, if this proves to be the case, we
would expect to see problem-solving tools and components that are generally useful in solving
X-type design problems being transferred from suppliers to user-based problem-solvers.  What
kinds of "generally useful" information do we expect to see being transferred from suppliers to
users in such a case?   First, we expect to see information being transferred regarding the
constraints of the supplier's mass-customization process.  Second, as just noted, we expect to see
standard tools and components being supplied to users that can help them in their application-
specific design activities.

With respect to production process constraints, note that the economies of mass-
customized production are only achievable if and as a custom design falls within the pre-
existing capability and degrees of freedom built into a given mass-customization system.  We
may term this the "solution space" offered by the system.  For example, the solution space
offered by a book publisher will typically enable the author to use any words he or she likes,
arranged in any sequence.  At the same time however, the solution space may only allow an
author to specify those special symbols (say, mathematical symbols) that are "in stock" at the
printer.  Similarly, the solution space offered by an integrated circuit manufacturer may allow a
customer a range of variation with respect to the size of silicon chip to be produced, the density
with which electronic devices can be placed upon it, etc..  However, it will also state limits on
these variables.  For example, "Designers may only specify chip sizes no larger than X and no
smaller than Y."  The reason the manufacturer enforces such constraints is that the economies of
mass-customization require that a custom user design be implementable simply by making low-
cost adjustments to the production process.  This condition is met within the solution space on
offer.  However, responding to requests that fall outside of that space may require small or large
additional investments by the manufacturer.  For example, it may be relatively inexpensive for a
printer to add an additional set of symbols to his stock.  On the other hand, an integrated circuit
producer may have to invest many millions of dollars and rework an entire production process in
order to respond to a customer request for a larger chip.

Further insight into the nature of the collection of tools and components that solvers of a
particular problem of type X will find useful can be derived from the nature of problem-solving
work.  Research into problem-solving in general shows it to consist of trial and error, directed
by some amount of insight as to the direction in which a solution might lie (Barron 1988, pp. 43-
7.).  This finding is supported by empirical studies of problem-solving in the specific arena of
product and process development (Marples 1961, Allen 1966).  Such studies do show trial and
error (or, more precisely, trial, failure, learning, revision and re-trial) as a prominent feature.
One may view the trial and error process as consisting of a four-step cycle:  (1) one conceives of
or designs an experiment; (2) one builds the (physical or virtual) apparatus needed to conduct



7

that experiment; (3) one runs the experiment; (4) one analyzes the result.  For example, one
might (1) conceive of and design a new, more efficient air conditioner for a car; (2) build a
prototype of key elements of that air conditioner as well as any special apparatus needed to test
its efficiency of operation; (3) run the experiment to determine actual efficiency; and (4) analyze
and learn from the result.  If the results of a first experiment are satisfactory, one stops after step
(4).  If, however, as is usually the case, analysis shows that the results of the initial experiment
are not satisfactory, one may apply what one has learned to modify one's experiment and then
"iterate" - try again.

To develop their custom design, developers will find it useful to have access to standard
component parts and standard design tools that will help them to carry out the trial-and-error
cycle of problem-solving work.  Thus, a team of architects who are designing a custom office
building will find it very useful to have access to a library of standard components, for example
a range of standard structural support columns with pre-analyzed structural characteristics, that
they can incorporate into their building design.  They would also find it useful to have tools such
as a structural analysis program that can help them to conduct trials of their evolving custom
design to determine, for example, whether that design will be structurally safe.  Similarly, users
who are designing a document with the aid of a desktop publishing system will find it useful to
have standard formats and standard "clip art" illustrations that they may choose to incorporate
into their custom design.  They will also value having a system capable of "building" a prototype
of their design in the form of a simulation on their computer screen, as an aid to evaluating that
design's fitness to their intended purpose.

3.  Application-Specific Integrated Circuits (ASICs)
Customer-specific integrated circuits (commonly referred to as ASICs) are integrated

circuits that are designed and built for a specific application, and for a specific customer.  For
example, a maker of compact disk players - or autos or machine tools or dishwashers - might
specify an ASIC to perform some or all of the product-specific electronic functions required in
his unique design.   (In contrast, application specific standard products (ASSPs) are integrated
circuits that have a specific or narrow range of application, but that are developed for multiple
users.  For example, a "chipset" developed to implement major functions specific to personal
computers and sold to many PC manufacturers is an ASSP.  Also in contrast, a standard
integrated circuit is one with a function useful in a wide array of applications that is sold to
many customers.  Examples are memory chips, flip-flops and microprocessors [McClean 1995,
p 4-1]).

Integrated circuits in general, and ASICs in particular, are generally built upon the
surface of a thin, flat wafer of silicon crystal by a process involving deposition of successive
very thin layers of semiconducting and insulating materials in very precise patterns.  Electronic
components such as transistors and capacitors are formed via this process, and are then
interconnected into a functioning circuit via the deposition of very thin lines of metal that serve
as a form of electrical wiring.  Integrated circuit components can be built using a number of
different "technologies" such as bipolar and metal oxide semiconductor (MOS).  Components of
similar electronic function are designed differently in each of these technologies, and can have
somewhat different characteristics, such as lower power consumption or higher switching
speeds.

In the early days of the integrated circuit industry, custom electronic circuitry was built
by selecting a number of standard integrated circuits and other standard electronic components,
and then connecting them together in a customized way on a printed circuit board.  However,
important technical considerations (reliability of interconnections, circuit speeds) and economic
considerations (a potential for significantly lower manufacturing costs) provided strong
incentives to move circuit customization down into the integrated circuit itself by creating
customized ICs.  ASICs are the realization of this goal.  The earliest adopters of ASICs were
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manufacturers of high speed computers, manufacturers of military equipment, and
manufacturers of telecommunications equipment who had no choice but to utilize ASICs to
meet their performance goals. Today, ASICs can be designed and built quite quickly, and so are
also used by firms wishing to reduce development times for their products (Hilbert 1991 p.4).

ASICs were first introduced in the late 1960's and early 1970's, and have greatly
increased in size and complexity since that time.  In the late 1960's an ASIC with 100 "gates" (a
basic digital logic function requiring a few electronic components to implement) was considered
large.  Today, an ASIC with 10,000 gates is considered small, an ASIC with 500,000 gates is
considered large, and an ASIC with 1.3 million useable gates (such as one recently developed by
IBM) is considered to be leading edge.  A leading edge ASIC is a very complex semiconductor
product, and various of the means used to design and manufacture complex ASICs are
considered to be at the leading edge of IC industry practice.  These include design and
simulation software, testing methods, and flexible manufacturing processes (McClean 1995 p.4-
8 & 9).

Shift of ASIC Design Activities to Users and System Designers
The original method used to design integrated circuits is the so-called full custom

method.  This method involves designing each transistor and interconnection on an integrated
circuit "from scratch,"  a relatively slow and expensive procedure (see table 2, below).
Nonetheless, it is still the method of choice today when an integrated circuit must perform at the
very highest speed attainable with a given production process, and/or must be squeezed onto the
smallest possible area of silicon so that it can be manufactured at the very lowest cost per unit.
For example, leading edge memory chips and microprocessors are generally designed using full
custom design methods.

Full customization enables designers to achieve high performance because it gives them
the freedom to mutually adjust each circuit element and the demands that will be placed upon it.
For example, if a circuit design requires a particular group of transistors to run especially
rapidly, an engineer using full customization can modify the physical design of those particular
transistors accordingly.  And/or, the engineer can modify the design of the circuit to lessen the
demands placed upon those transistors.  This ability to make interdependent choices regarding
physical device design and circuit design is the strength of full customization.  However, this
characteristic also represents a barrier to shifting full-custom ASIC design work to user sites,
should anyone wish to do so.  Design engineers working for firms that incorporate customized
ASICs in the products they are developing to use or to sell were and are typically electrical
engineers who understand digital circuit design but do not understand semiconductor device
design.  They would not find it easy to design ASICs via full customization methods without
extensive specialized training.

Building from this initial state of technological affairs, two trends in the industry have
combined to "unstick" the supplier-based information required by an engineer wishing to design
customized ASIC chips to incorporate in a system he or she is designing.  The first was the
development of new ASIC architectures that reduced the amount of specialized, supplier-
generated information that a designer must know to be able to design a custom ASIC circuit.
The second was the encoding of the remaining information required by a circuit designer into
easy-to-use software tool kits.

The reduction of the amount of supplier-based information required by an ASIC chip
designer was achieved via the development of three new ASIC architectures that enabled
designers to design a chip without having to understand the physical design of semiconductor
devices.  These three architectures are gate arrays, standard cell ASICs, and field programmable
logic devices (PLDs).
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- Gate array ASICs are based on standard, "semifinished" chips that are then customized
into finished ASICs.  Specifically, in this approach an ASIC chip is designed and
fabricated in a standard manner up to the point where the basic elements used in the
circuit - an "array" of logic gates - have been completely fabricated but have not yet been
interconnected into a functioning circuit.  Custom circuit function is then achieved by
designing and then fabricating one or two final interconnection layers that interlink these
standard circuit elements into a special-purpose ASIC.

- Standard cell ASICs are designed from predesigned and pretested circuit modules
contained in a "library" made available to circuit designers.  Individual modules
available in such a library (called cells or macrocells depending on size) range from
analog to digital converters to complete microprocessors.  To develop a standard cell
ASIC, a designer draws predesigned cells from the library as needed and specifies how
they should be interconnected to achieve the desired custom circuit functionality.

- Field programmable logic devices (FPLDs) are built as standard semifinished chips that
are then customized into a finished ASIC.  As with gate arrays, these "semifinished"
chips contain completely fabricated circuit elements.  However in field programmable
logic devices, these elements emerge from the fabrication process totally interconnected
via fusible conducting links, and are shipped to the customer in this non-functional form
The circuit designer then converts the chip to a customized functioning ASIC in the field
by "programming" it using a desktop encoding device driven by a personal computer.
This device applies precisely programmed electric pulses to the chip to melt and thereby
eliminate all but the desired circuit interconnections.  (Other versions of field
programmable logic devices use an "antifuse" technology that allows users to selectively
create desired connections.)

Each of the three chip architectures just described involves building custom ASICs from
combinations of physical devices that have been predesigned by manufacturer experts.  Each
physical device is described to the ASIC circuit designer in terms of its logical functioning in a
digital circuit rather than in terms of its physical nature.  This, in turn, allows a circuit engineer
to design an ASIC having a desired customized function simply by selecting and interconnecting
digital logic elements.  No understanding of the physical devices themselves is required of that
designer.
ASIC Type:                             Full Custom        Standard Cell      Gate Array         FPLDs
Time to Design ASIC 52-104 weeks      12-52 weeks       4-26 weeks      < 2 weeks
Time to build prototype 8-12 weeks       6-10 weeks         1-3 weeks      < 10 minutes
Typical Development Fees
Charged by Supplier $50K-500K      $20K-200K        $10K-100K            $0
Maximum Density of    < 350K        < 250K           < 100K            < 10K
gates on chip / cm2
Unit Manufacturing Cost   Lowest        Medium  High            Highest
Notes to table:
(1) Source: Chakravarty 1991, table 1,  p.31.
(2) Interviewees report that many of the time and cost figures shown here have been reduced
significantly since 1991.  (Thus, most full custom ASICs can now be designed in a year or less.)
However, the relative position of the various types of ASICs with respect to cost and time
expenditures is unchanged.

Table 1: Attributes Affecting Customer Choices Among ASIC Technologies
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In addition, gate array, standard cell and field programmable ASIC chips can all be designed
much more quickly and cheaply than fully customized chips.  This is because, in contrast with
full custom design, the physical devices incorporated on the chips have all been predesigned and
pretested in these architectures.  As can be seen from table 1, a field programmable chip (FPLD)
is generally the ASIC technology of choice when the number of chips required is low, and when
it is important to have functioning chips very quickly.  As production volumes rise, the least
costly choice becomes successively gate arrays, standard cell designs and full custom designs -
although these options also involve progressively longer and more costly design work.  As can
be seen in table 2, there has been a major shift over time from full custom ASICs to gate array,
standard cell and FPLD ASICs.

ASIC Type:     Full Custom        Standard Cell       Gate Array*       FPLDs   Total Market Size
     (%) (%)     (%) (%)      (Billion)

Market Share
1986      52% 11%     30% 7%         $4.7
1994      20% 30%      40% 10%         $13.5
1999**      12% 40%      38% 10%         $23.6
*Includes linear arrays
** Industry Estimates
Data source:  McClean (1995) pg. 4-13

Table 2: Change in market shares of 4 ASIC types over time

 The unsticking of the remaining supplier-based information required to design an ASIC
circuit has been achieved by embodying it in software-based design tools that can be
economically transferred from suppliers to circuit designers (Mathur 1996 p.1-6).  In the very
early days of the industry, these computer-aided design tools were developed by ASIC vendors
only for the use of their own, in-house designers.  Fairchild Semiconductor was a pioneer in this
field in 1967-70, and was followed by other major manufacturers and major manufacturer-users
such as IBM (Walker 1992, Chapter 2).  However, in 1980-81 the founders of LSI Logic, a
startup manufacturer of custom ASICs, changed the pattern.  They developed a suite of ASIC
design tools and an extensive library of cell designs and made them available to their customers,
so that  customer engineers could design the ASICs that LSI would then manufacture.

The advantages ASIC manufacturers might gain by switching from a manufacturer-based
design model to a user-based design model for ASIC design was initially not clear to other
ASICs manufacturers with whom LSI founders discussed their planned approach.  Thus, Wilf
Corrigan, a founder of LSI Logic, reports the following conversation.  "When I talked to
Yasufuku [a senior manager] at Fujitsu and told him that our plan was to put the software in the
hands of the customers, he said, "That is a brilliant strategy.  If you do that and the software is
good, you will win."  "Why don't you do that?" I asked.  "Our software is so valuable that if we
expose it to outsiders they will steal it"  In fact, [Fujitsu] had been unwilling to transfer the
software even to their U. S. subsidiary because they were convinced that once they let the genie
out of the bottle, they would never get it back in again."  However, LSI Logic's idea was found
to be strongly preferred by ASIC customers, and eventually other ASIC manufacturers and
independent vendors of ASIC design software were driven to follow LSI Logic's lead (Walker
1992 p.80).

Initial CAD tools developed by LSI and other suppliers for customer use were not very
user-friendly in the sense that they took a lot of programming skill and specialized expertise to
operate.  As a consequence, design centers were established by ASIC manufacturers and also by
independent entrepreneurs who would buy a set of tools from one or more manufacturers and
develop the expertise to use them well.  Engineers from ASIC customer firms that did not have
the tools and/or the expertise would go to a design center and get help with implementing their
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designs on the specialized design software.  Today, greater user experience and more user-
friendly ASIC design software tools enable user engineers of ordinary skill to design ASICs
entirely on their own.

A schematic overview of the sequence of problem-solving tasks typically undertaken by
ASIC designers, and the functions of the major tools they use today is as follows.  ASIC
designers begin by creating a functional description of the circuit they desire and enter that
information on a software design tool.  This tool converts the information provided by the
designer into a description of a network of interconnected logic elements that will provide the
function specified.  This design software contains information on the nature of and limits of the
solution space made available by a given ASIC manufacturer.  For example, it will model the
circuit in terms of logic functions that can actually be delivered by the types of ASIC
components manufactured by that manufacturer.  Next, users "run" the model of their circuit
design on a simulation tool.  Any errors in the design logic will cause the ASIC simulation to
not perform as intended, and the designer will use these results to detect and then correct such
errors using capabilities contained in the simulation and design tools.  Multiple run, diagnose
and repair cycles are typically needed before all or most of these errors have been eliminated
(Thomke 1996).

Next, the designer transfers the corrected logical description of his circuit to other
software tools that are generally located at the specific vendor selected by the designer to build
the ASIC.  This tool actually "lays out" the physical geometry of the cells and interconnections
of the actual ASIC chip in a manner that is compatible with that manufacturer's production
process.  Information from this step is sent back to the designer who resimulates the design
looking for and correcting any errors (typically, so-called "timing errors") created by the
conversion of the ASIC design from a symbolic representation into the design of an actual
physical chip to be produced by a specific vendor and process.  The revised design is then sent
back to the manufacturer and is used to drive the computerized equipment at the fabrication
plant that creates the customized mask used to produce the finished ASICs. (Haskard 1990, p.
77-80)

Taken together, the development of the new ASIC architectures and the development of
software design tool kits have unstuck the manufacturer-based knowledge required to design a
custom ASIC.  This unsticking has been accompanied by a general shift of the application-
specific portion of custom ASIC design activities from manufacturer-based designers to user-
based designers.  Recall that this shift is what we would predict when the advantages associated
with greater manufacturer expertise in customized ASIC chip designing are outweighed by the
costs of transferring application-specific sticky information from user to manufacturer, other
things being equal.

Data on industry structure in the ASICs field supports the view that manufacturers
should have significantly greater incentive to unstick and transfer manufacturer-related
information needed by every ASIC designer than would users to unstick and transfer
information related to a specific application.  The top four ASIC manufacturers and their 1994
market shares were NEC with 9.3% of ASIC sales volume, Fujitsu with 9.0%, Toshiba with
7.5%, and LSI Logic with 7.2% (McClean 1995, figure 4-22).  Each of these vendors
manufactures thousands of custom ASIC designs yearly.  The top three ASIC design tool
suppliers and their approximate 1996 market shares were Cadence Design Systems with 40% of
sales volume, Mentor Graphics with 20% and Synopsys with 20%.  These firms sell hundreds of
software packages per year, each presumably used for a number of design projects per year.

4.  Computer-Telephony Integration (CTI) Systems
Computer-Telephony Integration (CTI) refers to a field of specialized computing

applications that draw upon both computing and telephony functions to accomplish a task.  The
ordering of goods from a mail order firm via telephone is an example of a task typically
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accomplished with the aid of a CTI system today;  the management of one's stock brokerage
account from home by pressing digits on a home telephone handset is another.  Users' typically
require customized CTI systems because these must be closely integrated with user firm's -
typically non-standard - business practices and computerized business systems.

The first commercially supplied CTI systems were developed in the late 1960's, and were
capable of integrating computing and telephony in relatively simple applications only.  Thus, in
the late 1960's IBM supplied a custom CTI system to a book store chain that wished to transmit
book orders from branch store computers to a supply house computer via telephone (Walters
1993 p 25).  During the same period other pioneer CTI suppliers such as Collins Radio,
Rockwell International and Datapoint commercialized "automatic call director" systems that
were used by telephone sales centers in airline and car rental and hotel firms to queue incoming
calls and allocate them to available sales agents in a systematic manner.

From these early beginnings, CTI applications have steadily grown in sophistication and
complexity, benefiting both from an improved understanding of CTI application possibilities by
both users and suppliers, and from major improvements in the power and sophistication of
computer hardware and software available to build the systems.  Current systems can assist in or
carry out complex transactions which may involve multiple interactions among computing and
telephony systems.  Consider, for example, the capabilities of a current CTI system used by a
stock brokerage firm.  When a brokerage customer contacts the system by telephone, the system
can offer that customer near instant access to a range of information upon request (e.g., account
balance, stock performance), even though it might have to retrieve various of the requested
items from a number of computer data bases located in different sites.  The system can also
execute and document complex transactions.  If, for example, the customer decides to buy a
stock, the system can switch the telephone call to the appropriate stock trader, aid in
implementing the trade, and then properly update customer records to reflect the trade, transfer
funds among accounts appropriately, etc..

Shift of CTI Design Activities to System Users
From the beginnings of the field until about five years ago, a CTI systems consisted of

two major subsystems: (1) CTI server software;  (2) customer-specific application programs
used to implement a customized CTI system.  CTI server software aids application developers in
two major ways.  First, it implements an application programming interface (API) that
"..virtualizes the underlying [telephone] network so that applications can perform meaningful
work without needing to be tailored to the specific behaviors of the switch or other equipment."
(Nixon 1996 p. 44).  Early application programming interfaces were designed to interface with
the equipment of a single telephone switch manufacturer only, and often were implemented by
means of special-purpose computing hardware.  More recent APIs, such as Microsoft's TAPI
and Novell's TSAPI, are designed to interface properly with telephony equipment supplied by
many manufacturers, and have been incorporated into CTI servers that run on ordinary personal
computers.  Second, CTI server software enables applications developers using a programming
language such as 'C' to incorporate basic telephony functions such as "answer phone" or
"transfer call" in their programs in the same way that they incorporate traditional computing
functions such as "add" or "create a file."  However, CTI servers do not modularize higher level
functions (for example, "transfer this call and all the data we have collected that is related to it to
location X") for the programmer.  Nor do they provide the other types of tools to aid user-based
design that we described earlier, such as the ability to test a program's functionality via
simulation during development.

Custom CTI programs have historically been developed by specialist CTI applications
groups located in independent firms, or in firms that are major users of sophisticated CTI.  Such
groups develop a custom CTI system by first visiting the client and studying the existing and
planned business systems that the client wishes to enhance via CTI.  They come away with a
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schematic that describes the sequence of functions to be carried out by the CTI system, and then
turn the description over to coding specialists, who convert it into functioning software.  The
experts rely on their accumulated experience in understanding basic telephony functions and
designing CTI systems, and on field test and correction of the completed system to produce a
good result for their clients.

System descriptions generated by CTI applications specialists typically consist of a
private language of interconnected functional modules that make unambiguous sense to a
particular firm's group of expert programmers - but that do not necessarily make sense to users
or to other expert CTI programmers.  For example, one of the specialist firms we interviewed
uses a "list aging" function as a basic system module.  The role of this function is to keep track
of a list of items, and to signal when any given item has been on the list for X period of time.
The firm had programmed the function as a prebuilt software object, and found it to be a useful
component in the development of many very different custom CTI systems.  Thus, it is useful
for tracking the length of time an incoming telephone call has been unanswered in a telephone
sales system; for monitoring the checkout time of hotel guests; and for tracking whether bank
clerks process mortgage applications in a timely manner.  Other firms we interviewed had no
functional equivalent of the list aging module.  However, they could achieve the same system
functions by subdividing their functional descriptions and systems along other boundaries.

Within the last five years, a new type of CTI software product called a CTI applications
generator has come to market.  CTI applications generators work in conjunction with CTI server
software, and contain at least primitive versions of all of the aids for user-based design that we
described earlier in this paper.  That is, they contain design tools, prebuilt program modules, and
some form of simulation capability that allow programmers to give their programs somewhat
realistic functional tests during the course of development.  The early suppliers of CTI
applications generators did not, according to our interviews, develop these tool kits with the end
user in mind.  Rather, they intended them for specialist programmers working for CTI
applications development firms and for VARs, "value-added resellers," who specialize in
installing and maintaining custom CTI systems for users.  These suppliers then discovered that
many of the earlier buyers were in fact sophisticated end users.  Less sophisticated end users
then asked the suppliers for more "user friendly" versions of the products, and the suppliers saw
profit in responding to these requests.  (CTI interviewees estimate the total market for
applications generators sold to specialist system customizers to be in the range of $10-20 million
annually.  In contrast, they estimate that the potential market for application generators sold to
end users is in the range of $200-300 million annually.)

Accordingly, suppliers then designed application generators more suitable for non-
specialist end users.  These have been made easy for non-specialists to use in three important
ways.  First, they are designed to be run on ordinary personal computers.  Second, they
incorporate object oriented programming and graphical user interfaces.  Object oriented
programming allows CTI specialists to offer CTI system designers design tool kits consisting of
software "objects" that can be linked together in unique configurations to create a customized
CTI system.  Graphical user interfaces display these objects on a designer's computer screen in
the form of icons which can be placed and moved and interconnected to represent a graphical
representation of the user's desired system.  The application generator then actually creates the
working software that will implement the functionality displayed on the screen.  Third, the
functions of the objects used in these applications generators have been selected to mirror
activity modules that are familiar to end users.  Thus, instead of objects such as "list aging,"
users are provided with objects that implement familiar functional routines such as "get data
about this caller," or "fax document to this caller."

Application generators of the type just described enable users without traditional
programming skills, but with a good understanding of the functional makeup of the system they
are trying to create, to develop relatively simple custom CTI systems, primarily of the type
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known as interactive voice response systems.  Development of more complex custom systems
tend to still require the help of specialists during the design phase, after which users might be
able to maintain and improve them on their own.  However, the solution spaces provided by
suppliers to users are steadily expanding, as more complex capabilities are steadily moved
"down" into user-friendly applications generators.  In the late 1980's, for example, the
programming of fax capabilities into a CTI system could only be done by sophisticated
applications development firms.  In 1992-3 such a capability became available as an object in
application generators suitable for programming by end users.  Speech recognition is taking a
similar pathway.  In 1993-4 this capability became available in tool kits designed for specialist
CTI system designers.  It is clearly heading for inclusion in application generators for end users,
but it is not there yet.

In sum we see in CTI as we did in ASICs, that the application-specific portion of the
problem-solving work of custom system design is shifting from supplier to user, as supplier-
based expertise is progressively embodied in CTI application generator tool kits intended to for
user-based designers.  As was the case with ASICs, this shift is what we would predict if the
advantages associated with greater supplier expertise in CTI system design are outweighed by
the costs of transferring application-specific sticky information from user to supplier, other
things being equal.

A number of CTI software vendors do offer application generator tool kits suitable for
use by sophisticated end users.  Published data on market shares held by these firms does not
presently exist. However, industry interviewees often nominate Artisoft, Brooktrout and Parity
Software as being among the larger suppliers as of this writing, each having market shares
guesstimated to be in the range of 10 - 20%.  Interviewees also agree that the firms with the
larger market shares each currently sell at least hundreds and perhaps in the low thousands of
such tool kits annually.  This supports the view that suppliers should have significantly greater
incentive to unstick and transfer supplier-related information needed by CTI system designers
than would users to unstick and transfer information related to a specific application.

5. Discussion
We have now examined the locus of problem-solving work related to the design of

customized products in two fields, ASIC and CTI.  In both, we have found an identical pattern:
The application-specific portions of customized products are increasingly being designed by
users, with the aid of standard components and design tool kits provided by specialist suppliers.
At the start of the paper, we observed that one would not expect design-related problem-solving
to be partitioned between users and suppliers on the basis of economies associated with
specialization in problem-solving.  On the other hand we argued that such a pattern could
emerge if economies of specialization were outweighed by differentials in sticky information
transfer costs, and/or by costs associated with delegating the customization task to a specialist
supplier "agent."  We think that the allocation of design-related tasks we have observed makes
sense from this point of view.  With respect to sticky information transfer costs, note that only
the problem-solving work associated with chip customization requires access to application-
specific "sticky" information in each case - and this is the precisely the portion of the design
work that we find has been shifted to users.  With respect to agency considerations, note that
chances for opportunism are reduced, and so agency costs are reduced, if the party that invests in
a task is the one that is more certain of the nature and reliability of the information being
acquired from others.  Clearly, in both ASICs and CTI, the portion of the problem-solving
information provided by suppliers (standard, well-specified components and tools) is better
understood than the portion held by users (information related to a novel application under
development).  Therefore, agency costs will be reduced if the application-specific work of
product customization is invested in and conducted by the user - and this is the pattern we see.
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While our observation of a shift of the problem-solving work of product customization
to users in two industries is consistent with the reasoning we put forward earlier, we obviously
cannot rule out alternative explanations on the basis of the data in hand.  However, we can
anecdotally report that experts in these two industries who we have interviewed do tend to
spontaneously explain the shift of product customization to users in terms of both agency costs
and sticky information transfer costs.  Examples:

Sticky information effects in ASICs are reported to be strongly present in, for example,
the design of high-end computer workstations.  In a leading company in this field,
designers are striving to optimize the whole system functionality in terms of data flow
patterns that they know will be encountered when a workstation computer is applied to
leading edge graphical applications which are an important market for their firm.
System designers are doing the ASICs designs themselves because an optimal design for
any state of technology consists of creatively applying the solution space available in
ASICs with the demands of the leading edge application.  When a designer is asked why
he does not assign the ASIC design work to a specialist he answers:  "For an ASIC
design specialist to design this ASIC as well as I can, he would have to know everything
I know about the system - he would have to be me!"

As an example of an agency effect in the ASICs field, leading edge users report that
silicon foundries tend to rate the solution space they offer somewhat conservatively.  For
example, they may conceal information from user-designers as to the very narrowest line
widths they can deposit on a silicon wafer when their process is tuned to its best possible
state.  Instead, they will tell the users that their process limits are what they can be sure
of providing when the process is in an average state of tune.  The incentive driving the
silicon foundries to behave in this manner is that they want to be able to produce the
user-developed designs at higher yields and therefore lower costs.  Users who discover
during the course of their design work that they need access to the extreme limits of the
manufacturers' actual solution space must contact the manufacturers and negotiate a
different trade-off.  If, in contrast, the design work were being done by the manufacturer
"agent," the user would probably never become aware of the trade-off the manufacturer
was making - possibly against their best interests.

Sticky information effects are manifested in CTI when users say they prefer to design
and make changes to their CTI systems themselves because they are unable to describe
what they want to suppliers accurately and completely - and so a supplier-developed
system will predictably require multiple revisions before it fits the need.  Users who
cannot describe their need precisely are in this position for one or both of two reasons:
They know what they want but cannot encode it precisely, and/or they themselves do not
know what the "right" solution is prior to trial and error experimentation.  (For example,
"When I am not in the office, roll over my urgent calls to George" may seem like a good
idea in concept.  Experimentation may reveal, however, that George is in fact
unavailable at certain times of day, and/or that he cannot effectively address certain types
of urgent calls that he initially thought he could handle, etc.) (Hauschildt 1986, von
Hippel and Tyre 1995).

Agency effects are typically manifested in CTI in the form of lags by suppliers in
responding to user requests for system changes.  Two reasons are commonly given for
specialist developers responding slowly to a given user request for a system
modification.  First, the supplier has an incentive to staff for average work flows, and so
does not have enough personnel to respond to all requests in a timely manner during
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peak periods.  During such periods the supplier has an incentive to respond to what he
views as his "best" customers first.  Second, the supplier has an incentive to economize
on resources expended in responding to user requests (many suppliers provide service
based on a flat annual fee) by waiting for several requests to accumulate from a given
user in order to be able to "do them all at once."  Slow responses by suppliers can be
quite costly for users however, because CTI systems are increasingly intertwined with
basic business functions:  For example, when an insurance firm wants to make a change
to its CTI-based sales system to respond to a sales campaign by a competitor, the cost of
delay can be high.

Although we have to this point documented the pattern in only two fields of mass-
customized products, we propose that product and service customization by users will be found
to be a very general phenomenon.  For example, user-based design is common experience with
respect to the combination of standard products into larger, customized systems.  To understand
this point, consider first that individual products, process equipment, and services commonly
function as components in larger systems.  This is clearly visible in the instance of processing
machines (which fit into larger processing systems) and in the instance of industrial components
(which perform functions within larger products or services).  It is also true, but perhaps less
intuitively obvious, in the instance of consumer goods and services (Boyd and Levy 1963). For
example, a fork is a component part of a user's system for eating, and a component as well of
systems for conveying signals on social status and other matters.  Similarly, a telephone-
answering service or machine is a component of many consumers' complex personal systems for
receiving and storing data.

Users can and commonly do create customized end effects for themselves by combining
standard products and services to create a customized system.   For example, users design their
own custom foods by combining standard food ingredients and into unique recipes.  Also, if the
taste of a standard purchased food item is not quite what is wanted, users may customize it by
adding spices to that item, and/or may adjust the impact of the standard item by the choices of
other dishes being served in the particular meal "system" being devised.  Similarly, if a standard
production machine is not quite what is wanted, production engineers commonly modify it by
adding customized tooling, and/or by combining that machine with other machines to create a
customized production system that will as a whole provide the unique function desired.1

 Some factors that are important to determining the locus of design may shift back and
forth over time.  Others, however, appear to us to be driving markets for custom products and
services irreversibly towards a pattern of user-based design - or, stated more generally, to a
pattern in which problem-solving is carried out at the site of sticky local information that is less
frequently drawn upon by problem-solvers.  With respect to variable factors, consider that the

                                                
1  A system can be seen as having many nested levels.  Within each level, many

components may be linked to form the next higher-level system.  For example, a

computer hard disk drive is a system assembled from components. In turn, such a disk

drive is a component in a computer system, which in turn is a component in, for

example, a telephone switching system, which in turn is a component in a

telecommunications system, etc..  The point being made here is applicable independent

of system "level."
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heterogeneity of demand for a given type of product is not necessarily fixed.  For example,
heterogeneity may decrease if standards are tightened within a field, and increase if they are
loosened again.  Less heterogeneous demand, in turn, would tend to lessen the force with which
the costs of transferring sticky local information are driving product design to user sites, because
the uniqueness of each user's information with respect to the desired product would decrease.

The primary irreversible factor that we speculate is making user-based design an
increasingly attractive option is technological advance.  Specifically, improvements in computer
hardware and software are allowing "unstuck" supplier information to be shifted to users in
increasingly user-friendly and more capable ways.  Consider, for example, that it has always
been possible for a integrated circuit manufacturer to unstick key process information and
transfer it to user-based designers.  In earlier days, however, that information would have been
unstuck by encoding it in a process specification sheet or booklet, and it would have been up to
the user-designer to know when a particular bit of information was relevant to his or her design,
find the booklet and look it up.  Today, process information can be embedded in a computerized
design tool, which can be programmed to offer the user items of process information only if and
as the design being worked upon makes them relevant.  For example, a simulation tool can be
programmed to tell a designer that "your design is getting too big to process on a single chip"
only if and as the user is approaching that particular limit to the available solution space.  More
generally, the ability to encode unstuck problem-solving expertise in user-relevant language may
not have changed over time, but the ability to offer this translated information conveniently and
appropriately connected to the design work itself certainly has been greatly improved as a result
of technological advance.

Suppliers of products and services that do wish to switch to a pattern in which their
customers design the application-specific portion of a mass-customized product or service will
confront important issues that differ from "business as usual."  For example, they may have to
learn to modify their strategies for appropriation of innovation-related benefit.  And, they will
certainly need to learn to develop or acquire tools and components that will collectively provide
the solution space needed by their customer-designers.

With respect to appropriability issues, consider that many suppliers of products and
services appropriate benefit from both their design capabilities and their production capabilities.
A switch to user-based customization can affect their ability to do this.  For example, if a
supplier develops an advanced toolset and keeps it in-house for the exclusive use of his own
designers, customers can only benefit from that toolset if they also employ the supplier's
production process - the two are effectively tied.  However, when toolsets are made available to
customer designers, this tie often weakens over time.  Customers and independent tool
developers can learn from process-specific toolkits about the input information a particular
supplier's process requires, and then can use that information to design toolkits applicable to the
processes of several suppliers.  (This is precisely what has happened in the ASICs industry.  The
initial toolsets revealed to users by LSI and rival ASIC producers were producer-specific.  Over
time however, specialist tool design firms such as Cadance developed toolsets that could be
used to make designs producible by a number of vendors. The end result was that many ASIC
suppliers that previously established marketplace advantage on the basis of both product design
skills and production skills were forced to a position of appropriating benefit from production
skills only.)

When suppliers adopt a strategy of explicitly assigning the application-specific portion
of customized product or service designs to their customers, the homogeneous items they
produce are no longer standard end products or services.  Instead, they are the standard tools
and design components that user-based designers can draw upon to create customized end
products or services.  Suppliers must therefore learn enough about the activities and
requirements of their users and enough about their design skills in order to insure that those
users are provided with the tools and components they need to perform the problem-solving
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work of application specific design.  Suppliers must also learn how "much" of a customized
product should be provided in the form of standard components.  Recall from the ASIC and CTI
case studies that user-based customization of mass-customized products involves partitioning
the design of a mass-customized product into segments, with expert suppliers providing the
standard portions of the design, and users providing the application-specific portions.  We can
reason that firms can to an increasing extent capture the benefits associated with specialization
in problem-solving and user-based design if this partitioning is done in such a manner as to
make the application-specific portion of the problem "as small as possible," while still
providing the user-based designer with the degrees of freedom he or she needs to achieve the
desired customized design.

Finally, we note that saying that suppliers must "provide" toolkits is not the same thing
as saying that suppliers must develop all of the standard toolkit elements by themselves.
Studies of the innovation histories of standard products have shown that the sources of
innovation vary as a function of expected innovation-related benefit (summarized in von Hippel
1988).  Also, as was discussed earlier in this paper, we may expect variation in the locus of
innovation as a function of the location of sticky information required by the product
developers.  Incentives to develop individual toolkit items will vary with respect to these
dimensions.  Therefore we would expect that the innovation histories of toolkits will reveal that
some toolkit elements are designed by "lead" users who have an especially high need for those
particular elements coupled with especially rich information regarding them, and others by
toolkit suppliers.  (As anecdotal support for this expectation we note that, while toolkit
innovation histories were not the subject of this study, we did during our data collection work
observe instances of both user-developed and supplier-developed tookit components in both
ASICs and CTI.)  As a consequence, suppliers transferring customization activities to their
users must learn to search both lead user and supplier locations for the innovations that will
allow them to compile effective and complete toolkits for their own users.
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