
Notes

Chapter 2

1. LES contains four types of measures. Three (“benefits recognized early,” “high ben-

efits expected,” and “direct elicitation of the construct”) contain the core components

of the lead user construct. The fourth (“applications generation”) is a measure of a

number of innovation-related activities in which users might engage: they “suggest

new applications,” they “pioneer those applications,” and (because they have needs or

problems earlier than their peers) they may be “used as a test site” (Morrison, Midgely,

and Roberts 2004).

Chapter 3

1. Cluster analysis does not specify the “right” number of clusters—it simply seg-

ments a sample into smaller and smaller clusters until the analyst calls a halt.

Determining an appropriate number of clusters within a sample can be done in dif-

ferent ways. Of course, it always possible to say that “I only want to deal with three

market segments, so I will stop my analysis when my sample has been segmented

into three clusters.” More commonly, analysts will examine the increase of squared

error sums of each step, and generally will view the optimal number of clusters as

having been reached when the plot shows a sudden “elbow” (Myers 1996). Since this

technique does not incorporate information on remaining within-cluster hetero-

geneity, it can lead to solutions with a large amount of within-cluster variance. The

“cubic clustering criterion” (CCC) partially addresses this concern by measuring the

within-cluster homogeneity relative to the between-cluster heterogeneity. It suggests

choosing the number of clusters where this value peaks (Milligan and Cooper 1985).

However, this method appears to be rarely used: Ketchen and Shook (1996) found it

used in only 5 of 45 segmentation studies they examined.

2. http://groups-beta.google.com/group/comp.infosystems.www.servers.unix

3. http://modules.apache.org/

From Democratizing Innovation by Eric von Hippel - MIT Press, 2005
Free Download Under Creative Commons License at http://web.mit.edu/evhippel/www

4. To measure heterogeneity, Franke and I analyzed the extent to which j standards,

varying from [1; i], meet the needs of the i individuals in our sample. Conceptually,

we first locate a product in multi-dimensional need space (dimensions = 45 in the

case of our present study) that minimizes the distances to each individual’s needs.

(This step is analogous to the Ward’s method in cluster analysis that also minimizes

within cluster variation; see Punj and Stewart 1983.) The “error” is then measured as

the sum of squared Euclidean distances. We then repeated these steps to determine

the error for two optimally positioned products, three products, and so on up to a

number equaling I – 1. The sum of squared errors for all cases is then a simple coef-

ficient that measures how much the needs of i individuals can be satisfied with j stan-

dard products. The “coefficient of heterogeneity” just specified is sensitive both to

the (average) distance between the needs and for the configuration of the needs: when

the needs tend to form clusters the heterogeneity coefficient is lower than if they are

evenly spread. To make the coefficient comparable across different populations, we

calibrate it using a bootstrapping technique (Efron 1979) involving dividing the coef-

ficient by the expected value (this value is generated by averaging the heterogeneity

of many random distributions of heterogeneity of the same kind). The average ran-

dom heterogeneity coefficient is then an appropriate value for calibration purposes:

it assumes that there is no systematic relationship between the needs of the individ-

uals or between the need dimensions.

5. Conceptually, it can be possible to generate “one perfect product” for everyone—

in which case heterogeneity of demand is zero—by simply creating all the features

wanted by anyone (45 + 92 features in the case of this study), and incorporating them

in the “one perfect product.” Users could then select the features they want from a

menu contained in the one perfect product to tailor it to their own tastes. Doing this

is at least conceptually possible in the case of software, but less so in the case of a

physical product for two reasons: (1) delivering all possible physical options to every-

one who buys the product would be expensive for physical goods (while costing

nothing extra in the case of information products); (2) some options are mutually

exclusive (an automobile cannot be both red and green at the same time).

6. The difference between actual willingness to pay and expressed willingness to pay

is much lower for private goods (our case) than for public goods. In the case of pri-

vate goods, Loomis et al. (1996) found the expressed willingness to pay for art prints

to be twice the actual WTP. Willis and Powe (1998) found that among visitors to a

castle the expressed WTP was 60 percent lower than the actual WTP. In the case of

public goods, Brown et al. (1996), in a study of willingness to pay for removal of a

road from a wilderness area, found the expressed WTP to be 4–6 times the actual

WTP. Lindsey and Knaap (1999), in a study of WTP for a public urban greenway,

found the expressed WTP to be 2-10 times the actual WPT. Neil et al. (1994) found

the expressed WTP for conserving an original painting in the desert to be 9 times the

actual WTP. Seip and Strand (1992) found that less than 10 percent of those who

expressed interest in paying to join an environmental organization actually joined.

180 Notes to p. 40

Chapter 6

1. As a specific example of a project with an emergent goal, consider the beginnings

of the Linux open source software project. In 1991, Linus Torvalds, a student in

Finland, wanted a Unix operating system that could be run on his PC, which was

equipped with a 386 processor. Minix was the only software available at that time but

it was commercial, closed source, and it traded at US$150. Torvalds found this too

expensive, and started development of a Posix-compatible operating system, later

known as Linux. Torvalds did not immediately publicize a very broad and ambitious

goal, nor did he attempt to recruit contributors. He simply expressed his private moti-

vation in a message he posted on July 3, 1991, to the USENET newsgroup

comp.os.minix (Wayner 2000): Hello netlanders, Due to a project I’m working on (in

minix), I’m interested in the posix standard definition. [Posix is a standard for UNIX

designers. A software using POSIX is compatible with other UNIX-based software.]

Could somebody please point me to a (preferably) machine-readable format of the latest

posix-rules? Ftp-sites would be nice. In response, Torvalds got several return messages

with Posix rules and people expressing a general interest in the project. By the early

1992, several skilled programmers contributed to Linux and the number of users

increased by the day. Today, Linux is the largest open source development project

extant in terms of number of developers.

Chapter 7

1. When they do not incorporate these qualities, they would be more properly

referred to as networks—but communities is the term commonly used, and I follow

that practice here.

2. hacker n. [originally, someone who makes furniture with an axe] 1. A person who

enjoys exploring the details of programmable systems and how to stretch their capa-

bilities, as opposed to most users, who prefer to learn only the minimum necessary.

2. One who programs enthusiastically (even obsessively) or who enjoys programming

rather than just theorizing about programming. 3. A person capable of appreciating

hack value. 4. A person who is good at programming quickly. . . . 8. [deprecated] A

malicious meddler who tries to discover sensitive information by poking around.

Hence password hacker, network hacker. The correct term for this sense is cracker
(Raymond 1996).

3. Source code is a sequence of instructions to be executed by a computer to accom-

plish a program’s purpose. Programmers write computer software in the form of

source code, and also document that source code with brief written explanations of

the purpose and design of each section of their program. To convert a program into

a form that can actually operate a computer, source code is translated into machine

code using a software tool called a compiler. The compiling process removes program

documentation and creates a binary version of the program—a sequence of computer

Notes to pp. 90–97 181

instructions consisting only of strings of ones and zeros. Binary code is very difficult

for programmers to read and interpret. Therefore, programmers or firms that wish to

prevent others from understanding and modifying their code will release only binary

versions of the software. In contrast, programmers or firms that wish to enable oth-

ers to understand and update and modify their software will provide them with its

source code. (Moerke 2000, Simon 1996).

4. See www.gnu.org/licenses/licenses.html#GPL

5. http://www.sourceforge.net

6. “The owner(s) [or ‘maintainers’] of an open source software project are those who

have the exclusive right, recognized by the community at large, to redistribute modi-

fied versions. . . . According to standard open source licenses, all parties are equal in

the evolutionary game. But in practice there is a very well-recognized distinction

between ‘official’ patches [changes to the software], approved and integrated into the

evolving software by the publicly recognized maintainers, and ‘rogue’ patches by

third parties. Rogue patches are unusual and generally not trusted.” (Raymond 1999,

p. 89)

Chapter 8

1. See also Bresnahan and Greenstein 1996b; Bresnahan and Saloner 1997; Saloner

and Steinmueller 1996.

Chapter 10

1. ABS braking is intended to keep a vehicle’s wheels turning during braking. ABS

works by automatically and rapidly “pumping” the brakes. The result is that the

wheels continue to revolve rather than “locking up,” and the operator continues to

have control over steering.

2. In the general literature, Armstrong’s (2001) review on forecast bias for new prod-

uct introduction indicates that sales forecasts are generally optimistic, but that that

upward bias decreases as the magnitude of the sales forecast increases. Coller and

Yohn (1998) review the literature on bias in accuracy of management earnings fore-

casts and find that little systematic bias occurs. Tull’s (1967) model calculates $15 mil-

lion in revenue as a level above which forecasts actually become pessimistic on

average. We think it reasonable to apply the same deflator to LU vs. non-LU project

sales projections. Even if LU project personnel were for some reason more likely to be

optimistic with respect to such projections than non-LU project personnel, that

would not significantly affect our findings. Over 60 percent of the total dollar value

of sales forecasts made for LU projects were actually made by personnel not associ-

ated with those projects (outside consulting firms or business analysts from other

divisions).

182 Notes to pp. 97–140

