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First published May 28, 2014; doi:10.1152/jn.00884.2013.—What is
the relationship between language and other high-level cognitive
functions? Neuroimaging studies have begun to illuminate this ques-
tion, revealing that some brain regions are quite selectively engaged
during language processing, whereas other “multiple-demand” (MD)
regions are broadly engaged by diverse cognitive tasks. Nonetheless,
the functional dissociation between the language and MD systems
remains controversial. Here, we tackle this question with a synergistic
combination of functional MRI methods: we first define candidate
language-specific and MD regions in each subject individually (using
functional localizers) and then measure blood oxygen level-dependent
signal fluctuations in these regions during two naturalistic condi-
tions (“rest” and story-comprehension). In both conditions, signal
fluctuations strongly correlate among language regions as well as
among MD regions, but correlations across systems are weak or
negative. Moreover, data-driven clustering analyses based on these
inter-region correlations consistently recover two clusters corre-
sponding to the language and MD systems. Thus although each
system forms an internally integrated whole, the two systems
dissociate sharply from each other. This independent recruitment
of the language and MD systems during cognitive processing is
consistent with the hypothesis that these two systems support
distinct cognitive functions.

functional connectivity; language; multiple demand system

ALTHOUGH THE KEY BRAIN REGIONS engaged in language process-
ing have been known since Broca (1861/2006) and Wernicke
(1874/1969), debates continue on whether and to what extent
they overlap with regions engaged in other cognitive processes.
Many neuroimaging studies have reported that brain regions
that process language [particularly Broca’s (1861/2006) area]
also engage in many nonlinguistic processes, including arith-
metic (Dehaene et al. 1999; Stanescu-Cosson et al. 2000),
music perception (Koelsch et al. 2002; Maess et al. 2001),
working memory, and cognitive control (Blumstein 2009; Hein
and Knight 2008; January et al. 2009; Kaan and Swaab 2002;
Koechlin and Jubault 2006). Yet other studies have found that
regions activated during nonlinguistic tasks are distinct from
language-processing regions (Fedorenko et al. 2011, 2012;
Monti and Osherson 2012; Monti et al. 2009, 2012). Specifi-
cally, many cognitively demanding tasks activate a set of
frontal and parietal regions known as the “multiple-demand”
(MD) system (Braver et al. 2003; Cole and Schneider 2007;

Dosenbach et al. 2008; Duncan 2010; Duncan and Owen 2000;
Fedorenko et al. 2013; Miller and Cohen 2001), which does not
overlap with the classic fronto-temporal language system.
Nonetheless, the dissociation between a putatively language-
specific system and this domain-general MD system remains
controversial (Blumstein and Amso 2013; Thompson-Schill et
al. 2005).

To test for this dissociation, here, we compared the blood
oxygenation level-dependent (BOLD) signal time courses of
candidate language and MD regions by synergistically com-
bining two functional MRI (fMRI) methods: functional local-
izers and functional correlations. First, we functionally local-
ized candidate regions of interest (ROIs) in each subject
(Fedorenko et al. 2010, 2013) using tasks that target linguistic
processing (language localizer) and cognitive effort (MD lo-
calizer). Next, subjects were scanned during a “rest” period or
during a story-comprehension task (conditions that are inde-
pendent of and less constrained than the localizers). The time
course of BOLD signal fluctuations during these two condi-
tions was then extracted from each functionally defined region.
Finally, we measured the pairwise correlations between time
courses of different regions (separately for each condition).
This approach enabled us to answer three questions. 1) To what
extent do candidate language regions form a functionally
integrated system (Cordes et al. 2000; Hampson et al. 2002;
Newman et al. 2013; Turken and Dronkers 2011; Yue et al.
2013), as indexed by high correlations among these regions? 2)
To what extent do candidate MD regions similarly form an
integrated system (Dosenbach et al. 2007; Hampshire et al.
2012; Seeley et al. 2007)? 3) Critically, how functionally
dissociable are language and MD regions from each other, as
indexed by weak (or negative) correlations between pairs of
regions straddling the two systems?

The current approach harnesses the complementary
strengths of functional localizers and functional correlations.
First, the rest and story-comprehension conditions allow us to
sample a broader, more naturalistic range of cognitive pro-
cesses compared with task-based studies. Second, functional
correlations allow us to use not only hypothesis-driven meth-
ods but also data-driven clustering to discover the relationship
between language and MD regions based on the covariation of
their respective signal time courses. Third, we can straightfor-
wardly interpret the emerging clusters in terms of their func-
tionally characterized constituents, because our ROIs are func-
tionally localized. Therefore, we do not have to rely on “re-
verse inference” from stereotaxic coordinates (Poldrack 2006),
which is inevitable when no functional localizers are used (Lee
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et al. 2012; Mantini et al. 2013; Tie et al. 2012; Yeo et al.
2011).

MATERIALS AND METHODS

Subjects

Eighteen adult subjects (six men), aged 18–30, participated in a
resting-state scan. Ten subjects (three men), aged 18–30, were
scanned during a story-comprehension task (six of these also partic-
ipated in the resting-state scan). All 22 subjects also completed
independent localizer runs that were used to define candidate language
and MD regions. Subjects were right handed and native speakers of
English from Massachusetts Institute of Technology (MIT; Cam-
bridge, MA) and the surrounding Cambridge community. All pro-
vided informed consent and were paid for participating in the study.
The protocol was approved by the Internal Review Board at MIT.

Functional Localization of Candidate Language and MD Regions

Data acquisition. Structural and functional data were collected on
a whole-body 3 Tesla Siemens Trio scanner with a 32-channel head
coil at the Athinoula A. Martinos Imaging Center at the McGovern
Institute for Brain Research at MIT. T1-weighted structural images
were collected in 176 sagittal slices [1 mm isotropic voxels; repetition
time (TR) � 2,530 ms; echo time (TE) � 3.48 ms]. Functional BOLD
data were acquired using an echo planar imaging sequence with a flip
angle of 90° and applying generalized autocalibrating partially paral-
lel acquisition with an acceleration factor of two. Images were
collected in 31 near-axial slices, acquired in an interleaved order with
a 10% distance factor [in-plane resolution: 2.1 � 2.1 mm; slice
thickness: 4 mm; field of view: 200 mm in the phase encoding anterior
to posterior (A � P) direction; matrix size: 96 mm � 96 mm; TR:
2,000 ms; TE: 30 ms]. Prospective acquisition correction (Thesen et
al. 2000) was used to adjust the positions of the gradients based on the
subject’s head motion one TR back. The first 10 s of each run was
excluded to allow for steady-state magnetization.

Design. Candidate language and MD ROIs were functionally de-
fined. The language localizer has been demonstrated previously to
identify language-selective brain regions (Fedorenko et al. 2011)
sensitive to high-level linguistic information, including syntax and
lexical semantics (Fedorenko et al. 2012), and accordingly, contrasted
reading of sentences with reading of sequences of pronounceable
nonwords (presented one word/nonword at a time). After each sen-
tence/nonword sequence, a probe word/nonword appeared, and sub-
jects had to decide whether the probe item appeared in the preceding
stimulus. Each of our 22 subjects completed two to four runs of the
localizer, with Sentences and Nonwords blocks lasting either 24 s
(four blocks/condition/run in a 336-s run, four subjects) or 18 s (eight

blocks/condition/run in a 378-s run, 12 subjects; or six blocks/
condition/run in a 396-s run, six subjects). The order of Sentences and
Nonwords blocks was counterbalanced across runs and subjects. This
localizer (available from http://web.mit.edu/evelina9/www/funcloc/
funcloc_localizers.html) is robust to changes in materials, task, and
modality of presentation (Fedorenko et al. 2010).

For the MD localizer, subjects performed a spatial working mem-
ory task that we have found to activate the MD system broadly and
robustly (Fedorenko et al. 2013). Subjects had to keep track of four
(easy condition) or eight (hard condition) locations in a 3 � 4 grid
(Fedorenko et al. 2011). In both conditions, subjects performed a
two-alternative, forced-choice task at the end of each trial to indicate
the set of locations that they just saw. The contrast Hard � Easy
targets brain regions engaged in cognitively demanding tasks. Fe-
dorenko et al. (2013) have shown that the regions activated by this
task are also activated by a wide range of other tasks contrasting a
difficult vs. an easy condition. Each of our 22 subjects completed one
to three runs of this MD localizer, with Hard and Easy blocks lasting
34 s (five blocks/condition/run in a 436-s run, 10 subjects), 32 s (six
blocks/condition/run in a 448-s run, 11 subjects), or 18 s (six blocks/
condition/run in a 288-s run, one subject). The order of Hard and Easy
blocks was counterbalanced across runs and subjects.

Spatial image preprocessing and localizer task analysis. MRI data
were spatially preprocessed using SPM5 (http://www.fil.ion.ucl.
ac.uk/spm; Statistical Parametric Mapping). To reduce data transfor-
mations, we performed all analyses in native, functional space. Each
subject’s functional data were motion corrected and then smoothed
with a 4-mm full width at half-maximum Gaussian filter. In addition,
the anatomical image of each subject was segmented into three
probability maps, denoting areas of gray matter, white matter, and
cerebrospinal fluid (CSF; see Functional Correlation Analysis), and
these maps were then coregistered to the native functional space. The
anatomical images were also further used for cortical surface recon-
struction (see next section). The data for the localizer tasks were
modeled using a general linear model with a boxcar regressor con-
volved with a canonical hemodynamic response function.

Definition of group-constrained, subject-specific fROIs. For each
subject, functional ROIs (fROIs) were defined by combining two
sources of information (Fedorenko et al. 2010; Julian et al. 2012): 1)
the subject’s own activation map from the localizer runs and 2)
group-level constraints (“masks”). The latter demarcated brain areas
within which most or all individuals in prior studies showed activity
for the localizer contrasts (Table 1).

For the language fROIs, we used masks derived from a group-level
representation of data for the Sentences � Nonwords contrast in an
independent group of subjects (Fedorenko et al. 2010) (masks avail-
able for download at http://web.mit.edu/evelina9/www/funcloc/fun-
cloc_parcels.html). Following Fedorenko et al. (2011), eight masks

Table 1. Functional regions of interest (fROIs)

Candidate Language Regions Candidate MD Regions

Left Hemisphere Right Hemisphere Left Hemisphere Right Hemisphere
1 MidPostTemp 9 MidPostTemp 17 IFGop 26 IFGop
2 PostTemp 10 PostTemp 18 MFG 27 MFG
3 MidAntTemp 11 MidAntTemp 19 MFGOrb 28 MFGOrb
4 AntTemp 12 AntTemp 20 ParInf 29 ParInf
5 IFG 13 IFG 21 ParSup 30 ParSup
6 IFGOrb 14 IFGOrb 22 ACC 31 ACC
7 MFG 15 MFG 23 Insula 32 Insula
8 AngG 16 AngG 24 SMA 33 SMA

25 PrecG 34 PrecG

MD, multiple-demand; MidPostTemp, middle-posterior temporal lobe; PostTemp, posterior temporal lobe; MidAntTemp, middle-anterior temporal lobe;
AntTemp, anterior temporal lobe; IFG, inferior frontal gyrus; IFGOrb, orbital-IFG; MFG, middle frontal gyrus; AngG, angular gyrus; IFGop, opercular IFG;
MFGOrb, orbital-MFG; ParInf, inferior parietal lobe; ParSup, superior parietal lobe; ACC, anterior cingulate cortex; Insula, insular cortex; SMA, supplementary
and presupplementary motor area; PrecG, precentral gyrus.

1106 LANGUAGE AND MD SYSTEMS FUNCTIONALLY DISSOCIATED

J Neurophysiol • doi:10.1152/jn.00884.2013 • www.jn.org

on S
eptem

ber 3, 2014
D

ow
nloaded from

 

http://web.mit.edu/evelina9/www/funcloc/funcloc_localizers.html
http://web.mit.edu/evelina9/www/funcloc/funcloc_localizers.html
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://web.mit.edu/evelina9/www/funcloc/funcloc_parcels.html
http://web.mit.edu/evelina9/www/funcloc/funcloc_parcels.html


were used for defining fROIs in the left hemisphere, including regions
in the posterior temporal lobe (PostTemp) and middle-PostTemp,
anterior and middle-anterior temporal lobe, inferior frontal gyrus
(IFG) and orbital-IFG, middle frontal gyrus (MFG), and angular gyrus
(AngG). These masks were mirror projected onto the right hemisphere
to create eight homologous masks, resulting in a total of 16 language
masks. As the masks (illustrated in Fig. 1) cover significant parts of
the cortex, their mirrored version is likely to encompass the right-
hemisphere homologues of the left-hemispheric, language-selective
regions, despite possible hemispheric asymmetries in their precise
anatomical location.

The right-hemisphere homologues were included for two reasons.
First, these regions appear to be activated during at least some aspects
of language processing, albeit usually not as strongly as the typical,
left-lateralized language regions (Chiarello et al. 2003; Jung-Beeman
2005). Second, given that left-hemisphere damage, but typically not
right-hemisphere damage, leads to difficulties in language production
and comprehension (Damasio 1992; Geschwind 1970), we wanted to
examine hemispheric differences in functional correlations. For ex-
ample, we wanted to see whether left-hemisphere language regions
would show stronger inter-region correlations, which might be ex-
pected of a core language system (cf. the MD regions, which are
strongly bilateral and should thus show similarly strong inter-region
correlations in the left and right hemispheres).

For the MD fROIs, we used anatomical masks (Tzourio-Mazoyer et
al. 2002) that included the main regions linked to MD activity in prior
work, following the methods of Fedorenko et al. (2013) [for a similar
approach, see Fedorenko et al. (2012)]. Eighteen masks were used,
nine in each hemisphere, including regions in the opercular IFG,
MFG, including its orbital part, insular cortex (Insula), precentral
gyrus, supplementary and presupplementary motor area (SMA), infe-
rior and superior parietal lobe, and anterior cingulate cortex (ACC).

These group-level masks, in the form of binary maps, were used to
constrain systematically the selection of subject-specific fROIs. Thus
for each subject, 16 candidate language fROIs were created by
intersecting the subject’s unthresholded t-map for the Sentences �
Nonwords contrast with the language masks. For each subject and for
each mask, the 10% of voxels with the highest t-values in the
intersection image was then used to define a fROI (note that the voxels
included in the right-hemisphere fROIs were not constrained to be
mirrored versions of their left-hemisphere counterparts but were only
constrained to land within a mirrored version of the broad masks).
Similarly, 18 candidate MD fROIs were created for each subject by
intersecting the subject’s unthresholded t-map for the Hard � Easy
contrast with the MD masks, again selecting the 10% of voxels with
the highest t-values within each mask. Finally, we excluded a small
set of voxels that was contained in more than one fROI, due to small
spatial overlap between language and MD activation maps. Across

subjects, these excluded voxels comprised 1.67% (2.60) of our fROIs
(for all subjects, 16 fROIs had no voxels excluded from them; each of
the remaining 18 fROIs had �7% excluded voxels).

The definition of fROIs as the 10% of voxels with the highest
t-values for a localizer contrast in a given mask balances the trade-off
between: 1) choosing only voxels with a BOLD time course that
strongly covaries with the localizer conditions (Sentences � Non-
words or Hard � Easy) and 2) having a sufficient number of voxels
in the fROI. In addition, this procedure ensures that each fROI has a
constant size across subjects. However, we obtained similar results to
those reported below when fROIs were instead defined by intersecting
the language or MD masks with a thresholded t-map for the language
or MD contrasts, respectively (P � 0.001, uncorrected).

The language and MD masks used here were originally created in
Montreal Neurological Institute (MNI) space. Therefore, before de-
fining fROIs, the masks had to be projected onto each subject’s
native functional space. This was done in two steps: first, combined
volume and surface registration (Postelnicu et al. 2009) was used
to estimate the transformation of an MNI anatomical (T1) template to the
native anatomical space of each subject, and the resulting transfor-
mation was applied to the masks. Second, affine coregistration was
used to project the masks from native anatomical space onto native
functional space. Only then were the masks intersected with subjects’
t-maps from the functional localizers.

The localizer effects were highly reliable in all fROIs. Reliability
was tested via an n-fold, leave-one-out cross-validation across runs:
for each subject, we defined fROIs based on all localizer runs but one
and then derived estimates of the localizer contrast effect for the
left-out run in these fROIs. The contrast effect estimates were aver-
aged across all possible left-out runs and then tested for significance
across subjects [false discovery rate (FDR) corrected for the number
of regions]. For all left-hemisphere candidate language regions,
t(21) � 6.47, P � 10�5; for all right-hemisphere candidate language
regions, t(21) � 2.70, P � 0.007; and for all candidate MD fROIs,
t(19) � 5.64, P � 10�4. Figure 1 shows the language and MD fROIs
in the left hemisphere of three representative subjects, as well as
probability maps of fROI locations across all subjects.

Functional Correlation Analysis

Data acquisition. Functional data were collected using the same
parameters as for the functional localizers.

Design. In the resting-state condition, subjects were instructed to
close their eyes but to remain awake and let their mind wonder for 5
min. In the story-comprehension condition, subjects listened to four to
six stories over the scanner-safe headphones (Sensimetrics, Malden,
MA). Each story lasted between 4.5 and 6 min. Stories were con-
structed from existing, publicly available texts (fairy tales, short

0 0.68

0 0.60

A

C

B

D

Fig. 1. Group-constrained, subject-specific functional
regions of interest (fROIs). A and C: probability maps
of the locations of fROIs across subjects, for the
language (red) and multiple-demand (MD; blue) sys-
tems, respectively. Higher color saturation corre-
sponds to a higher number of subjects having a sig-
nificant activation in the relevant voxel. Apparent
overlap between fROIs is only at the group level, not
the individual subject level. B and D: candidate lan-
guage fROIs (red) and candidate MD fROIs (blue) in
the left hemisphere of 3 representative subjects. In all
subfigures, dark gray lines demarcate the masks used
to constrain the location of fROIs (see Definition of
group-constrained, subject-specific fROIs). All sub-
figures are in Montreal Neurological Institute space
for illustration purposes only (fROI definition and
functional correlation analyses were carried out in the
native functional space of each individual subject). Ap-
parent overlap between different fROIs only results from
the projection of fROIs onto the cortical surface.
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stories, and Wikipedia articles) but edited so as to include a variety of
linguistically interesting phenomena that do not occur with suffi-
ciently high frequency in natural texts (e.g., infrequent words, nonlo-
cal syntactic dependencies, unusual syntactic constructions, tempo-
rary ambiguity, etc.; for examples, see Table 2). (The motivation for
editing the stories had to do with the use of these materials in another
project aimed at understanding the processing of different kinds of
linguistic complexity.) The stories were then recorded by two native
English speakers (one man and one woman). After each story, sub-
jects answered six comprehension questions, presented in a two-
alternative, forced-choice format. For each subject, accuracy on these
questions was significantly above chance, as indicated by the binomial
test [for all tests, P � 10�11, Bonferroni corrected for the number of
subjects; mean accuracy across subjects: 83.09% (10)].

Spatial image preprocessing. Functional data were spatially pre-
processed using the same procedure applied for the localizer runs.

Temporal preprocessing. Temporal preprocessing was carried out
using the CONN toolbox (Whitfield-Gabrieli and Nieto-Castanon
2012) with default parameters, unless specified otherwise. First, noise
introduced by signal fluctuations originating from non-neuronal
sources (e.g., respiratory and cardiac activity) was removed. To this
end, the first five temporal principal components of the BOLD signal
time course extracted from the white matter were regressed out of
each voxel’s time course; signal originating in the CSF was similarly
regressed out. White matter and CSF voxels were identified based on
segmentation of the anatomical image (Behzadi et al. 2007). The first
six principal components of the six motion parameters estimated
during offline motion correction were also regressed out, as well as
their first time derivative. Second, the residual signal was bandpass
filtered (0.008–0.09 Hz) to preserve only low-frequency signal fluc-
tuations (Cordes et al. 2001).

Data analysis. Analysis of functional correlations was carried out
separately for each of the two experimental conditions (resting-state
and story-comprehension). For each subject, we averaged the BOLD
signal time course across all voxels in each fROI. For each pair of
fROIs, Pearson’s moment correlation coefficient was then computed
between their respective time courses. These correlations were Fisher
transformed to improve normality, and three one-way, repeated-
measures ANOVAs were then performed on the data to assess
whether different regions showed different patterns of functional
correlations. First, we compared the average correlation within the
candidate language system (i.e., the average of all 120 pairwise
correlations among the 16 language fROIs), the average correlation
within the candidate MD system (i.e., the average of all 153 pairwise

correlations among the 18 MD fROIs), and the average correlation
across the two systems (i.e., the average of all 288 pairwise correla-
tions between a language fROI and a MD fROI). Second, for the
language system, we compared the mean correlation within the left
hemisphere (averaging across all 28 pairwise correlations among the
eight language fROIs in the left hemisphere), the analogous mean
correlation within the right hemisphere, and the mean correlation
across the two hemispheres (averaging across 64 pairwise correla-
tions). Third, the same within-hemisphere vs. across-hemispheres
comparison was carried out for the MD system.

For visualization purposes, we also created two group-level matri-
ces of fROI-to-fROI correlations, one for each experimental condi-
tion. Specifically, the Fisher-transformed correlation between each
pair of fROIs was averaged across subjects (the Fisher transform
decreases the bias in averaging) (Silver and Dunlap 1987), and the
resulting average correlations were then inverse Fisher transformed.
The two group-level fROI-to-fROI correlation matrices are presented
in Fig. 2. However, to ensure that the patterns of functional correla-
tions reported here were observed consistently across individual
subjects, the majority of our analyses did not use these average
correlation matrices but was instead performed within subjects (e.g.,
the repeated-measures ANOVAs described above). Only the hierar-
chical clustering analysis (see below) relied on group-level average
correlations.

Controlling for the effects of head motion. Head-motion artifacts
have been reported to affect functional correlations (Power et al. 2012;
Satterthwaite et al. 2012; Van Dijk et al. 2010). To ensure that such
artifacts could not account for the results reported here, we performed
two control analyses. First, for each experimental run of each subject,
time points with excessive head motion (“motion spikes”) were
identified using the Artifact Detection Toolbox implemented in Mat-
lab (available for download at http://www.nitrc.org/projects/artifact_
detect/). Each motion spike was then included as a regressor during
temporal preprocessing (see above), thus removing the effects of these
time points on our residual BOLD time courses (Lemieux et al. 2007;
Satterthwaite et al. 2013). This control analysis and our original
analysis (without “spike regression”) resulted in qualitatively similar
patterns of functional correlations. To minimize data manipulations,
we report the results of our original analysis.

Second, we tested whether individual differences in estimated head
motion could explain individual differences in functional correlation
patterns. First, each subject’s six motion parameters were collapsed to
a single value, mean relative displacement (MRD) (Jenkinson et al.
2002). Then, we computed the Pearson correlation across subjects,
between MRD, and each of three measures described above: 1) the
mean functional correlation within the language system, 2) the mean
functional correlation within the MD system, and 3) the mean func-
tional correlation across the two systems. None of these measures was
correlated significantly with MRD (FDR corrected) in either the
resting-state or the story-comprehension condition (the correlations
that were significant before FDR correction were opposite in direction
to our reported effects). On average, individual differences in head
motion explained 5% of the individual differences in functional
correlation patterns. We then repeated this analysis using the point
biserial correlation instead of the Pearson correlation by splitting our
sample into a “high MRD” half and a “low MRD” half. Whereas the
two halves differed significantly in MRD, they did not differ in their
functional correlation patterns. We therefore conclude that our results
reported below cannot result from a head-motion artifact.

Clustering Analyses

k-Means. To reveal the dominant patterns of functional correlations
across our fROIs in a relatively data-driven fashion, we submitted,
separately for each subject, the average BOLD signal time courses
from candidate language and MD fROIs to the k-means clustering
algorithm from Matlab. To ensure that the choice of k did not impose

Table 2. Linguistic materials used in the story-comprehension
task

Examples

Infrequent words “Autosomal”
“Brunt”
“Conjectured”

Nonlocal syntactic
dependencies

“The kindly Lord of the Manor who the people had
often asked for help. . .”

“The severity of the problem the people faced. . .”
“The water snail that she had discovered a couple of

days ago. . .”
Unusual syntactic

constructions
“A source of great trouble to the local folk the boar

was. . .”
“It was the first huntsman who was. . .”
“Into vapor the water drops that danced in the ocean

had been changed. . .”
Temporary

ambiguity
“The huntsman questioned by the Lord. . .”
“The matron understood my idea was something that

I was excited about. . .”
“Abby’s mom denied Abby’s version of the story

was true. . .”
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on the data an implicitly hypothesized division into language and MD
systems, separate analyses were run with values of k ranging from two
to six clusters. The pairwise distance measure used for clustering was
defined as one minus the correlation between different time courses.
To choose the initial cluster centroids, k time courses out of a subject’s
data were sampled randomly, and this procedure was repeated 50
times to generate multiple clustering solutions. To pool the resulting
data, we then computed, for each pair of fROIs, the probability
(percentage of solutions across random initializations and subjects)
that the two fROIs would both be assigned to the same cluster. Such
pooling provides a straightforward way to collapse results across
subjects with different cluster solutions or cluster numbering (i.e.,
order; such pooling is also known as “consensus clustering”) [see
Bassett et al. (2013); Lancichinetti and Fortunato (2012)].

We assessed the significance of our clustering results with a
permutation test. For each subject, we created a surrogate BOLD
signal time course for each fROI by phase-shuffling its original time
course (i.e., reassigning the phases of different frequencies uniformly
at random with replacement). The 34 surrogate time courses of each
subject were then clustered, and the clustering solutions were pooled
across subjects, using the same procedures described above. We
repeated this permutation procedure 1,000 times, generating for each
pair of fROIs a null distribution of the probability that they would be
assigned to the same cluster. The true probability, based on clustering
the real data, was compared against this distribution to produce a
two-tailed P value. Multiple comparisons were FDR corrected (Ben-

jamini and Yekutieli 2001) separately for each fROI (each pair of the
34 fROIs was assigned a P value, so each fROI had 33 P values
associated with it). This test yielded results similar to those obtained
when we shuffled the original time courses across fROIs instead of
generating surrogate time courses.

In the previous analysis, the clustering algorithm was data driven in
the sense that it was not provided with information about which fROIs
were candidate language regions and which were candidate MD
regions. Nonetheless, the analysis was still constrained to treat each
fROI as a distinct entity, as the clustering was run on time courses that
were averaged across all voxels within each fROI. To relax this
constraint partially, our next analysis clustered the BOLD signal time
courses of individual voxels across all fROIs. As in the previous
analysis, 50 clustering solutions were generated for each subject,
where randomly sampled time courses served as initial cluster cen-
troids. For each clustering solution, we then performed the following
computation: first, we examined each set of voxels, originating from
within a single fROI, to determine its “dominant cluster” (i.e., the
cluster that had the largest number of voxels in that fROI assigned to
it). Then, for each pair of fROIs, we computed the percentage of
voxels in the first fROI assigned to the cluster that was dominant in
the second fROI (this resulted in two measures, depending on which
fROI was “first” and which was “second”). This procedure provided,
for each pair of fROIs, a voxel-wise measure of cluster similarity,
which was then averaged across random initializations and subjects.
To test the significance of this cluster similarity measure for each pair
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Fig. 2. Matrices of fROI-to-fROI functional correlations, for (A) the resting-state condition and (C) the story-comprehension condition. Matrices in B and D
present the same data as A and C, respectively, but show only significant correlations [� � 0.05, false discovery rate (FDR) corrected]. Nonsignificant correlations
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of fROIs, we applied a phase-shuffling permutation test following the
same procedure as described above.

This second analysis used data from single voxels rather than
fROIs, yet the similarity measure that we computed for pooling the
results across subjects still referred to the original grouping of voxels
into fROIs. However, this measure was only computed after voxel-
wise clustering had taken place. We chose this measure because our
data did not allow for comparing single voxels across subjects: as
fROIs were defined in a subject-specific manner, voxels falling within
a fROI for one subject might not have fallen within any fROI for
another subject, thus entering the clustering analysis for the former
subject but not the latter.

Hierarchical clustering. Hierarchical clustering is an algorithm that
creates a binary tree structure connecting elements in a set, such that
the length of branches on the tree approximates the distances among
the elements, as provided by the user (Hartigan 1975). The clustering
together of elements, whose connecting path on the tree is shorter than
a chosen length, therefore creates a partition of the element set without
prespecifying the number of resulting clusters (in contrast to k-
means). We performed hierarchical clustering on our fROIs, provid-
ing the group-level fROI-to-fROI correlation matrix as input so that
the distance between two fROIs was defined as one minus their
correlation. Clustering was based on average linkage so that two
clusters were merged into a bigger cluster based on the mean distance
between their respective members.

The optimal partition of fROIs, based on the resulting tree, was
identified via a measure of modularity (Newman and Girvan 2004).
First, by gradually decreasing the path length used as a criterion for
clustering fROIs, we generated the set of all possible partitions
licensed by our hierarchical clustering solution (the longest path
length generates a single cluster consisting of all 34 fROIs; the
shortest path length generates 34 singleton clusters). Then, for each
partition, we computed a reformulated modularity measure that is
appropriate for detecting clusters in correlated data (Gómez et al.
2009). High modularity values indicate clustering solutions, where
within each cluster, the positive functional correlations are stronger
(and the negative functional correlations are weaker) compared with
what is expected under a null model. The null model is a random
fROI-to-fROI correlation matrix that preserves, for each fROI, the
sum of its positive correlations and the sum of its negative correlations
with the other fROIs.

RESULTS

Functional Correlation Analysis: Comparing Systems and
Hemispheres

Comparison of the language and MD systems. Figure 2
presents, for the resting-state and story-comprehension condi-
tions, matrices of pairwise correlations between candidate
language and MD fROIs computed on the time courses of
BOLD signal fluctuations. A clear partition of the fROIs is
visually evident before any statistical analysis: most pairs of
language fROIs are strongly and positively correlated with
each other (cf. top-left quadrant of the correlation matrices),
and most pairs of MD ROIs are also strongly and positively
correlated with each other (cf. bottom-right quadrant of the
correlation matrices); but correlations of most pairs consisting
of a language fROI and a MD fROI are noticeably weaker (cf.
bottom-left and top-right quadrants of the correlation matri-
ces). Moreover, during story comprehension, there are signif-
icant, negative correlations between candidate left-hemisphere
language fROIs and right-hemisphere MD fROIs. These results
indicate a functional architecture comprised of two systems,
one consisting of language regions and the other consisting of

MD regions. BOLD signal fluctuations within each system are
highly synchronized, but the two systems are functionally
dissociated.

To test quantitatively for the language-MD functional dis-
sociation, we compared the average pairwise correlation within
the language system (across all fROI pairs) with the average
pairwise correlation within the MD system and the average
pairwise correlation across the two systems (Fig. 3; averages were
computed based on Fisher-transformed correlations; see MATERIALS

AND METHODS). Specifically, a one-way, repeated-measures
ANOVA was carried out to compare functional correlations
among these three levels (“within language,” “within MD,”
and “across systems”). Consistent with our qualitative obser-
vations, a highly robust effect was revealed in both conditions
[resting-state: F(2,34) � 62.84, P � 10�11; story-comprehen-
sion: F(2,18) � 78.56, P � 10�8]. In the resting-state condition,
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Fig. 3. Comparisons of average correlations within and across systems and
hemispheres for (A) the resting-state condition and (B) the story-comprehen-
sion condition. Three repeated-measures comparisons are presented. Left:
comparison of the average pair-wise correlation within the language system
(i.e., across all language fROI pairs), the average correlation within the MD
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hemispheres in the MD system. Error bars show SDs across subjects; *P �
0.05, **P � 0.01, ***P � 0.001 (Bonferroni corrected for multiple compar-
isons).

1110 LANGUAGE AND MD SYSTEMS FUNCTIONALLY DISSOCIATED

J Neurophysiol • doi:10.1152/jn.00884.2013 • www.jn.org

on S
eptem

ber 3, 2014
D

ow
nloaded from

 



post hoc pairwise comparisons (Bonferroni corrected, for all that
follow) showed that the average correlation across the two sys-
tems (r � 0.03, SD 0.11 across subjects) was weaker than the
average correlation within the language system (r � 0.38, SD
0.13) and within the MD system [r � 0.41, SD 0.09; for both tests,
t(17) � 8.47, P � 10�6]. Similarly, in the story-comprehension
condition, the average correlation across the two systems (r �
�0.03, SD 0.10) was weaker than the average correlation within
the MD system (r � 0.37, SD 0.11), which was, in turn, weaker
than the average correlation within the language system [r � 0.49,
SD 0.08; for both tests, t(9) � 3.68, P � 0.016].

Within-system and between-system correlations were also
compared while controlling for the effect of anatomical dis-
tance among fROIs. To this end, we computed the Euclidean
distances between each pair of ipsilateral fROIs, based on
either their respective center-of-mass coordinates or their point
of maximal proximity. Then, for each fROI, its distances from
all other ipsilateral fROIs were regressed out from the corre-
sponding functional correlations (separate analyses were per-
formed for the two distance measures). For each fROI, we then
tested whether its residual correlations with other fROIs that
belonged to its own system were stronger than its residual
correlations with fROIs that belonged to the other system. We
found that correlations within each system remained stronger
than correlations across the two systems. This difference in
correlation strength reached significance for all fROIs (Bon-
ferroni corrected for multiple comparisons) except for two
language fROIs in the right hemisphere: the AngG (in both the
resting-state and story-comprehension conditions) and the
MFG (in the resting-state condition).

Comparison of the left and right hemispheres. We next
compared, for each of the language and MD systems, the
average pairwise correlation within the left hemisphere with
the average pairwise correlation within the right hemisphere
and the average pairwise correlation across the two hemi-
spheres (Fig. 3). Specifically, a one-way, repeated-measures
ANOVA was carried out to compare functional correlations
among these three levels (“within right hemisphere,” “within
left hemisphere,” and “across hemispheres”).

For the language system, a significant hemispheric difference
was revealed in both the resting-state [F(2,34) � 28.97, P � 10�7]
and the story-comprehension [F(1.11, 9.99) � 63.95, P � 10�5,
Greenhouse-Geisser corrected for nonsphericity] conditions. In
the resting-state condition, post hoc pairwise comparisons showed
that the average correlation in the left hemisphere (r � 0.50, SD
0.14) was stronger than the average correlation in the right
hemisphere (r � 0.40, SD 0.13), which was, in turn, higher than
the average correlation across hemispheres [r � 0.31, SD 0.15; for
all tests, t(17) � 3.61, P � 0.007]. In the story-comprehension
condition, post hoc pairwise comparisons showed that the average
correlation within the left hemisphere (r � 0.66, SD 0.10) was
stronger than the average correlation in the right hemisphere (r �
0.42, SD 0.11), as well as across hemispheres [r � 0.43, SD 0.10;
for both tests, t(9) � 7.54, P � 0.001], but the latter two did not
differ significantly.

In the MD system, significant hemispheric effects were also
revealed in the resting-state [F(1.22 20.69) � 8.19, P � 0.007,
Greenhouse-Geisser corrected] and story-comprehension
[F(2,18) � 13.51, P � 0.001] conditions. In the resting-state
condition, post hoc pairwise comparisons showed that the
average correlation across hemispheres (r � 0.37, SD 0.10)

was weaker than the average correlation within the left hemi-
sphere (r � 0.44, SD 0.14) and within the right hemisphere
[r � 0.46, SD 0.12; for both tests, t(17) � 4.27, P � 0.002].
Similar results were found for the story-comprehension condi-
tion [across hemispheres: r � 0.33, SD 0.13; left hemisphere:
r � 0.42, SD 0.12; right hemisphere: r � 0.43, SD 0.12; for
both tests, t(9) � 3.88, P � 0.012].

k-Means

Clustering fROIs. We clustered fROIs based on the correla-
tions among their respective average BOLD signal time
courses, separately for each subject. For both the resting-state
and the story-comprehension conditions, clustering the fROIs
into k � 2 clusters revealed a clear partition between the
language system and the MD system (Fig. 4A). Across subjects
in the resting-state condition, an average of 14.24 (1.44) fROIs
out of the 16 candidate language fROIs, or 89% (0.09), was
grouped into one cluster, whereas an average of 16.39 (1.32)
fROIs out of the 18 candidate MD fROIs, or 91% (0.07), was
grouped into a different cluster. Similarly, across subjects in
the story-comprehension condition, an average of 14.59 (1.00)
fROIs out of the 16 candidate language fROIs, or 91% (0.06),
was grouped into one cluster, whereas an average of 16.49
(1.80) fROIs out of the 18 candidate MD fROIs, or 92% (0.1),
was grouped into a different cluster. A notably inconclusive
clustering pattern was only observed for two candidate, right-
hemisphere, homologue-language fROIs, namely the right
AngG and MFG. Across subjects in the resting-state condition,
these two regions were assigned to the language-dominant
cluster only on 57.2% (47) and 51.8% (48) of the clustering
solutions, respectively. Across subjects in the story-compre-
hension condition, these two regions were assigned to the
language-dominant cluster only on 63.5% (28) and 50.5% (34)
of the clustering solutions, respectively. Importantly, the sep-
aration between language and MD systems did not result from
constraining the algorithm to generate exactly two clusters; a
similar pattern was obtained for values of k ranging from three
to six clusters, where candidate language fROIs were still
clustered with each other more often than with MD fROIs and
vice versa (Fig. 5).

The partition of fROIs into a language cluster and a MD
cluster was not expected to occur at random, as indicated by a
permutation test using surrogate BOLD time courses (created
via phase-shuffling of the original data). Out of the 91 possible
pairs of 14 language fROIs (excluding the right AngG and
MFG), 86 pairs (94.5%) in the resting-state condition and 91
pairs (100%) in the story-comprehension condition were
jointly clustered significantly more often than expected by
chance. Similarly, out of the 153 possible pairs of 18 MD
fROIs, 137 pairs (89.5%) in the resting-state condition and 153
pairs (100%) in the story-comprehension condition were
jointly clustered significantly more often than expected by
chance. Conversely, out of 288 possible pairs consisting of a
language fROI and a MD fROI, 285 pairs (99%) in the
resting-state condition and 288 pairs (100%) in the story-
comprehension condition were jointly clustered less often than
expected by chance.

Clustering individual voxels. When BOLD time courses
from all individual voxels within our fROIs were clustered into
k � 2 clusters, a “language-dominant” cluster and a “MD-
dominant” cluster again emerged. Namely, a high percentage
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Fig. 4. k-Means clustering results for the resting-state (left) and story-comprehension (right) conditions, with k � 2 clusters. A and D: the average blood
oxygenation level-dependent (BOLD) signal time course of each fROI was extracted, and the resulting time courses were clustered. In the fROI-to-ROI similarity
matrices plotted here, the color of an entry (i,j) for a given pair of fROIs represents the probability (percentage of clustering solutions across subjects and
initializations) that the 2 fROIs would both be assigned to the same cluster. B and E: BOLD signal time courses of all voxels falling within our fROIs were
clustered. For each fROI, its “dominant cluster” was then defined as the cluster to which most of the voxels originating within that fROI were assigned. In the
fROI-to-ROI similarity matrices plotted here, the color of an entry (i,j) for a given pair of fROIs represents the percentage of voxels in fROI j that was assigned
to the dominant cluster of fROI i (note that this is not symmetrical). Percentages are averaged across subjects and initializations. In all matrices (A–D), only
significant entries are shown (as assessed with a permutation test, based on phase-shuffling of the original BOLD time courses; � � 0.05, FDR corrected).
Nonsignificant entries are colored in black. The order of fROIs across rows (and columns) follows Table 1, where regions are sorted by system (language, then
MD). Within each system, fROIs are sorted by hemisphere (LH, then RH). Thick, white lines separate these subsets of fROIs. C and F: same data as in B and
E, respectively. The proportion of “language voxels” and “MD voxels” from each hemisphere that were assigned to each cluster is presented (across the 2 clusters,
bars of the same color add to 100%). Error bars show SDs across subjects.
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of voxels originating within language fROIs was assigned to
one cluster [resting-state: 76.59% (9.11); story-comprehen-
sion: 83.76% (6.44); averaged across subjects], but this same
cluster consisted of much fewer voxels originating within MD
fROIs [resting state: 19.66% (7.67); story comprehension:
19.38% (9.14)]. This cluster was hence language dominant, with
the other cluster showing the opposite, MD-dominant pattern. The
difference between the percentage of language voxels assigned to
a cluster and the percentage of MD voxels assigned to the same
cluster was significant [resting-state: t(17) � 16.61, P � 10�11;
story-comprehension: t(9) � 15.28, P � 10�7; Fig. 4, C and F].

When we compared, for every given pair of fROIs, the
assignments of their constituent voxels into the two clusters,
we observed a clustering pattern similar to that reported for
fROI-wise clustering. Namely, in both the resting-state and the

story-comprehension conditions, a partition between the lan-
guage and MD systems again emerged (Fig. 4, B and E). Thus
the majority of voxels originating in language fROIs were
assigned to the same cluster, whereas the majority of voxels
originating in MD fROIs were assigned to the other cluster.
The least conclusive clustering pattern was again observed for
the right AngG and MFG (candidate, right-homologue lan-
guage fROIs). Only about one-half of the voxels originating in
these fROIs was assigned to the language-dominant cluster,
whereas the other half was assigned to the MD-dominant
cluster. Out of the 91 possible pairs of the remaining 14
language fROIs, 86 pairs (94.5%) in the resting-state condition
and 91 pairs (100%) in the story-comprehension condition had
their voxels jointly clustered significantly more often than
expected by chance. Similarly, out of the 153 possible pairs of
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Fig. 5. k-Means clustering results of functional correlation data as a function of k. Conventions are the same as in Fig. 4.

1113LANGUAGE AND MD SYSTEMS FUNCTIONALLY DISSOCIATED

J Neurophysiol • doi:10.1152/jn.00884.2013 • www.jn.org

on S
eptem

ber 3, 2014
D

ow
nloaded from

 



the 18 MD fROIs, 140 pairs (91.5%) in the resting-state
condition and 153 pairs (100%) in the story-comprehension
condition had their voxels jointly clustered significantly more
often than expected by chance. Conversely, out of the 288
possible pairs consisting of a language fROI and a MD fROI,
286 pairs (99.3%) in the resting-state condition and 287 pairs
(99.7%) in the story-comprehension condition had their voxels
jointly clustered less often than expected by chance. As was the
case for fROI-wise clustering, the general patterns of voxel-
wise clustering also did not depend on the choice of k (Fig. 5).

Hierarchical Clustering

Tree structures (dendrograms) of fROIs, constructed based
on their correlations, revealed a functional architecture domi-
nated by the partition into language and MD systems (Fig. 6).
In both the resting-state and the story-comprehension condi-
tions, the top-most branching of the tree already separated the

set of candidate language fROIs from the set of candidate MD
fROIs. Thus the clustering together of regions whose distance
was shorter than the height of the first branching partitioned the
data into language and MD systems. In both experimental
conditions, this partition into two clusters had the highest
modularity value compared with all other possible partitions
licensed by the hierarchical tree, suggesting that the functional
dissociation between the language and MD systems is the key
organizational principle underlying the data.

The organization of fROIs within each of the two systems
provides further clues into their functional architecture. This
organization could be characterized by using a short-distance
threshold for clustering regions into small subgroups and then
slowly increasing the threshold so that they merge into larger
subgroups. The functional organization thus revealed was
largely similar across the resting-state and story-comprehen-
sion conditions.
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Fig. 6. Results of hierarchical clustering for (A) the resting-state condition and (B) the story-comprehension condition. Hierarchical clustering creates a binary
tree, with branch length (here, horizontal lines) corresponding to the similarity between fROIs (or sets of fROIs). Above each hierarchical tree, modularity is
plotted for all fROI partitions licensed by the tree. Each point on the modularity plot corresponds to a partition generated by drawing an imaginary vertical line
from that point through the tree and clustering together only those fROIs that are merged to the left of this line (fROIs that are merged to the right of the line
remain in separate clusters). Sample vertical lines are drawn for the maximal modularity, which corresponds to a partition of the data into 2 clusters, 1 consisting
of language fROIs and the other consisting of MD fROIs. R, right; L, left; Supp., supplementary; Insula, insular cortex.
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In the language system, especially during rest, clustering
was dominated by hemisphere, and within each hemisphere,
regions were clustered according to their lobe. Namely, left-
temporal regions were clustered together and only then merged
with left-frontal regions. Next, these left-hemisphere regions
were merged with right-hemisphere regions, which themselves
also formed temporal and frontal subsets. The right AngG and
MFG were among the last to merge with the rest of the
language system (consistent with our k-means results), along
with the left AngG and right PostTemp.

In the MD system, clustering was sometimes dominated by
hemisphere and sometimes by interhemispheric homology.
Namely, most frontal and parietal regions tended to merge with
each other ipsilaterally before merging across hemispheres.
However, the Insula, SMA, ACC, and MFG were each first
clustered with their contralateral homologue and only then
merged with each other and with the former “fronto-parietal”
subset.

DISCUSSION

The findings reported here demonstrate that fMRI BOLD
signal fluctuations are strongly correlated among different
brain regions of the language system, as well as among differ-
ent regions of the MD system, but correlations across these two
systems are weak or negative. These results are robust, gener-
alizing across two conditions: rest, where signal fluctuations
are not driven by an external task, and story comprehension,
where signal fluctuations are task evoked; and they arise in
similar form from both hypothesis-driven and data-driven anal-
yses. These data provide powerful, new evidence that each of
these systems forms a cohesive, integrated whole, yet the two
systems are functionally dissociated from each other.

Previous studies that used data-driven clustering of voxels
across the brain, based on resting-state functional data, pro-
vided the groundwork for the present study and even revealed
systems that approximately resemble the language and MD
systems investigated here (Lee et al. 2012; Mantini et al. 2013;
Tie et al. 2012; Yeo et al. 2011). However, the only way to link
the clusters that emerged in those studies to the wealth of
knowledge about the functions of different brain regions is
through reverse inference, based on stereotaxic coordinates
(Poldrack 2006). Such anatomy-based inferences are particu-
larly challenging for the language and MD systems, because
the mapping between stereotaxic coordinates and functional
regions is degraded by both the high variability across subjects
in the anatomical locations of each region (Amunts et al. 1999;
Frost and Goebel 2012; Juch et al. 2005; Paus et al. 1996;
Tahmasebi et al. 2012; Tomaiuolo et al. 1999) and the frequent
proximity of language and MD regions (Fedorenko et al.
2012). Here, we circumvented these problems by performing
our clustering analyses on regions (and voxels) that were
defined functionally within each subject, thereby allowing a
direct interpretation of the resulting clusters in terms of specific
functional hypotheses.

The combination of a subject-specific, functional localiza-
tion approach with an analysis of functional correlations has
been applied previously to the ventral visual pathway (Turk-
Browne et al. 2010; Zhen et al. 2013; Zhu et al. 2011) and other
regions (Harmelech et al. 2013; Heinzle et al. 2012). In fact,
this method was used by the first paper to report resting-state

functional correlations (Biswal et al. 1995). However, no prior
study has used this method to study the functional relationship
between the language and MD systems. Specifically, whereas
a few prior functional correlation studies did use functional
localizers for defining either language (Makuuchi and Fried-
erici 2013; Newman et al. 2013) or MD (Dosenbach et al.
2007; Seeley et al. 2007) regions, most of these studies used
group-level analyses of the localizer data (or coordinates from
prior studies, cf. Turken and Dronkers 2011), again with the
potential shortcomings described above. The few studies that
did define candidate language regions in individual subjects
(Hampson et al. 2002; Morgan et al. 2009) have focused on
small subsets of the language network rather than providing
wide coverage of ROIs.

The current study therefore provides new support for the
hypothesis that the language and MD systems are dissociable
from each other and are recruited for distinct cognitive pro-
cesses. Our findings complement prior evidence from neuro-
imaging studies that used standard functional contrasts (Fe-
dorenko et al. 2011, 2012; Monti and Osherson 2012; Monti et
al. 2009, 2012), as well as evidence from double dissociations
in the patient literature (Apperly et al. 2006; Bek et al. 2010;
Broca 1861/2006; Butterworth 2000; Happé et al. 1999;
Klessinger et al. 2007; Luria et al. 1965; Peretz and Coltheart
2003; Varley et al. 2005; Varley and Siegal 2000; Wernicke
1874/1969).

Remaining Questions

A crucial question for further investigation concerns the
fine-grained functional organization within the language sys-
tem and within the MD system. Although each system is highly
integrated, as indexed by the strong correlations among its
constituent regions found here, further functional subdivisions
within each system are likely. Indeed, our clustering results
already capture some possible subdivisions within each sys-
tem, and some of these appear to correspond to those suggested
in prior studies. Namely, within the MD system, our hierarchi-
cal clustering analyses revealed two subsets that may corre-
spond to the previously identified fronto-parietal and “cingulo-
opercular” networks (Dosenbach et al. 2006, 2007; Koechlin et
al. 1999; Mantini et al. 2013; Nomura et al. 2010; Power et al.
2011). These two networks are hypothesized to be differently
recruited to control task-relevant, cognitive strategies [for a
review, see Power and Petersen (2013)]. Within the language
system, our hierarchical clustering revealed frontal and tempo-
ral subsets in each hemisphere, consistent with previous results
from both aphasic patients (Geschwind 1970; Gorno-Tempini
et al. 2004) and fMRI studies (Hagoort 2003, 2005; Snijders et
al. 2009; Tie et al. 2012). The current approach of combining
functional correlation measures with functional localizers that
target specific cognitive functions is likely to prove powerful in
further elucidating these hypothesized subdivisions within the
language and MD systems.

A second unanswered question concerns the neurobiological
significance of functional correlations across brain regions. It
has been suggested that these correlations may, in part, reflect:
1) anatomical connectivity (direct and indirect) and/or 2) his-
tory of coactivation (Deco and Corbetta 2011; Deco et al. 2010,
2013) [for reviews and additional accounts, see He et al.
(2008); Keller et al. (2011); Matsui et al. (2011); Schölvinck et
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al. (2010); Shmuel and Leopold (2008)]. The extent to which
the patterns of correlations reported here correspond to direct
anatomical connections therefore remains to be discovered.
Although evidence from diffusion imaging is generally con-
sistent with resting functional correlation measures (Hermund-
stad et al. 2013), neither is a perfect measure of structural
connectivity (Uğurbil et al. 2013), posing substantial chal-
lenges for a definitive answer to this question. Moreover, some
functional correlations are critically task dependent (Hermund-
stad et al. 2013). Thus although the functional dissociation
between the language and MD systems generalized across
resting state and story comprehension, it is possible that this
dissociation would be modulated under other cognitive states.

Third, although our data indicate that the language and
MD regions are independently recruited during cognitive
processing, this conclusion need not imply that the two
systems can never be engaged simultaneously. Indeed, many
previous fMRI studies have reported activations in MD
regions during some language-processing tasks, especially
when such processing is effortful (January et al. 2009;
Kuperberg et al. 2003; McMillan et al. 2012, 2013; Meltzer
et al. 2010; Nieuwland et al. 2012; Novais-Santos et al.
2007; Rodd et al. 2005; Wild et al. 2012). These findings
suggest that the domain-general, cognitive-control mecha-
nisms associated with the MD system may play a role in
language processing [E. Fedorenko, unpublished observa-
tions; Fedorenko and Thompson-Schill (2014)] and hence,
that the MD and language systems may coactivate in some
circumstances. Interactions between these two systems,
however, may be more pronounced on a fast millisecond-
level time scale and therefore, may not be detectable in the
BOLD signal fluctuations measured here, given the low
temporal resolution of this signal. Thus an important ques-
tion for future research concerns the frequency, nature, and
functional importance of interactions and coactivations of
the language and MD systems.

Conclusions

Our results support a functional dissociation between the
language and MD systems: each system is strongly correlated
within itself, but pairs of regions straddling the two systems
show weak (or negative) correlations. The robustness of this
dissociation across conditions and analyses suggests that it
reflects a deep principle of the functional organization of the
human brain. Thus the current data help resolve the contro-
versy in the prior neuroimaging literature (Blumstein and
Amso 2013; Thompson-Schill et al. 2005) in favor of the
hypothesis that at least some of the neural mechanisms used for
high-level language processing are distinct from those that
support other cognitive functions.
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