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Numerous brain lesion and fMRI studies have linked individual differences in executive

abilities and fluid intelligence to brain regions of the fronto-parietal “multiple-demand”

(MD) network. Yet, fMRI studies have yielded conflicting evidence as to whether better

executive abilities are associated with stronger or weaker MD activations and whether this

relationship is restricted to the MD network. Here, in a large-sample (n ¼ 216) fMRI

investigation, we found that stronger activity in MD regions e functionally defined in in-

dividual participants e was robustly associated with more accurate and faster responses

on a spatial working memory task performed in the scanner, as well as fluid intelligence

measured independently (n ¼ 114). In line with some prior claims about a relationship

between language and fluid intelligence, we also found a weak association between activity

in the brain regions of the left fronto-temporal language network during an independent

passive reading task, and performance on the working memory task. However, controlling

for the level of MD activity abolished this relationship, whereas the MD activity-behavior

association remained highly reliable after controlling for the level of activity in the lan-

guage network. Finally, we demonstrate how unreliable MD activity measures, coupled

with small sample sizes, could falsely lead to the opposite, negative, association that has

been reported in some prior studies. Taken together, these results demonstrate that a core

component of individual differences variance in executive abilities and fluid intelligence is
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selectively and robustly positively associated with the level of activity in the MD network, a

result that aligns well with lesion studies.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

General cognitive abilities, such as fluid intelligence, and the

tightly linked executive abilities, are among the best pre-

dictors of academic achievement and professional success

(Gottfredson, 2002; Kuncel & Hezlett, 2010; Plomin & Deary,

2015). These abilities are thought to rely on a network of

bilateral frontal and parietal brain regions. Selective damage

to these regions is associated with disorganized executive

behavior and significant loss of fluid intelligence (Duncan,

Burgess, & Emslie, 1995; Glascher et al., 2010; Roca et al.,

2010; Warren et al., 2014; Woolgar, Duncan, Manes, &

Fedorenko, 2018; Woolgar et al., 2010). Similar frontal and

parietal regions are activated in brain imaging studies during

diverse demanding tasks, including manipulations of work-

ing memory, fluid reasoning, selective attention, set shifting,

response inhibition, and novel problem solving inter alia

(Assem, Glasser, Essen, & Duncan, 2020; Cole & Schneider,

2007; Dosenbach et al., 2006; Duncan, 2000, 2010; Duncan &

Owen, 2000; Fedorenko, Duncan, & Kanwisher, 2013; Geake

& Hansen, 2005; Vakhtin, Ryman, Flores, & Jung, 2014). We

refer to this set of brain regions as the “multiple-demand”

(MD) network (following Duncan, 2013, 2010) given their

sensitivity to multiple task demands. The MD network in-

cludes lateral and dorsomedial frontal areas, anterior insular

areas, and areas along the intra-parietal sulcus (Assem et al.,

2020; Fedorenko et al., 2013), and these areas form a func-

tionally integrated system as evidenced by strong synchro-

nization during naturalistic cognition (Assem et al., 2020;

Blank, Kanwisher, & Fedorenko, 2014; Paunov, Blank, &

Fedorenko, 2019).

Prior fMRI studies have linked activity in the MD network

with individual differences in executive abilities and fluid

intelligence, but have left open the nature of this relation-

ship. First, conflicting claims have been made regarding the

direction of brain-behavior correlations across individuals.

On the one hand, some have found that stronger MD acti-

vation is associated with worse performance on executive

tasks and lower IQ (Basten, Hilger, & Fiebach, 2015; Deary,

Penke, & Johnson, 2010; Dunst et al., 2014; Haier et al., 1988;

Neubauer & Fink, 2009; Rypma & Esposito, 2000; (Rypma

et al., 2006); Santarnecchi, Galli, Polizzotto, Rossi, & Rossi,

2014; Stern, Gazes, Razlighi, Steffener, & Habeck, 2018).

Such studies have typically advocated a “neural efficiency”

explanation: smarter individuals can use fewer neural re-

sources to achieve the same level of performance. On the

other hand, others have found the opposite pattern, where

stronger MD activation is associated with better executive

task performance and higher IQ (Basten, Stelzel, & Fiebach,

2013; Burgess, Gray, Conway, & Braver, 2011; Choi et al.,

2008; Cole, Yarkoni, Repovs, Anticevic, & Braver, 2012; Gray,

Chabris, & Braver, 2003; Lee et al., 2006; Tschentscher,
Mitchell, & Duncan, 2017). In an attempt to reconcile these

conflicting findings, some have suggested that the direction

of the correlation may depend on task difficulty with “neural

efficiency” (i.e., a negative association between MD activity

and performance) observed in easier tasks, and positive as-

sociations observed during more complex tasks (Neubauer &

Fink, 2009; Sripada, Angstadt, Rutherford, Taxali, & Shedden,

2020).

Relatedly, superior executive abilities and higher IQ have

been reported to correlate with stronger synchronization

(typically, estimated during rest e.g., Fox et al., 2005) among

the MD brain regions (Cole et al., 2012; Dubois, Galdi, Paul, &

Adolphs, 2018; Ferguson, Anderson, & Spreng, 2017; Finn

et al., 2015; Hearne, Mattingley, & Cocchi, 2016; Smith

et al., 2015), although most of these studies have relied on

the same resting-state Human Connectome Project (HCP)

dataset (Smith et al., 2013). Fewer studies have reported

weaker synchronization in such individuals (Santarnecchi

et al., 2014; van den Heuvel, Stam, Kahn, & Hulshoff Pol,

2009).

A second open question concerns the specificity of this

relationship to the MD network. Challenging the idea that

executive functions are selectively tied to this network, a

number of fMRI studies have also linked individual differences

in executive abilities and fluid intelligence with activity in

other brain regions/networks, including occipito-temporal

areas [(Haier, White, & Alkire, 2003; Park, Carp, Hebrank,

Park, & Polk, 2010) but see (Assem et al., 2020; Sani,

McPherson, Stemmann, Pestilli, & Freiwald, 2019) for evi-

dence that these regions may belong to an extended MD

network], the default mode network (DMN) (Lipp et al., 2012;

Smith et al., 2015), or the degree of MD-DMN differentiation

(Sripada et al., 2020). A recent study used 7 fMRI tasks from the

HCP dataset to demonstrate that task activation levels in

many brain regions can, to some extent, predict individual

differences in general intelligence, though critically, MD

regionsdengaged by executive function tasksdare the best

predictors (Sripada et al., 2020). In contrast, another recent

study using the HCP resting-state dataset showed that the

strength of inter-region correlations in most brain networks

predicts general intelligence, and to a similar extent (Dubois

et al., 2018). A key potential limitation of these studies is

that, like the above-mentioned studies, they rely exclusively

on the HCP dataset and are yet to be replicated in independent

data.

These apparently discrepant results could reflect the

complexity of the brain-behavior relationship in the domain

of executive abilities, with perhaps multiple underlying

cognitive constructs (Miyake & Friedman, 2012) and neural

mechanisms contributing to their implementation. Howev-

er, a number of methodological limitations plague previous

studies and may, instead, explain away some of these dis-

crepancies. First, many earlier studies have used small
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numbers of participants (as low as n ¼ 8) and/or transformed

continuous behavioral measures into categorical variables

(e.g., high- vs low-performing participants). Both of these

factors can produce inflated or spurious relationships (Haier

et al., 1988; Lee et al., 2006; Rypma & Esposito, 2000; Rypma

et al., 2006; Wager et al., 2005). Second, most studies have

failed to assess the reliability of the relevant behavioral and/

or brainmeasures (e.g., the strength of the BOLD response, or

the strength of inter-regional synchronization) e a critical

prerequisite for relating behavioral and brain individual

variability (Dubois & Adolphs, 2016). Both behavioral and

brain measures have to be stable within individuals over

time (e.g., across multiple runs of a task, or across tasks)

(Mahowald & Fedorenko, 2016). This is especially important

for studies using BOLD estimates based on contrasts of task

relative to fixation, or resting-state inter-region synchroni-

zation measures, which may fail to isolate MD activity from

general state variables, like motivation, arousal, or caffeine

intake (Basten et al., 2013; Cole et al., 2012; Dubois et al., 2018;

Dunst et al., 2014; Gray et al., 2003; Rypma et al., 2006; Rypma

& Esposito, 2000; Smith et al., 2015; Stern et al., 2018; Wager

et al., 2005). Third, almost all previously mentioned studies

have failed to take into consideration individual variability in

the precise locations of the MD regions [see (Assem et al.,

2020; Blank, 2020; Fedorenko et al., 2013; Shashidhara,

Spronkers, & Erez, 2020) for evidence of such variability].

This variability leads to losses in sensitivity and functional

resolution (Brett, Johnsrude,&Owen, 2002; Nieto-Casta~n�on&

Fedorenko, 2012; Saxe, Brett, & Kanwisher, 2006), and it also

affects the interpretation of inter-regional functional syn-

chronization findings (Bijsterbosch, Beckmann, Woolrich,

Smith, & Harrison, 2019; Bijsterbosch et al., 2018). This

problem is compounded by the proximity of MD areas to

functionally distinct areas such as language-selective re-

gions (Fedorenko, Duncan, & Kanwisher, 2012), which show

no response to any demanding task other than language

processing (Fedorenko, Behr, & Kanwisher, 2011; Fedorenko

& Blank, 2020; Fedorenko & Varley, 2016; Monti, Parsons, &

Osherson, 2012). And fourth, many studies have failed to

adequately assess the selectivity of the relationship between

MD activity and behavior (Choi et al., 2008; Cole et al., 2012;

Dubois & Adolphs, 2016; Gray et al., 2003; Rypma et al., 2006).

This is important given that trait variables (e.g., brain

vascularization) are known to affect neural responses (e.g.,

Ainslie & Duffin, 2009; Kazan et al., 2016), so in order to argue

that the MD network’s activity relates to individual differ-

ences in executive functions or fluid intelligence, it is

important to demonstrate that activity in some other, con-

trol, brain region or network does not show a similar

relationship.

To circumvent these limitations and rigorously test the

relationship between MD activity and executive abilities and

fluid intelligence, we conducted a large-scale fMRI study,

where participants (n ¼ 216) performed a spatial working

memory (WM) task that included a harder and an easier

condition. We first established the reliability of the

Hard > Easy (H > E) BOLD effect in the MD network [defined

functionally in each participant individually (Fedorenko

et al., 2013)], and then examined the relationship between

the size of this effect and a) behavioral performance on the
task (including in an independent run of data), and b) fluid

intelligence (in a subset of participants, n ¼ 114). We further

evaluated the selectivity of this MD-behavior relationship by

examining fMRI responses in the left fronto-temporal lan-

guage network while the same participants performed a

language comprehension task (Fedorenko, Hsieh, Nieto-

Casta~n�on, Whitfield-Gabrieli, & Kanwisher, 2010). This

network serves as a good control because, on the one hand,

the language network is robustly functionally distinct from

the MD network (Blank et al., 2014; Diachek, Blank,

Siegelman, Affourtit, & Fedorenko, 2020; Fedorenko &

Blank, 2020; Mineroff, Blank, Mahowald, & Fedorenko,

2018), but on the other hand, language has long been impli-

cated in abstract and flexible thought (e.g., Bickerton, 1995;

Carruthers, 2002; Dennett, 1997; cf.; Fedorenko & Varley,

2016), including some studies that have linked damage to

the regions of this network to performance on some fluid

reasoning tasks (e.g., Baldo, Bunge,Wilson,&Dronkers, 2010;

cf.; Woolgar et al., 2018).

To foreshadow our results, we found that stronger (rather

than weaker) MD responses were associated with better per-

formance on the spatial WM task as well as higher fluid in-

telligence scores. The strength of activity in another large-

scale network e the language network e did not explain any

additional variability in WM task performance (i.e., it showed

a weak correlation with behavior, which was eliminated once

the level of MD activity was taken into account). Finally, we

demonstrate how unreliable MD activity measures, coupled

with small sample sizes, could lead to the opposite (negative)

association between MD activity level and behavior as has

been reported in the literature. These results align well with

findings from lesion studies that have suggested that a sub-

stantial portion of the variance in executive abilities and fluid

intelligence is strongly and selectively associated with frontal

and parietal MD brain regions.
2. Materials and methods

2.1. Participants

216 participants (age 23.6 ± 6.4, 136males, 190 right handed, 13

left handed, 8 ambidextrous, 5 withmissing handedness data)

with normal or corrected-to-normal vision, students at Mas-

sachusetts Institute of Technology (MIT) and members of the

surrounding community, participated for payment. All par-

ticipants gave informed consent in accordance with the re-

quirements of the Committee On the Use of Humans as

Experimental Subjects (COUHES) at MIT. We aimed to use the

largest sample size available to us of subjects who performed

both task paradigms and the IQ test (see below).

2.2. Experimental paradigms

Participants performed a spatial working memory task in a

blocked design (Fig. 1). Each trial lasted 8 sec: within a 3 � 4

grid, a set of locations lit up in blue, one at a time for a total of 4

(easy condition) or two at a time for a total of 8 (hard condi-

tion). Participants were asked to keep track of the locations. At

the end of each trial, they were shown two grids with some

https://doi.org/10.1016/j.cortex.2020.06.013
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Fig. 1 e (a) Sample trials of the in-scanner spatial WM task, and (b) the reliability of its behavioral measures (averaging

across the Easy and Hard conditions) across runs (in the full sample of n ¼ 216 participants) and with an independent

measure of IQ (in a subset of n ¼ 114 participants).
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locations lit up and asked to choose the grid that showed the

correct, previously shown locations by pressing one of two

buttons. They received feedback on whether they answered

correctly. Each participant performed two runs, with each run

consisting of six 32-sec easy condition blocks, six 32-sec hard

condition blocks, and four 16-sec fixation blocks, for a total

duration of 448 sec (7 min 28 sec). Condition order was

counterbalanced across runs.

In addition to the spatial working memory task, all par-

ticipants performed a language localizer task (Fedorenko

et al., 2010), used here to test the selectivity of the rela-

tionship between the MD network’s activity and behavior.

The majority of the participants (n ¼ 182, 84.3%) passively

read sentences and lists of pronounceable nonwords in a

blocked design (see Table 1). The Sentences > Nonwords

(S > N) contrast targets brain regions sensitive to high-level
linguistic processing (Fedorenko et al., 2011, 2010). Each trial

started with 100 msec pre-trial fixation, followed by a 12-

word-long sentence or a list of 12 nonwords presented on

the screen one word/nonword at a time at the rate of

450 msec per word/nonword. Then, a line drawing of a hand

pressing a button appeared for 400 msec, and participants

were instructed to press a button whenever they saw the

icon, and finally a blank screen was shown for 100 msec, for

a total trial duration of 6 sec. The button-press task was

included to help participants stay alert and focused. Each

block consisted of 3 trials and lasted 18 sec. Each participant

performed two runs, with each run consisting of sixteen

experimental blocks (eight per condition), and five fixation

blocks (14 sec each), for a total duration of 358 sec (5 min

58 sec). Condition order was counterbalanced across runs.

The remaining 21 participants performed similar versions of

https://doi.org/10.1016/j.cortex.2020.06.013
https://doi.org/10.1016/j.cortex.2020.06.013


Table 1 e Details of the design, materials, and procedure for the different variants of the language localizer task.

Version

A B C D

Number of participants 182 12 1 8

Task (Passive Reading/Listening/Memory) PR M PL M

Words/nonwords per trial 12 12 variable 12

Trial duration (msec) 6,000 6000 18,000 6000

Fixation 100 300 0 300

Presentation of each word/nonword 450 350 variable 350

Probe (M) þ button press (M/PR) 400 1000 e 1000

Fixation 100 500 0 500

Trials per block 3 3 1 3

Block duration (sec) 18 18 18 18

Blocks per condition (per run) 8 8 8 6

Conditions Sentences

Nonwords

Sentences

Nonwords

Intact speech

Degraded speech

Sentences

Nonwords

Word-lists (not used here)

Fixation block duration (sec) 14 18 14 18

Number of fixation blocks per run 5 5 5 4

Total run time (sec) 358 378 358 396

Number of runs 2 2 2 2e3

c o r t e x 1 3 1 ( 2 0 2 0 ) 1e1 6 5
the language localizer with minor differences in the timing

and procedure, with one participant performing an auditory

version of the localizer [see Table 1 for exact timings and

procedures; we have previously established that the local-

izer contrast is robust to such differences (Fedorenko et al.,

2010; Mahowald & Fedorenko, 2016; Scott, Gall�ee, &

Fedorenko, 2017)].

Finally, most participants completed one or more addi-

tional experiments for unrelated studies. The entire scanning

session lasted approximately 2 h.

A subset of 114 participants performed the non-verbal

component of KBIT (Kaufman & Kaufman, 2014) after the

scanning session. The test consists of 46 items (of increasing

difficulty) and includes both meaningful stimuli (people and

objects) and abstract ones (designs and symbols). All items

require understanding the relationships among the stimuli

and have a multiple-choice format. If a participant answers 4

questions in a row incorrectly, the test is terminated, and the

remaining items are marked as incorrect. The test is scored

following the formal guidelines to calculate each participant’s

IQ score.

2.3. MRI data acquisition

Structural and functional data were collected on the whole-

body 3 T S Trio scanner with a 32-channel head coil at the

Athinoula A. Martinos Imaging Center at the McGovern

Institute for Brain Research at MIT. T1-weighted structural

images were collected in 128 axial slices with 1 mm isotropic

voxels (TR ¼ 2,530 msec, TE ¼ 3.48 msec). Functional, blood

oxygenation level dependent (BOLD) data were acquired

using an EPI sequence (with a 90� flip angle and using

GRAPPA with an acceleration factor of 2), with the following

acquisition parameters: thirty-one 4 mm thick near-axial

slices, acquired in an interleaved order with a 10% distance

factor; 2.1 mm � 2.1 mm in-plane resolution; field of view of

200 mm in the phase encoding anterior to posterior (A > P)

direction; matrix size of 96 mm � 96 mm; TR of 2,000 msec;
and TE of 30 msec. Prospective acquisition correction

(Thesen, Heid, Mueller, & Schad, 2000) was used to adjust the

positions of the gradients based on the participant’s motion

one TR back. The first 10 sec of each run were excluded to

allow for steady-state magnetization.

2.4. FMRI data preprocessing and first-level analysis

FMRI data were analyzed using SPM5 and custom MATLAB

scripts in volume space. (Note that first-level analyses have

not changed much in later versions of SPM; we used an older

version of the software here due to the use of these data in

other projects spanning many years and hundreds of sub-

jects; critical second-level analyses were performed using

custom MATLAB scripts. We also verified using an indepen-

dent dataset that estimates of neural activity extracted with

SPM5-vs SPM12-preprocessed and modeled data were

extremely similar). Each subject’s data were motion cor-

rected and then normalized into a common brain space [the

Montreal Neurological Institute (MNI) template] and resam-

pled into 2 mm isotropic voxels. The data were then

smoothed with a 4mmGaussian filter (FWHM) and high-pass

filtered (at 200 sec). The task effects in both the spatial WM

task and in the language localizer task were estimated using

a General Linear Model (GLM) in which each experimental

condition was modeled with a separate boxcar regressor

(with boxcars corresponding to blocks). For the working

memory task, each run was modeled by one regressor for the

easy blocks and one regressor for the hard blocks; similarly

for the language task, each run was modeled by one regres-

sor for sentence blocks and one regressor for non-word

blocks. Regressors were convolved with the canonical he-

modynamic response function (HRF). The model also

included first-order temporal derivatives of these effects, as

well as nuisance regressors representing entire experimental

runs and offline-estimated motion parameters. Fixation

blocks in both tasks were not modeled and treated as the

implicit baseline.

https://doi.org/10.1016/j.cortex.2020.06.013
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2.5. MD fROIs definition and response estimation

To define the MD and language (see below) functional regions

of interest (fROIs), we used the Group-constrained Subject-

Specific (GSS) approach (Fedorenko et al., 2010). In particular,

fROIs were constrained to fall within a set of “masks”, areas

that corresponded to the expected gross locations of activa-

tion for the relevant contrast. For the MD fROIs, following

Fedorenko et al. (Fedorenko et al., 2013) and Blank et al.

(Blank et al., 2014), we used eighteen anatomical masks

(Tzourio-Mazoyer et al., 2002) across the two hemispheres.

These masks covered the portions of the frontal and parietal

cortices where MD activity has been previously reported,

including bilateral opercular inferior frontal gyrus (L/R

IFGop), middle frontal gyrus (L/R MFG), orbital MFG (L/R

MFGorb), insular cortex (L/R Insula), precentral gyrus (L/R

PrecG), supplementary and presupplementary motor areas

(L/R SMA), inferior parietal cortex (L/R ParInf), superior pari-

etal cortex (L/R ParSup), and anterior cingulate cortex (L/R

ACC) (Fig. 2a). It is worth noting, however, that a whole-brain

GSS analysis (Fedorenko et al., 2010) performed on the

Hard > Easy spatial WM activation maps of n ¼ 197 partici-

pants yields a set of functional masks that largely overlap

with these anatomical parcels (e.g., Diachek et al., 2020).

Within eachmask, we selected the top 10% (as well as the top

20% and 30% for validation analyses, as described below) of

most responsive voxels in each individual participant based

on the t-values for the H > E spatial WM contrast. This top n%

approach ensures that each fROI can be defined in every

participant, and that the fROI sizes are identical across

participants.

To estimate the fROIs’ responses to the Hard and Easy

conditions, we used an across-run cross-validation procedure

(Nieto-Casta~n�on & Fedorenko, 2012) to ensure that the data

used to identify the fROIs are independent from the data used

to estimate their response magnitudes (Kriegeskorte,

Simmons, Bellgowan, & Baker, 2009). To do this, the first run

was used to define the fROIs and the second run to estimate

the responses. This procedure was then repeated using the

second run to define the fROIs and the first run to estimate the

responses. Finally, the responses were averaged across the

left-out runs to derive a single response magnitude estimate

for each participant in each fROI for each condition. Finally,

these estimates were averaged across the 18 fROIs of the MD

network to derive one value per condition for each participant

(see Fig. 2c for evidence of strong inter-region correlations in

effect sizes, replicating Mineroff et al., 2018). [An alternative

approach could have been to examine fROI volumes e the

number of MD-responsive voxels at a fixed significance

threshold e instead of effect sizes. However, first, effect sizes

and region volumes are strongly correlated; and second, effect

sizes tend to be more stable within participants than region

volumes (Mahowald & Fedorenko, 2016)].

2.6. Language fROIs definition and response estimation

To define the language fROIs, we used a set of six functional

masks that were generated based on a group-level repre-

sentation of data for the Sentences > Nonwords contrast

from a large set (n ¼ 220) of participants (e.g., Paunov et al.,
2019). These masks included three regions in the left fron-

tal cortex: two located in the inferior frontal gyrus, and one

located in the middle frontal gyrus; and three regions in the

left temporal and parietal cortices spanning the entire extent

of the lateral temporal lobe and going posteriorly to the

angular gyrus. Within eachmasks, we selected the top 10% of

most responsive voxels in each individual participant based

on the t-values for the Sentences > Nonwords contrast. To

estimate the fROIs’ responses to the Sentences and Non-

words conditions, we used the across-run cross-validation

procedure described above.
3. Data availability

Stimuli presentation codes, analysis codes and data (behav-

ioralmeasures, individual and group activation beta estimates

and volumetric brain maps) are available at https://osf.io/

2tw6j/.

3.1. TOP checklist related statements

“No part of the study procedures or analyses was pre-

registered prior to the research being conducted”.

“We report how we determined our sample size, all data

exclusions, all inclusion/exclusion criteria, whether inclu-

sion/exclusion criteria were established prior to data analysis,

all manipulations, and all measures in the study”.
4. Results

4.1. Reliability of behavioral measures

Behavioral performance on the spatial WM task was as ex-

pected: individuals were more accurate and faster on the

easy trials (accuracy ¼ 92.22% ± 7.88%;

RT ¼ 1.20 sec ± .23 sec) than the hard trials

[accuracy ¼ 77.47% ± 11.10%, t(215) ¼ e23.23, p < .0001,

Cohen’s d ¼ 1.53 (effect sizes are based on the two-tailed

independent samples t-test); RT ¼ 1.49 sec ± .25 sec,

t(215) ¼ e26.14, p < .0001, Cohen’s d ¼ �1.23]. Behavioral

measures were stable within individuals across runs for

overall (averaging across the Hard and Easy conditions) ac-

curacies (r ¼ .66, p < .0001) and RTs (r ¼ .81, p < .0001). In

contrast, difference scores (Hard > Easy) were less stable for

both accuracies (r ¼ .26, p < .0001) and RTs (r ¼ .46, p < .0001)

(Fig. 1). To further validate overall scores as a reliable indi-

vidual measure (i.e., stable across runs within an individual),

we tested their correlation with IQ scores, a well-established

stable measure, in the subset of subjects (n ¼ 114) that

performed the IQ KBIT test. Indeed, IQ scores correlated with

overall but not difference accuracy scores [r(IQ

vs overall) ¼ .35 vs r(IQ vs H > E) ¼ .0033] whereas the cor-

relations were similar for RTs [r(IQ vs overall) ¼ e.21 vs r(IQ

vs H > E) ¼ .22]. Thus, in the critical brain-behavior analyses

below, we used overall accuracies and RTs rather than the

H > E measures, because the former are more stable within

individuals as demonstrated by their high correlation across

runs and correlation with the well-established stable IQ

https://osf.io/2tw6j/
https://osf.io/2tw6j/
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Fig. 2 e MD activity and behavior. (a) Surface projection of the volumetric anatomical masks used to constrain individual-

specific functional activations. (b) Surface projection of the volumetric unthresholded group average activation map (beta

estimates) for the spatial WM Hard > Easy (H > E) contrast. Please note that all analyses were performed in volume space,

and surface projectionsdhere and in other figuresdare for illustrative purposes only and may include slight distortions

resulting from volume-to-surface transformations. Surface projection was performed using Connectome Workbench

(humanconnectome.org/software/connectome-workbench) function “-volume-to-surface-mapping” using trilinear

interpolation and a MNI reconstructed mid-thickness surface and displayed on an inflated HCP surface (https://balsa.wustl.

edu/reference/show/pkXDZ). (c) Pearson correlation (see text for highly similar Spearman values) between MD regions for

the H > E contrast, computed across individuals (n¼ 216). (d) Stability of MD H > E effect sizes across runs across individuals

(n ¼ 216). (e) MD H > E effect sizes and behavior relationship: larger MD H > E effect sizes are associated with better accuracy

(left) and faster RTs (middle) in the spatial WM task (n ¼ 216), as well as higher IQ scores (n ¼ 114) (right) as measured by an

independent test (KBIT).
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measure. Furthermore, the H > E behavioral measures might

contain a non-linearity, such that smaller between-condition

differences are observed in both high performers (when

performance is close to ceiling) and low performers (when

performance is close to chance).

4.2. MD network activity and behavior

As expected (Fedorenko et al., 2013), each of the eighteen MD

fROIs individually, as well the MD network as a whole (aver-

aging across fROIs), showed a highly robust H > E effect across

participants separately in each run [ts(215)>11.54, ps < .0001,

Cohen’s d ¼ .79e1.54]. Individual differences in the MD H > E

effect sizes were also stable across runs for each MD fROI

individually (rs ¼ .60e.80) and when averaging across fROIs

(r ¼ .74, p < .0001; Fig. 2d). We used the H > E contrast as it was

more stable than task > fixation contrasts (H > fix r ¼ .65 and E

> fix r ¼ .31). This greater stability of the H > E contrast plau-

sibly reflects the fact that it factors out variability due to state

differences, thus honing in on the relevant variability, related

to the level of the MD network’s activity. For each participant,

we averaged the H > E effect size across the 18 MD fROIs to

derive a single measure because the H > E effect sizes were

strongly correlated across the 18 regions (rs¼ .45e.88; Fig. 2c),

replicating Mineroff et al., 2018, and in line with general evi-

dence of the MD brain regions forming a tightly functionally

integrated system (Assem et al., 2020; Blank et al., 2014;

Paunov et al., 2019).

To ensure that the stability of the MD H > E effect size did

not depend on the particular details of the fROI definition (i.e.,

top 10% of most responsive voxels within the masks), we also

extracted the effect sizes from the fROIs defined as the top 20%

and top 30% of most responsive voxels. The extracted H > E

effect sizes were almost perfectly correlated with those

extracted from the top 10% fROIs (20% vs 10%, r¼ .99, p < .0001;

30% vs 10%, r ¼ .98, p < .0001). Thus, we proceed to use the

H > E effect sizes extracted from the original (10%) fROIs.

For each participant, we used behavioral measures from

the spatial WM task (overall accuracies and RTs), and one

brain activation measure (H > E effect sizes averaged across

the 18 MD ROIs). The critical analyses revealed that larger MD

H > E effect sizes were associated with more accurate (Pear-

son’s r ¼ .44, Spearman’s r ¼ .42, both ps < .0001) and faster

(Pearson’s r ¼ �.29, Spearman’s r ¼ �.29, both ps < .0001;

Fig. 2e) performance. To further test the predictive power of

MD H > E effect sizes, we cross-compared brain-behavior re-

lationships across runs (Dubois & Adolphs, 2016) and found

that MD H > E effect sizes in run 1 correlated with both ac-

curacies (Pearson’s r ¼ .34, Spearman’s r ¼ .33, both ps < .0001)

and RTs (Pearson’s r ¼ �.22, Spearman’s r ¼ �.26, both

ps < .0001) in run 2, and MD H > E effect sizes in run 2 corre-

lated with accuracies (Pearson’s r ¼ .40, Spearman’s r ¼ .38,

both ps < .0001) and RTs (Pearson’s r ¼ �.27, Spearman’s

r ¼ �.27, both ps < .0001) in Run 1.

Next, to test the generalizability of the relationship be-

tween MD activation and behavior, we asked whether MD

H > E effect sizes explain variance in fluid intelligence, as

measured with the Kaufman Brief Intelligence Test (KBIT)

(Kaufman & Kaufman, 2014) in a subset of participants

(n ¼ 114). Indeed, larger MD H > E effect sizes were associated
with higher intelligence quotient (IQ) scores [Pearson’s r ¼ .34,

p < .0002, normalized R2(R2
H>E vs IQ/R

2
H>E reliability) ¼ 21%;

Spearman’s r¼ .41, p < .0001 Fig. 2e]. This relationshipwas still

significant after controlling for WM accuracy using a partial

correlation analysis (Pearson’s r ¼ .26, p ¼ .0061; Spearman’s

r ¼ .34, p ¼ .0003), suggesting that MD activity explains unique

variance captured by the fluid intelligence test over and above

any sharedworkingmemory component between the test and

the task.

These results thus support a positive association between

MD activity and fluid cognitive abilities. In the next section we

assess the selectivity of this MD-behavior relationship.

4.3. Language network activity and behavior

Does the strength of brain activity outside of the MD network

explain variance in executive abilities? We tested the selec-

tivity of the MD-behavior relationship by examining another

large-scale network implicated in high-level cognition: the

fronto-temporal language-selective network in the left hemi-

sphere (Fedorenko et al., 2011).

We extracted the language network’s activity during a

reading task (Fedorenko et al., 2010) [Sentences > Nonwords

(S > N) contrast; Fig. 3a]. Similar to MD H > E effect sizes,

language S > N effect sizes were highly stable across runs for

each language fROI individually and averaging across fROIs

(r ¼ .83, p < .0001; Fig. 3b), in line with prior work (Mahowald&

Fedorenko, 2016; Mineroff et al., 2018).

Larger language S > N effect sizes were weakly associated

withmoreaccurate (Pearson’s r¼ .18,p< .01; Spearman’s r¼ .17,

p ¼ .01) but not faster (Pearson’s r ¼ �.08, p ¼ .24; Spearman’s

r ¼ �.10, p ¼ .14) performance on the spatial WM task (Fig. 3c).

We also observed aweak trend for a relationship between S >N

effect sizes and IQ scores (Pearson’s r¼ .16, p¼ .09; Spearman’s

r ¼ .15, p ¼ .11) (Fig. 3c). Critically, however, controlling for the

size of the MD H > E effects, in a partial correlation analysis,

abolished the associations between language S > N effect sizes

and the behavioralmeasures (spatialWMaccuracies: Pearson’s

r ¼ .11, p ¼ .10, Spearman’s r ¼ .18, p ¼ .09; IQ scores: Pearson’s

r ¼ .14, p ¼ .14, Spearman’s r ¼ .11, p ¼ .25; Fig. 3d). In contrast,

controlling for the size of the language S > N effects did not

affect the relationship between MD H > E effect sizes and the

behavioral measures (spatial WM accuracies: Pearson’s r ¼ .42

cf. r ¼ .44; spatial WM RTs: Pearson’s r ¼ �.27 cf. r ¼ �.29; IQ

scores: Pearson’s r ¼ .34 cf. r ¼ .35; all ps < .001).

In linewith findings frombrain lesion studies, these results

confirm the selective relationship between the MD network

and executive functions/fluid intelligence.
4.4. Effect of sample size and reliability of the fMRI
activity on brain-behavior associations

In a further attempt to explain discrepancies in the prior

literature (e.g., some studies finding that stronger MD activity

is associated with better executive abilities, but other studies

finding the opposite pattern, as discussed in the Introduction),

we examined the effects of sample size and reliability of the

fMRI effect sizes on the brain-behavior relationships (Gelman

& Carlin, 2014). We used two indices of MD activity that

https://doi.org/10.1016/j.cortex.2020.06.013
https://doi.org/10.1016/j.cortex.2020.06.013


Fig. 3 e Language network activity and behavior. (a) Surface projection of the volumetric unthresholded group average

activationmap (beta estimates) for the language Sentences > Nonwords (S > N) contrast. (b) Stability of language S > N effect

sizes across runs across individuals (n ¼ 216) (Pearson correlations are used in the figures; see text for highly similar

Spearman values). (c) Language S > N effect sizes and behavior relationship: larger language S > N effect sizes are weakly

associated with better accuracy in the spatial WM task (left) and higher IQ scores (right), but not RTs in the WM task (middle).

(d) Language S > N effect sizes and behavior relationship, controlling for MD H > E effect sizes: the weak relationships

between language S > N effect sizes and behavior observed in (c) are now abolished.
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differed in their reliabilitye (1) MDH > E effect size used in the

main analysis above (a highly reliable measure, with the

across-runs correlation of Pearson’s r ¼ .74) and (2) MD E > Fix

effect size (a less reliable measure, with the across-runs
correlation of Pearson’s r ¼ .31) e and examined their rela-

tionship to IQ scores.

Samples of different sizes (ranging from 10 to 110, in

increments of 10) were randomly selected from our set of

https://doi.org/10.1016/j.cortex.2020.06.013
https://doi.org/10.1016/j.cortex.2020.06.013


Fig. 4 e Effects of sample size and the reliability of the brain measure on brain-behavior relationships. On the x-axis in both

panels, we show correlations (1,000 per sample) obtained for samples of different sizes. In the left panel, we use a brain

activity measure of low reliability (MD E > Fix effect size), and in the right panel, we use a highly reliable brain activity

measure (MD H > E effect size). Correlations significant at the p < .05 level are marked in red.
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114 participants. For each sample, we computed a correla-

tion between each of the two activity measures and IQ

scores. This process was repeated 1,000 times per sample

size. The resulting correlations were then examined for

their sign, size, and significance. The results, shown in Fig. 4

(left), clearly demonstrate that a combination of small

samples and brain activity measures of low reliability (e.g.,

MD E > fix effect size), like those used in many earlier

studies, can produce a significant (p < .05) correlation of the

opposite sign to that observed in a larger population (red

dots with a negative correlation). This problem is dimin-

ished, but not eliminated, when a reliable index like the MD

H > E effect size is used (Fig. 4, right). The results also

demonstrate that inflated correlations that are often

observed in small samples are not eliminated even when a

reliable activity measure is used.

The results from this analysis also challenge the claim of

a negative association between MD activity and performance

observed in easier tasks. As demonstrated above, at least in

this paradigm, brain activity during a relatively easy execu-

tive task was not reliable within individuals across runs. This

low reliability could yield correlations of opposite sign.

However, even with large sample sizes, the MD E > fix effect

size shows a weak positive, not negative, association with IQ

scores (Fig. 4, left).
5. Discussion

In a large set of participants, we examined the relationship

between activity in the fronto-parietal “multiple-demand

(MD)” network (Duncan, 2010, 2013), on the one hand, and
executive abilities and fluid intelligence, on the other. The

brain regions of interest were defined in individuals using a

functional localizer task (e.g., Fedorenko et al., 2013). We

observed a robust positive association between the strength

of activation in theMDnetwork and performance on a spatial

working memory (WM) task in the scanner, as well as IQ

measured independently. We also examined the specificity

of this relationship by considering another network impor-

tant for high-level cognitione the fronto-temporal language-

selective network (Fedorenko et al., 2011). Although the

strength of activation in this network showed a weak posi-

tive association with some of the behavioral measures, these

relationships were eliminated once the level of the MD net-

work’s activity was taken into account (controlling for the

level of the language network’s activity did not affect the

MD-behavior relationships). Finally, we showed how small

sample sizes and/or the use of brain activity measures of low

reliability, as used in many earlier studies (Dunst et al., 2014;

Haier et al., 1988; Lipp et al., 2012; Rypma et al., 2006), could

produce inflated and/or the opposite-sign correlations be-

tween brain and behavior. To our knowledge, our relatively

large sample size, coupled with the participant-specific

functional localization approach to defining the regions of

interest (Nieto-Casta~n�on & Fedorenko, 2012; Saxe et al.,

2006), provides the strongest evidence to date for a positive

association between the MD network’s activity and behav-

ioral measures of executive abilities and fluid intelligence.

This evidence aligns well with findings from lesion studies

that have also reported a selective relationship between

fronto-parietal regions and fluid cognitive abilities (Duncan

et al., 1995; Glascher et al., 2010; Roca et al., 2010; Warren

et al., 2014; Woolgar et al., 2018, 2010).

https://doi.org/10.1016/j.cortex.2020.06.013
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5.1. Constraints on generality

Some limitations for our study are worth noting (Simons,

Shoda, & Lindsay, 2017). First, some researchers have pre-

viously tried to explain the discrepancies in the MD-

behavior literature by alluding to differences in the age of

participants across studies (Reuter-Lorenz et al., 2000;

Rypma & Esposito, 2000), arguing that the MD-behavior

relationship may change across the lifespan. These

changes may be driven by processes like cognitive reserve

and brain maintenance in old age (Nyberg & Pudas, 2019;

Sala-Llonch, Bartres-Faz, & Junque, 2015; Stern, 2017) or

reorganization of neurocognitive architecture in adoles-

cents (Simpson-Kent et al., 2020). The age range in our

sample (25th-75th percentile ¼ 20e25) is too narrow to

evaluate this hypothesis rigorously. That said, the early

studies that had motivated this hypothesis a) used small

sample sizes (e.g., Rypma & Esposito, 2000), b) used

task > fixation activation measures that are likely to be

unreliable, and c) did not take into account inter-individual

variability in the locations of the MD regions, which may be

especially important given the increased variability in the

functional architecture of older adults (Geerligs, Tsvetanov,

& Henson, 2017).

Second, as briefly mentioned in the introduction, some re-

searchers have argued that negative MD-behavior associations

can be observed during some easy tasks. For example, a recent

study using the HCP n-back task (Barch et al., 2013) demon-

strates that whereas MD activations during the 2-back condi-

tion are positively associated with general intelligence, MD

activations during the 0-back condition show a negative asso-

ciation (Sripada et al., 2020). It is plausible that our easy condi-

tion is more cognitively demanding than the 0-back condition,

and that is why we did not observe a negative correlation be-

tween the E > Fix activations and IQ scores (Fig. 4, left).

More broadly, there are situations where improvement in

performance is associated with decreases in MD activity e.g.,

in paradigms with extended motor skills practice (Dayan &

Cohen, 2011; Steele & Penhune, 2010) or task rules practice

(Hampshire et al., 2019; Ruge & Wolfensteller, 2010). In such

cases, efficient performance is plausibly mediated by re-

configuration of brain processes. Extended practice can be

conceived as a shift from a novel (hard) task to a routine (easy)

task. Shifts fromhard to easy tasks are known to be associated

with anterior to posterior shifts in peak MD activations

(Assem et al., 2020; Badre, 2008; Crittenden & Duncan, 2014;

Shashidhara, Mitchell, Erez, & Duncan, 2019). Thus, MD acti-

vation decreases with practice could reflect these hard to easy

topographical activation shifts.

Third, our study used MD activity estimates during a

single task. An estimate derived frommultiple MD tasks may

more accurately capture the variability in the MD network’s

engagement across individuals. Similarly, our measure of

fluid intelligence was derived from a single IQ test (KBIT;

Kaufman and Kaufman, 2014). Ameasure of fluid intelligence

based on a diverse battery of executive function tasksmay be

more reliable. Nevertheless, we note that in our study (a) the

size of the correlation we observed (r ¼ ~.35) is within the

range of correlations reported in recent studies that have
used a multi-task-based estimate of fluid intelligence

(Dubois et al., 2018; Sripada et al., 2020), (b) the relation be-

tween MD-IQ survived after controlling for the correlation

between IQ and WM performance, highlighting the unique

behavioral variance captured by the KBIT test over and above

the WM task.

5.2. MD system activation and intelligence

We estimated MD activity using a blocked design experiment,

thus averaging acrossmultiple cognitive processes (in our case,

encoding of information into working memory, maintaining

and dynamically updating it, and finally, retrieving it from

working memory at the decision-making step). Temporally

finer-grained MD activity estimates at particular steps in an

executive-function task may more precisely target the core

neural computations that relate to executive abilities/fluid in-

telligence. For instance, a recent event-related study demon-

strated robust MD activity at each of the stages above (Soreq,

Leech, & Hampshire, 2019). Stronger MD activation during

more difficult tasks is thought to reflect the increased demand

on integrating more and/or different kinds of information in a

focused attentional structure to solve the task at hand (Assem

et al., 2020; Duncan, 2013). For example, in a recent event-

related study, individuals with lower intelligence scores,

compared to those with higher scores, showed weaker MD

activity during the critical step of target detection suggesting a

failure to correctly integrate task rules in the attentional

structure guiding successful behavior (Tschentscher et al.,

2017). Thus, stronger MD activity across an entire block could

plausibly reflect less frequent lapses of “attentional focus” e

needed for the correct binding of information to solve the task

at hand e and thus better behavioral performance.

A general challenge with individual-level estimates from

event-related designs is that they are likely to be more noisy/

less reliable, althoughwith sufficient data per participant, this

limitation could be overcome. An early study (Gray et al., 2003)

with 60 participants found a significant difference between

higher and lower IQ individuals in MD activity when it was

estimated from individual lure trials (in a n-back task) but not

when MD activity was estimated across an entire block of

trials. In our study, we demonstrate that MD activity esti-

mated from a block of trials carriesmeaningful variance about

individual differences in executive performance and fluid

intelligence.

5.3. Relationship of executive abilities with language
and other non-MD regions

Studies of brain lesions have demonstrated repeatedly that

there is no relation between lesions in the language network

and executive abilities (Fedorenko & Varley, 2016; Woolgar

et al., 2018; cf.; Baldo et al., 2010). To our knowledge, this is

the first study to investigate the relationship between brain

activity in the language network and executive abilities/in-

telligence employing a large sample size and individual-

subject fROIs. In line with lesion findings, we show that con-

trolling for MD activity abolishes any relationship between

activity in the language network and spatial WM performance

https://doi.org/10.1016/j.cortex.2020.06.013
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and IQ scores. The weak language-behavior association

observed prior to controlling for MD activity is plausibly

related to a trait factor like vascularization, or a state factor

like arousal.

More generally, as we have briefly alluded to in the intro-

duction, several studies have linked executive abilities and

fluid intelligence to diverse structural and functional brain

measures, including outside the boundaries of the MD

network. For example, a recent large-scale study using the UK

Biobank dataset (n¼ ~30,000) reported that total brain volume,

as well as multiple global measures of grey and white matter

macro- and microstructure (especially, in older participants),

explained substantial variance in fluid intelligence (Cox,

Ritchie, Fawns-Ritchie, Tucker-Drob, & Deary, 2019). Another

study used the HCP task fMRI dataset to show that task-

related activations in many brain regions correlates to some

extent with general intelligence. However, executive tasks

engaging MD regions were the best predictors of individual

differences in general intelligence (Sripada et al., 2020), in line

with our findings. The relationship among the different neural

measures that have been shown to predict variation in fluid

intelligence, including the one used in the current study (i.e.,

the relative increase in the MD activity for a more difficult

compared to an easier version of an executive task), is not

known. Further studies that assess the reliability of those

diverse brainmeasures, extracted with analysis pipelines that

respect inter-individual variability in structure (Kharabian

Masouleh, Eickhoff, Hoffstaedter, & Genon, 2019) and func-

tion (Coalson, Essen, & Glasser, 2018; Nieto-Casta~n�on &

Fedorenko, 2012), and direct comparisons among those mea-

sures can help clarify their unique and shared contributions to

explaining variability in executive abilities and intelligence.

Given the complexity of human reasoning abilities, multiple

brain processes likely contribute, but we suggest that the MD

network is a key player governing individual differences in

fluid intelligence and executive abilities, in line with the fact

that damage to MD structures selectively and robustly pre-

dicts intelligence losses.

5.4. Implications for future studies

There are many long-recognized challenges facing brain-

behavior individual-differences studies (Dubois & Adolphs,

2016). In the introduction we highlighted the critical role of

individually defined functional regions to correctly delineate

brain-behavior relationships. Another challenge concerns

small sample sizes. Our results demonstrate that typical

sample sizes (n¼ 10e30) in neuroimaging studies can produce

misleading and highly inflated brain-behavior correlations.

This presents a significant challenge for laboratory-based

research, clinical studies with difficult to recruit patients

and longitudinal studies that opt for multiple scanning ses-

sions at the expense of increasing sample size.

We also demonstrate how unreliable brain or behavioral

measures (i.e., not stable within an individual across runs/

sessions) can result in invalid and inflated correlations. Reli-

ability can also be compromised by using tasks that do not

generate enough between-individuals variance (Hedge,

Powell, & Sumner, 2018). This is a general challenge facing

integrating experimental and individual differences
approaches. For example, response inhibition tasks (e.g.,

stroop, Go/No-Go) produce replicable experimental effects yet

studies on individual differences in performance on these

tasks commonly fail to group them in a single construct

(Hedge et al., 2018; Rey-Mermet, Gade, Souza, von Bastian, &

Oberauer, 2019) or relate them reliably to common brain

mechanisms (Rosenberg et al., 2019; Wager et al., 2005).
6. Conclusions

Against a backdrop of contradictory prior findings, we

demonstrate a robust positive and selective association be-

tween the MD network’s activity level, on the one hand, and

executive abilities and fluid intelligence, on the other. Our

analyses also help resolve some of the prior contradictions in

the literature. Given its high reliability, the MD activity mea-

sure used here, and measures obtained from similarly strong

manipulations of cognitive demand, can be used as a neural

marker to further probe variability in executive abilities both

in the typical population and among individuals with cogni-

tive and psychiatric disorders. This marker can also serve as a

promising neural bridge (Braver, Cole, & Yarkoni, 2010) be-

tween behavioral variability and genetic variability associated

with differences in fluid intelligence (Deary, Spinath, & Bates,

2006; Plomin & Spinath, 2004).
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