Supplemental information

	Sequence \#1	Sequence \#2	Sequence \#3
Routine			
Number of slices	33	31	31
Distance factor	10%	10%	10%
Phase encoding direction	$\mathrm{A} \gg \mathrm{P}$	$\mathrm{A} \gg \mathrm{P}$	$\mathrm{A} \gg \mathrm{P}$
FOV read	192 mm	200 mm	200 mm
Slice thickness	4 mm	4 mm	4 mm
TR	2000 ms	2000 ms	2000 ms
TE	30 ms	30 ms	30 ms
Contrast			
Flip angle	90 deg.	90 deg.	90 deg.
Resolution			
Base resolution	64	96	96
Phase resolution	100%	100%	100%
PAT mode	None		
Geometry			
Multi-slice mode	Interleaved	Interleaved	Interleaved
Series	Interleaved	Interleaved	Interleaved

Table SI-1: Details of the three scanning sequences.

Participant	Localizer - session 1	Localizer - session 2
7 (unique ID: 007)	SNloc_ips189	SWJN_v1_ips252
19 (unique ID: 019)	SWNloc_ips168	SWNloc_ips168
21 (unique ID: 021)	SWNloc_ips168	SWJN_v2_ips232
23 (unique ID: 023)	SWNloc_ips168	SWJN_v2_ips232
24 (unique ID: 024)	SWJN_v2_ips232	SWJN_v2_ips232
30 (unique ID: 030)	SWNloc_ips168	SWJN_v2_ips232
39 (unique ID: 040)	SWNloc_ips168	SWNloc_ips168
40 (unique ID: 041)	SWNloc_ips168	SNloc_ips232
45 (unique ID: 045)	SWNloc_ips168	SWNloc_ips168
46 (unique ID: 047)	SWNloc_ips168	SWNloc_ips168
47 (unique ID: 048)	SWNloc_ips168	SWNloc_ips168
49 (unique ID: 050)	SWNloc_ips168	SWNloc_ips168
53 (unique ID: 056)	SWNloc_ips168	SWNloc_ips168
58 (unique ID: 061)	SWNloc_ips168	SWNloc_ips168
69 (unique ID: 072)	SWNloc_ips198	SWNloc_ips198
72 (unique ID: 076)	SWNloc_ips168	SWNloc_ips168
74 (unique ID: 078)	SWNloc_ips168	SWNloc_ips168
80 (unique ID: 084)	SWNloc_ips168	SWNloc_ips168
81 (unique ID: 085)	SWNloc_ips168	SWNloc_ips168
90 (unique ID: 095)	SNloc_ips189	SWNloc_ips168
96 (unique ID: 101)	SWNloc_ips168	SWNloc_ips168
98 (unique ID: 103)	SNloc_ips189	SWNloc_ips168
107 (unique ID: 113)	SNloc_ips189	SWNloc_ips198
117 (unique ID: 123)	SNloc_ips189	SWNloc_ips198

118 (unique ID: 124)	SNloc_ips189	SNloc_ips189
120 (unique ID: 126	SNloc_ips189	SWNloc_ips198
121 (unique ID: 127)	SNloc_ips189	SWNloc_ips198
123 (unique ID: 129)	SWNloc_ips198	SNloc_ips189
126 (unique ID: 132)	SWNloc_ips198	SWNloc_ips198
136 (unique ID: 142)	SNloc_ips189	SNloc_ips189
140 (unique ID: 146)	SWNloc_ips198	SNloc_ips189
142 (unique ID: 148)	SNloc_ips189	SNloc_ips189

Table SI-2: Information on the localizer versions for participants who were scanned across two scanning sessions.

The effects of coils and sequences

For reporting the normative distributions in Section 1, we evaluated the potential effects of coil (12- vs. 32-channel) and acquisition sequence (see Table SI-1) on the functional measures. To do so, we compared the size of the Sentences > Nonwords effect (averaging across LH regions) between participants scanned on the 12 -channel coil vs. the 32channel coil. The effect size was significantly greater for the 32-channel coil (beta-.22, t $=3.654, p<0.001$). We then added sequence to the regression and compared the model fit with and without sequence. Including sequence significantly improved the model by a likelihood ratio test $(\mathrm{F}(2,148)=14.48, p<0.0001)$, suggesting that sequence, like coil, significantly affects the effect size measure. Other functional measures also show sensitivity to coil and sequence. Consequently, we chose to restrict our reporting to a homogeneous sample of participants scanned with the 32 -channel head coil and sequence \#3 (see Table SI-1).

The choice of threshold for defining individual functional ROIs

In defining the individual fROIs, we were taking the top 10% of the voxels based on the t-values for the Sentences > Nonwords contrast within each parcel. The original motivation for choosing this threshold (here and elsewhere; e.g., Blank et al., 2014, 2016; Fedorenko et al., 2015) was that it yields numbers of voxels comparable to the numbers that emerge as significant at the $p<0.001$ uncorrected whole-brain level. Here, we evaluated the reliability of the effect size and effect-size-based lateralization measures when using a more liberal threshold (top 25% of voxels within each parcel). As expected given the use of a less selective subset of the voxels, correlations were lower overall: . 63 for the effect size in the LH, . 55 for the effect size in the RH, .63 for lateralization. For the lateralization measure, all 8 ROIs show an across-session correlation significantly different from 0 at $p<.05$. However, only $3 / 8 \mathrm{LH}$ regions and $2 / 8 \mathrm{RH}$ regions show significant correlations (Fig. SI-1 and SI-2).

Figure SI-1: The reliability of the Sentences > Nonwords effect size measure in a subset of 32 participants scanned across two sessions. Unlike in the main analysis, individual fROIs are defined by taking the top 25% (cf. 10%) of the voxels within each parcel. An asterisk before the r-value indicates (uncorrected) statistical significance ($\mathrm{p}<0.05$).

Figure SI-2: The reliability of the lateralization by effect size measure in a subset of 32 participants scanned across two sessions. Unlike in the main analysis, individual fROIs are defined by taking the top 25% (cf. 10%) of the voxels within each parcel. An asterisk before the r-value indicates (uncorrected) statistical significance (p < $0.05)$.

