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The majority of functional neuroimaging investigations aim to characterize an average human brain. However,
another important goal of cognitive neuroscience is to understand the ways in which individuals differ from
one another and the significance of these differences. This latter goal is given special weight by the recent recon-
ceptualization of neurological disorders where sharp boundaries are no longer drawn either between health and
neuropsychiatric and neurodevelopmental disorders, or among different disorders (e.g., Insel et al., 2010).
Consequently, even the variability in the healthy population can inform our understanding of brain disorders.
However, because the use of functional neural markers is still in its infancy, no consensus presently exists
about which measures (e.g., effect size?, extent of activation?, degree of lateralization?) are the best ones to
use. We here attempt to address this question with respect to one large-scale neural system: the set of brain re-
gions in the frontal and temporal cortices that jointly support high-level linguistic processing (e.g., Binder et al.,
1997; Fedorenko, Hsieh, Nieto-Castanon, Whitfield-Gabrieli, & Kanwisher, 2010). In particular, using data from
150 individuals all of whom had performed a language “localizer” task contrasting sentences and nonword
sequences (Fedorenko et al., 2010), we: a) characterize the distributions of the values for four key neural
measures of language activity (region effect sizes, region volumes, lateralization based on effect sizes, and later-
alization based on volumes); b) test the reliability of these measures in a subset of 32 individuals who were
scanned across two sessions; c) evaluate the relationship among the different regions of the language system;
and d) evaluate the relationship among the different neural measures. Based on our results, we provide some
recommendations for future studies of brain-behavior and brain-genes relationships. Although some of our con-
clusions are specific to the language system, others (e.g., the fact that effect-size-basedmeasures tend to bemore
reliable than volume-based measures) are likely to generalize to the rest of the brain.

© 2016 Elsevier Inc. All rights reserved.
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Introduction

The majority of studies in cognitive neuroscience seek to discover
properties that are common to all individuals, to characterize an “aver-
age” humanmind and brain. However, ways in which individuals differ
from one another can also inform our understanding of human cogni-
tion. In psychology and cognitive science, investigations of individual
differences in behavior have helped reveal the structure of – and the re-
lationships among –manydomains, including intelligence (e.g., Duncan
et al., 2000; Gardner and Hatch, 1989; Kane and Engle, 2002; Spearman,
1904; Spearman, 1927), executive functions (e.g., Carlson et al., 2004;
6-3037, Cambridge,MA02139,
Colom, 2004; Conway, 1996; Mischel et al., 1989; Miyake et al., 2000),
visual processing (e.g., Childers et al., 1985; Colombo et al., 1991;
Vogel and Machizawa, 2004), social cognition (e.g., Herrmann et al.,
2007; Miller and Saygin, 2013), speech perception (e.g., Surprenant
and Watson, 2001), language comprehension (e.g., Daneman and
Carpenter, 1980; Gernsbacher, 1991; Just and Carpenter, 1992;
Pakulak and Neville, 2010; Traxler et al., 2012), music processing
(e.g., Grahn and Schuit, 2012; Perrachione et al., 2013), and so on.

In addition to their importance for addressing questions in basic re-
search, investigations of individual differences can shed light on neuro-
logical disorders. In particular, recent years have witnessed a shift in
how mental illness is conceptualized, from the traditional, categorical,
approach where sharp boundaries were drawn between health and
neuropsychiatric and neurodevelopmental disorders, as well as among
different neurological conditions (American Psychiatric Association,
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2013) to a more probabilistic approach (e.g., Insel et al., 2010; Krug
et al., 2010). Such a shift was inspired by a long-standing observation
of variability present both within the healthy population and among
individuals diagnosed with neurological disorders, combined with sub-
stantial overlap in the symptoms and genetic risk factors among
disorders. This new way of thinking about mental illness calls for a
shift in research practices: from group comparisons between, for exam-
ple, individuals diagnosed with autism and neurotypical controls, to
explorations of variability across large populations, to discover true
endophenotypes.

Although a number of studies have attempted to link behavioral
variability to genetic variability directly, including in the domain of lan-
guage (e.g., Ocklenburg et al., 2013; Scerri et al., 2011;Whitehouse et al.,
2011), neural markers are plausibly an important intermediate link
given that genes shape the anatomy and functional organization of the
brain, and these structural and functional characteristics of the brain
in turn give rise to the observable behaviors. Indeed, neural markers –
both anatomical and functional – are being used increasingly often in
individual differences investigations of human cognition, including lan-
guage (Cope et al., 2012; Krug et al., 2010; Landi et al., 2013; Pinel et al.,
2012; Whalley et al., 2011). See Dubois and Adolphs (2016) for a
thorough discussion of this approach.

At present, the use of anatomicalmarkers ismore common, plausibly
due to the availability of large datasets, with hundreds, and sometimes
thousands, of participants. Such datasets accumulate because most
cognitive neuroscience labs routinely collect high-resolution structural
scans fromevery participant. However, anatomicalmarkers based pure-
ly on macroanatomy (e.g., the cortical thickness and/or volume of а
macroanatomically defined brain area) have their limitations. In partic-
ular, the relationship between structure and function is a complex one,
especially in the higher-order association cortices, where functional
activations do not align well with the macroanatomical landmarks
(e.g., Fischl et al., 2008; Frost and Goebel, 2012; Tahmasebi et al.,
2012). For example, a well-characterized face-selective brain region –
the fusiform face area (FFA; Kanwisher et al., 1997) – cannot be defined
anatomically (e.g., Frost and Goebel, 2012). Consequently, markers of
brain activity may provide a stronger link between genes and behavior,
especially for higher-level cognitive processes. Furthermore, they can
increase the power of anatomical investigations (e.g., studies examining
cortical thickness) by enabling researchers to delineate the relevant
brain regions more accurately than sulcal/gyral landmarks alone allow.

To successfully relate functional neural markers to genetic and
behavioral variability, however, it is important – for each relevant
cognitive function – to determine a) which markers are reliable
(i.e., stable within individuals over time), and b) how different markers
relate to one another. At present, in the domain of language research,
different groups use different language tasks (e.g., semantic verbal
fluency, verb generation, sentence completion, rhyme judgment
tasks), focus on different brain regions (e.g., inferior frontal regions,
regions in the middle temporal gyrus, or even regions outside of
the core fronto-temporal language network), and examine different
markers of neural activity (e.g., effect size for the relevant contrast in
some region of interest, volume of an activated region, degree of lateral-
ization of a region). Any one of prior studies individually can potentially
reveal something important about language or cognition more broadly.
However, the real power would come from the ability to compare and
replicate findings across studies and research groups, to discover truly
robust relationships. This could only be achieved if we, as a field, agreed
on a set of tasks and measures that are reasonable, and adopted a set of
guidelines for how to use those. For example, in increasingly more
domains of study researchers use “functional localizer” tasks, which
quickly and reliably identify a subset of the brain engaged in a particular
mental activity (e.g., face-selective regions, Kanwisher et al., 1997;
voice-selective regions, Belin et al., 2000; or regions engaged in theory
of mind, Saxe and Kanwisher, 2003). Because labs that use functional
localizers include a localizer scan in every participant, large datasets
are eventually accumulated, as needed for brain-genes investigations.
Further, because the same or comparable localizers are used across
research groups, findings can be replicated across groups in a straight-
forward way.

Indeed, it has become increasingly clear that, in order to begin to link
functional and behavioral data to underlying genetic variation, we will
need large datasets involving hundreds or even thousands of partici-
pants. For instance, Stein et al. (2012), in a large-scale meta-analysis
(n = 7795) of how genomic variation affects total brain volume, intra-
cranial volume, and hippocampal volume, found that the largest
observed effect (which was for hippocampal volume) explained only a
tiny fraction of the variance. Hoogman et al. (2014) found similarly
small effect sizes for the FOXP2 gene. Of course, it is possible that part
of the difficulty in detecting these relationships between genetic and
neural variation stems from the reliance on macroanatomical land-
marks, which may fail to identify the “natural kinds” of the mind and
brain, as discussed above. For example, the hippocampus is structurally
and functionally diverse (e.g., Poppenk et al., 2013; Schoene-Bake et al.,
2014; Travis et al., 2014) and perhaps detecting relationships between
genetic variability and the volumes of its different subregions would
be easier. However, even setting this issue aside, the effect sizes of the
relationships between genetic and neural (anatomical or functional)
variation are likely to be small because any given trait is a product of a
vast number of genetic factors. Between small effect sizes and the
huge space of possible variation in the genome, a well-powered study
needs a large number of participants, such as the data now available
from widely used functional localizer tasks.

We have recently developed methods for identifying the fronto-
temporal system engaged in high-level linguistic processing using
a contrast between sentences and sequences of nonwords (Fedorenko
et al., 2010). This and similar contrasts have been used in many
prior studies (e.g., words vs. fixation or tones: Binder et al., 1997; Diaz
and McCarthy, 2009; words vs. pseudowords: Petersen et al., 1990;
sentences vs. fixation: Kuperberg et al., 2003; sentences vs. false font
or consonant strings: Bavelier et al., 1998; Noppeney and Price, 2004;
Robertson et al., 2000; sentences vs. lists of words: Fedorenko and
Kanwisher, 2011; Fedorenko et al., 2010; Snijders et al., 2009; speech
vs. backwards or degraded speech: Bedny et al., 2011; Scott et al., in
press), and we established that this contrast works robustly at the
individual-subject level. We also demonstrated that this fronto-
temporal language system exhibits a high degree of functional specific-
ity: its regions respond robustly during language processing, but not
during other complex cognitive tasks, like arithmetic processing, gener-
al working memory tasks or music perception (Fedorenko et al., 2011,
2012b). This system is thus functionally distinct from another large-
scale brain network, which has a strong presence in the left prefrontal
cortex: the bilateral fronto-parietal executive, or cognitive control,
system (Duncan, 2013; Fedorenko et al., 2012a), and this dissociation
holds even during naturalistic language comprehension (Blank et al.,
2014).

The goal of the current study, which targets the fronto-temporal
language system, is three-fold. First, using a large dataset of healthy
adult participants (n = 79), we characterize activity in the language
system in a number of ways: focusing on eight key language regions
(Fig. 1) and their right-hemisphere homologs, we report the distribu-
tions of values for effect sizes, volumes, and lateralization (computed
based on either effect sizes or volumes). These distributions clearly
show that there is substantial variability to be explained even in the
healthy population with respect to language activations. In addition,
any newpopulation can now be evaluatedwith respect to these norma-
tive distributions, be it older or younger individuals, left handers,
learners of English as a second language, bi/multi-linguals, or individ-
uals with neurodevelopmental or acquired disorders. The data for this
set of participants are available at https://web.archive.org/web/
20160608155930/https://evlab.mit.edu/papers/Mahowald_NI. Second,
we evaluate the reliability of these functional measures in a subset of
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Fig. 1. a) Probabilistic activation overlap map and the parcels used to constrain the selection of individual functional ROIs. The overlap map was created by i) taking the 150 individual
activation maps for the localizer (Sentences N Nonwords) contrast, ii) thresholding them at p b 0.001, uncorrected level, and iii) overlaying them on top of one another. The value in
each voxel represents the proportion of individuals that show a significant effect (at the p b 0.001, uncorrected at the whole-brain level) in that voxel. The parcels were derived from a
similar overlap map in a set of 25 individuals via a watershed image parcellation algorithm, as described in Fedorenko et al. (2010). b) Individual functional ROIs in a set of 12 sample
participants. The fROIs were created by taking the top 10% of voxels for the localizer contrast within each parcel, as described in Methods.
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32 individuals who were scanned across two sessions (as well as in the
full set of 150 participants by looking at across-runs reliability). As
Rombouts et al. (1998) showed for visual cortex, we find high within-
subject reliability of language activations (see also Gorgolewski et al.,
2013), and, like Cohen and Dubois (1999), we find that effect sizes are
more stable than volumemeasures. And third, we examine the relation-
ship in the full set of 150 participants i) among the different brain re-
gions of the language network with respect to the key functional
measures, and ii) among the different functional measures, in an effort
to reduce the number of measures. Based on this examination, we pro-
vide some guidelines for future studies of brain-behavior and brain-
genes relationships.
Methods

Participants

One hundred and fifty adult participants (105 females), aged 18 to
52 (average age: 23.5 years; standard deviation: 4.9 years) – students
at MIT and members of the larger Boston community – participated
for payment, between September 2007 and September 2012. A subset
(n= 32) was scanned twice on the language localizer task, on different
days, between 0.5 and 58 months apart (average time between
sessions: 8.5 months; standard deviation: 11.2 months). Participants
were right-handed (by self report) native speakers of English, naïve to
the purposes of the study. All participants gave informed consent in
Table 1
Information onwhich subsets of participants in the set of n= 150 performedwhich version of
see Table SI-2 for information on the localizer versions for the 1st vs. 2nd session of the subset

Number of participants Language localizer version Runs/bloc

n = 8 SWJN_v1_ips252 n = 7: 8 r
n = 1: 7 r

n = 18 SWJN_v2_ips232 n = 5: 8 r
n = 6: 6 r
n = 7: 4 r

n = 69 SWNloc_ips168 n = 18: 5
n = 48: 4
n = 3: 3 r

n = 5 SNloc_ips232 2 runs/16
n = 33 SNloc_ips189 2 runs/16
n = 17 SWNloc_ips198 n = 15: 3
accordance with the requirements of the MIT's Committee on the Use
of Humans as Experimental Subjects (COUHES).

Language localizer task

Participants read sentences (e.g., A RUSTY LOCKWAS FOUND IN THE
DRAWER) and lists of pronounceable nonwords (e.g., DAP DRELLO
SMOP UL PLID KAV CRE REPLODE) in a blocked design. Six slightly dif-
ferent versions of the localizer task were used across the 150 partici-
pants, as summarized in Tables 1 and 2 (see also SI-2). In previous
work, we established that the localizer contrast is robust to changes in
materials, task and modality of presentation (Fedorenko et al., 2010;
Fedorenko, 2014). Each participant saw between 12 and 32 blocks per
condition. The taskwas amemory probe task for all but six participants:
a probe word/nonword appeared at the end of each trial and partici-
pants had to decide whether it was present in the trial. The remaining
six participants, who did the SWJN_v1_ips252 version (see Table 2), per-
formed a simple button-pressing task (“press a button at the endof each
sentence/sequence”). We include these participants because there is no
reason to expect meaningful differences based on the task (Fedorenko,
2014).

fMRI data acquisition

Structural and functional data were collected on the whole-body 3
Tesla Siemens Trio scanner with a 12-channel head coil (n = 26/150;
n = 4/32 of the 2nd session of the participants scanned twice and
the language localizer (see Table SI-1 for the details of the three scanning sequences used;
of 32 participants scanned twice and examined in the across-session reliability analyses).

ks per condition Coil Sequence

uns/32 blocks;
uns/28 blocks

12 n = 6: #1;
n = 2: #2

uns/32 blocks;
uns/24 blocks;
uns/16 blocks

12 #2

runs/20 blocks;
runs/16 blocks;
uns/12 blocks

32 #2

blocks 32 #2
blocks 32 #3
runs/18 blocks; n = 2: 2 runs/12 blocks 32 n = 2: #2;

n = 15: #3



Table 2
Procedure and timing details for the six different versions of the language localizer.

SWJN_v1_ips252
• Conditions Sentences, word lists, Jabberwocky sentences, and nonword

lists
• Materials 12-Word/nonword-long sequences

(see Expt 1 in Fedorenko et al., 2010)
• Expt block duration 24 s
• Trials per block 5
• Trial duration 4.8 s
• Trial structure * 600 ms of trial-initial fixation;

* 12 words/nonwords presented for 350 ms each
• Expt blocks per run 16 (4 per condition)
• Fix block duration 24 s
• Fix blocks per run 5
• Run duration 504 s
SWJN_v2_ips232
• Conditions Sentences, word lists, Jabberwocky sentences, and nonword

lists
• Materials 8-Word/nonword-long sequences (see Expt 2 in Fedorenko

et al., 2010)
• Expt block duration 24 s
• Trials per block 5
• Trial duration 4.8 s
• Trial structure * 300 ms of trial-initial fixation;

* 8 words/nonwords presented for 350 ms each;
* 350 ms probe
* 1000 response window
* 350 ms trial-final fixation

• Expt blocks per run 16 (4 per condition)
• Fix block duration 16 s
• Fix blocks per run 5
• Run duration 464 s
SWNloc_ips168
• Conditions Sentences, word lists, and nonword lists
• Materials 8-Word/nonword-long sequences

(same as in SWJN_v2_ips232)
• Expt block duration 24 s
• Trials per block 5
• Trial duration 4.8 s
• Trial structure * 300 ms trial-initial fixation

* 8 words/nonwords presented for 350 ms each;
* 1350 ms probe
* 350 ms trial-final fixation

• Expt blocks per run 12 (4 per condition)
• Fix block duration 16 s
• Fix blocks per run 3
• Run duration 336 s
SNloc_ips232
• Conditions Sentences and nonword lists
• Materials 8-Word/nonword-long sequences

(same as in SWJN_v2_ips232)
• Expt block duration 24 s
• Trials per block 5
• Trial duration 4.8 s
• Trial structure * 300 ms trial-initial fixation

* 8 words/nonwords presented for 350 ms each;
* 1350 ms probe
* 350 ms trial-final fixation

• Expt blocks per run 16 (8 per condition)
• Fix block duration 16 s
• Fix blocks per run 5
• Run duration 464 s
SNloc_ips189
• Conditions Sentences and nonword lists
• Materials 12-Word/nonword-long sequences (same as in

SWJN_v1_ips252)
[NB: 7 participants did a version with the sentences taken
from the Brown corpus]

• Expt block duration 18 s
• Trials per block 3
• Trial duration 6 s
• Trial structure * 300 ms trial-initial fixation

* 12 words/nonwords presented for 350 ms each;
* 1000 ms probe
* 500 ms trial-final fixation

• Expt blocks per run 16 (8 per condition)
• Fix block duration 18 s

• Fix blocks per run 5
• Run duration 378 s
SWNloc_ips198
• Conditions Sentences, word lists, and nonword lists
• Materials 12-Word/nonword-long sequences

(same as in SWJN_v1_ips252)
• Expt block duration 18 s
• Trials per block 3
• Trial duration 6 s
• Trial structure * 300 ms trial-initial fixation

* 12 words/nonwords presented for 350 ms each;
* 1000 ms probe
* 500 ms trial-final fixation

• Expt blocks per run 18 (6 per condition)
• Fix block duration 18 s
• Fix blocks per run 4
• Run duration 396 s

Table 2 (continued)

77K. Mahowald, E. Fedorenko / NeuroImage 139 (2016) 74–93
examined in the across-session reliability analyses) or a 32-channel
head coil (n = 124/150; 28/32) at the Athinoula A. Martinos Imaging
Center at the McGovern Institute for Brain Research at MIT. Functional,
blood oxygenation level dependent (BOLD), data were acquired using
one of three similar EPI sequences (see Table SI-1 for details). All three
sequences had a 90 degree flip angle and had the following acquisition
parameters: 33 (sequence #1) or 31 (sequences #2 and 3) 4-mm-thick
near-axial slices acquired in the interleaved order (with 10% distance
factor), 3 mm × 3 mm (sequence #1) or 2.1 mm × 2.1 mm (sequences
#2 and 3) in-plane resolution, FoV in the phase encoding (A≫ P) direc-
tion 192 mm (sequence #1) or 200 mm (sequences #2 and 3) and
matrix size 64 mm × 64 mm (sequence #1) or 96 mm × 96 mm
(sequences #2 and 3), TR = 2000 ms and TE = 30 ms. The first several
seconds of each run were excluded to allow for steady state
magnetization.

Preprocessing and first-level analyses

MRI data were preprocessed and analyzed using SPM5 and custom
Matlab scripts (available – in the form of an SPM toolbox – from
http://www.nitrc.org/projects/spm_ss). Each subject's data were
motion corrected and then normalized into a common brain space
(the Montreal Neurological Institute, MNI template) and resampled
into 2 mm isotropic voxels. The data were then smoothed with a
4 mm Gaussian filter and high-pass filtered (at 200 s). The effects
were estimated using a General Linear Model (GLM) in which each
experimental conditionwasmodeledwith a boxcar function (scaled be-
tween 0 and 1) convolved with the canonical hemodynamic response
function (HRF, scaled to have unit integral). The boxcar function
modeled entire blocks (the fixation condition was modeled implicitly).
More specifically, for each condition,we estimated from the experimen-
tal design the expected BOLD-response changes (up to a scaling factor),
and then used a GLM to get the values of the scaling factors (the beta
volumes associated with each condition). The BOLD signal entered in
the GLM estimation step has been scaled by the average global signal
(SPM's session-specific grandmean scaling procedure) so that the asso-
ciated scaling factors can be interpreted in percent signal change (PSC)
units.

Critical analyses

Regions of interest (ROIs) were defined functionally in each individ-
ual participant using the Sentences N Nonwords contrast. To do so, we
used the Group-constrained Subject-Specific (GSS) analysis method
developed in Fedorenko et al. (2010). In this analysis, a group-level rep-
resentation of the activations is used to divide up the activation land-
scape into regions (what we refer to as “parcels”). These parcels are
subsequently used to constrain the selection of individual-level

http://www.nitrc.org/projects/spm_ss
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functional ROIs. Here, we used the parcels (Fig. 1a) generated for the
Sentences N Nonwords contrast in a set of 25 participants as described
in Fedorenko et al. (2010). (Nineteen of these 25 participants are includ-
ed in our set of 150 participants.). These parcels were intersected with
each individual subject's activation map for the Sentences N Nonwords
contrast, as described in more detail below. We here focus on the
“core” set of eight regions on the lateral surfaces of the left frontal, tem-
poral and parietal cortices (Fig. 1a) – which most robustly and consis-
tently emerge in the investigations of the language system – and their
right-hemisphere (RH) homologs, for a total of 16 regions.

Using the individual activation maps for the Sentences N Nonwords
contrast, we extracted two measures from each of the 16 ROIs:

• effect size for the Sentences N Nonwords contrast;
• volume based on the Sentences N Nonwords contrast.

To do so, we defined individual functional ROIs in two ways. In
particular, to compute the effect size measure, for each subject we sorted
the voxels within each parcel based on their t-values for the localizer
contrast, and the top 10% of voxels were chosen as that subject's
functional ROI (see Fig. 1b for sample fROIs). To ensure the indepen-
dence of the data used for fROI definition and for response estimation
(Kriegeskorte et al., 2009), we used an across-runs cross-validation pro-
cedure. In particular, each subject's activation map was computed for
the Sentences N Nonwords contrast using all but one run of data, and
the 10% of voxels with the highest t-value within a given parcel were
selected as that subject's fROI. The response to the two conditions
(sentences and nonwords) was then estimated using the left-out run.
This procedure was iterated across all possible partitions of the
data, and the responses were then averaged across the left-out runs to
derive a single responsemagnitude for each condition for a given region
and subject. This n-fold cross-validation procedure (where n is thenum-
ber of functional runs) allows one to use all of the data for defining the
ROIs and for estimating the responses (Nieto-Castañón and Fedorenko,
2012). Statistical tests described below were performed on the percent
BOLD signal change (PSC) values extracted from these fROIs.

To compute the volume measure, for each subject we counted the
number of voxels that fell within each parcel and that were significant
for the localizer, Sentences N Nonwords, contrast at a fixed threshold
(p b 0.001, uncorrected at the whole-brain level). Statistical tests
described below were performed on these voxel count values.

We further computed two measures of lateralization for each of
the eight regions: an effect-size-based measure and a volume-based
measure. For the latter, more traditional, measure (Binder et al., 1997;
Hinke et al., 1993), we used the following formula (e.g., Seghier et al.,
2008): (number of voxels in the LH − number of voxels in the RH) /
(number of voxels in the LH + number of voxels in the RH). For the
former measure, we simply subtracted the Sentences N Nonwords effect
size in the right hemisphere from the Sentences NNonwords effect size in
the left hemisphere. We did not divide by effect size since, in cases
where effect size was very small, lateralization would be far too large.
The measure used is roughly normally distributed.

Results

Inter-individual variability in the language activations

Starting with the full set of 150 participants, we analyzed whether
there were meaningful differences among participants' activations
based on a) the head coil (12-channel or 32-channel) and b) the
sequence (Table SI-1). We found potentially meaningful effects for
both, as discussed in the Appendix. Therefore, we restricted our analysis
in this section to 76 participants scanned using the 32-channel coil and
the sequence most frequently used with that coil (sequence #3; see
Table SI-1). In evaluating any new individual or set of individuals
relative to these distributions, we therefore recommend using data col-
lected with a 32-channel coil and a sequence comparable to our
sequence #3. (We use the full n= 150 dataset in our analysis of the re-
liability of functional measures because potential coil- and sequence-
based differences could only lower the reliability making our estimates
conservative, and in the analyses or both inter-region correlations and
inter-measure correlations because the differences are not relevant to
the questions asked). Having said that, because of the possibility of dif-
ferent scanners producing different effect sizes (Friedman et al., 2006,
2008), we recommend that new scanners be “calibrated” using the
existing data to make sure that the data obtained is comparable to the
reference distributions provided here.

We characterized the functional language activations of 76 partici-
pants in 16 ROIs (8 in each hemisphere), for the following measures
(see Fig. 2):

a) effect size for the Sentences N Nonwords contrast;
b) volume based on the Sentences N Nonwords contrast;
c) lateralization based on the Sentences N Nonwords effect size; and
d) lateralization based on the Sentences N Nonwords volume.

The values for the effect size measure are roughly normally distrib-
uted in each region and show large variation across individuals. For ex-
ample, in the LIFG fROI, a representative ROI, we observed a roughly
normal distribution, with a mean effect of .69 and a standard deviation
of .46. At the group level, the Sentences N Nonwords effect was signifi-
cantly different from 0 in every ROI in both the LH (ts N 16;
ps b 0.0001; df=75) and the RH (ts N 6; ps b 0.0001; df=75), although
the effect size was substantially lower in the RH ROIs (2.7 times lower
on average across regions).

The values for the volume measure (which cannot be below 0) are
roughly exponentially distributed in the LH regions. Furthermore, we
observed an asymmetry between the hemispheres, with larger regions
of activation in the LH. However, individuals vary widely with respect
to their RH activations: whereas the majority of individuals show a
near-0 activation across regions in the right hemisphere, some individ-
uals show large activations, as can be seen in the long tails in the right
column of the Volume plot (Fig. 2b). This variability in the amount of
RH activation leads to substantial variability in the volume-based later-
alization scores (Fig. 2d).

For the effect-sized measure, there are also some participants who
show more extreme right-hemisphere activation, but the values are
roughly normally distributed. Thus, the effect-size-based lateralization
values are not as sharply skewed as those for volume-based lateraliza-
tion, as can be seen in Fig. 2c.

The reliability of different neural measures of language activity

In addition to characterizing the distributional properties of the key
functional measures of language activity in the population, it is critical
to measure their reliability, because it is only sensible to try to relate a
neural measure to some aspect of behavior or genetics if it is stable in
an individual over time.

We began by examining broad similarity in the activation patterns
within each of the sixteen parcels. Such similarity is apparent when vi-
sually examining whole-brain activation maps (e.g., Fig. 3). To quantify
this similarity, we examined the correlations between the contrast
values for the Sentences N Nonwords contrast across i) odd- and even-
numbered runs, for the full set of 150 participants, and ii) the two ses-
sions, for the subset of 32 participants who were scanned twice on the
language localizer task, on different days, 8.5 months apart on average.
As can be seen in Fig. 4, activation patterns were highly similar both
across runs and across sessions within participants. For the across-runs
comparison, the Fisher-transformed correlations were above 0.66 and
as high as 1 for the LH regions (ts N 19; ps b 0.0001; df = 149) and
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above 0.44 for the RH regions (ts N 11; ps b 0.0001; df = 149). The
values were extremely similar for the across-sessions comparisonwithin
participants: the Fisher-transformed correlations were above 0.64 for
the LH regions (ts N 9; ps b 0.0001; df = 31) and above 0.45 for the
RH regions (ts N 6; ps b 0.0001; df = 31). These results suggest that
Fig. 2. a: The distribution of effect size measures for the Sentences N Nonwords contrast. The x-a
subjects showing each effect size. b: The distribution of volume measures for the Sentences N N
shows the number of subjects with each volume. c: The distribution of lateralization meas
lateralization (positive values = left lateralization, negative values = right lateralization)
distribution of lateralization measures based on the Sentences N Nonwords volume. The x-a
values = right lateralization), and the y-axis shows the number of subjects with each lateraliz
the activation patterns are highly stable within individuals over time
both within and across scanning sessions. (See Fig. 5.)

For the control analysiswhere the values from the two sessionswere
paired randomly across participants (e.g., session 1 in participant 1 vs.
session 2 in participant 2; cf. session 1 vs. 2 in the same participant),
xis shows effect size (in percent BOLD signal change), and the y-axis shows the number of
onwords contrast. The x-axis shows volume (in number of 2 mm3 voxels), and the y-axis
ures based on the Sentences N Nonwords effect size. The x-axis shows the strength of
, and the y-axis shows the number of subjects with each lateralization value. d: The
xis shows the strength of lateralization (positive values = left lateralization, negative
ation value.
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the correlations were drastically lower (b0.2 for the LH regions, and
b0.16 for the RH regions). Indeed, a linear regression revealed that the
correlations between participantswere significantly lower than the cor-
relations within participants between sessions (beta = .51, t = 10.4,
p b .0001) and within participants between runs of the same session
(beta= .54, 11.0, p b .0001). In a post-hoc direct comparison of the cor-
relations within participants within session (across runs) versus the
correlationswithin participants across sessions, therewas no significant
difference (beta = .03, t = .47, p = .64). Even in the across-subjects
analyses, the correlations were still reliable in most regions, reflecting
some degree of across-subjects similarity in the activation patterns
(LH regions: ts N 2.4; ps b 0.05; df = 31; RH regions: ts N 1.2;
ps b 0.01, except for the RMFG region, where the correlation did not
reach significance; df = 31). The much lower correlations for the ran-
domly paired sessions reflect the inter-individual variability apparent
in Figs. 1 and 3 and documented previously (e.g., Fedorenko et al.,
2010).

Next, we examined the reliability of our four functional measures
(effect size, volume, and the two lateralizationmeasures) inmore detail
by correlating each participant's first-session values and second-session
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values for each region separately. Reliable measures are ones that have
similar values in the two sessions. For the Sentences N Nonwords effect
size, seven of the eight LH regions showed a correlation greater than
0.4, and these correlations were significantly different from 0
(ps b 0.05; 3 surviving multiple comparison correction for the 16 re-
gions tested). The only exception was the LAngG region with a correla-
tion of 0.29, which did not reach significance. A similar pattern was
observed for the lateralization based on the effect size measure: seven
of the eight regions (all but LAngG) were significantly positive – with
rs above 0.5 and as high as 0.86 – at p b 0.05 and were still significant
after Bonferroni correction for the 8 regions tested. In contrast, the vol-
ume measure only showed a significant correlation in two of the eight
regions: LIFG and LPostTemp (ps b 0.05). And the lateralization based
on the volume measure showed a significant correlation in five of the
eight regions (ps b 0.05). It therefore appears that effect-size-based
measures are more reliable within subjects than volume-based mea-
sures (see Cohen and Dubois (1999), for a similar conclusion). Time be-
tween the two sessions (which varied from 0.5 to 58 months) did not
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appear to affect the reliability of the measures (all ps N .05, with nu-
merically small estimated betas), suggesting that it is not the case
that activation patterns become more dissimilar with longer inter-
vals between scans. This result is consistent with the fact that activa-
tion patterns were highly similar both between the runs within a
session as well as between sessions (see Fig. 4). It is also worth not-
ing that Gorgolewski et al., 2013 have previously established that
several other factors do not much affect within-subject reliability
measures, including scanner noise and co-registration errors. By far
the most variance in reliability was explained by the paradigm,
with some paradigms being more robust than others. It is also
bound to be the case that the amount of data collected from each par-
ticipant plays a large role, which is why we always have at least 8–10
blocks per condition in our experiments.

Some proposals exist for more sophisticated measures of lateraliza-
tion (e.g., Wilke and Lidzba, 2007). We leave it to future work to evalu-
ate whether some other measures may prove to be more stable across
time.



Fig. 3. Sample activation maps from the two sessions of 5 participants scanned twice on the language localizer task.

Fig. 4. Correlations between the activation patterns (i.e., the vectors of contrast values with one value per voxel) in each of the LH and RH parcels for the Sentences N Nonwords contrast
between odd- and even-numbered runs within a session in the full set of 150 participants (red bars), between the two sessions in the 32 participants who were scanned twice on the
language localizer task (green bars), and between the two sessions taken from different participants (e.g., session 1 in participant 1 vs. session 2 in participant 2; blue bars).
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The relationship among the different language regions

In the analyses above, following prior work (Fedorenko et al., 2010),
we used a set of eight parcels to constrain the selection of subject-
specific functional ROIs. As discussed above, these parcels were derived
from a group-level representation of language activity. In particular, a
watershed algorithm was applied to the probabilistic overlap map for
the Sentences N Nonwords contrast in a set of 25 participants (see
Fig. 5. a: The reliability of the Sentences N Nonwords effect size measure in a subset of 32 partic
statistical significance (p b 0.05). b: The reliability of the Sentences N Nonwords volumemeasur
indicates (uncorrected) statistical significance (p b 0.05). c: The reliability of the effect-size-ba
asterisk before the r-value indicates (uncorrected) statistical significance (p b 0.05). d: The rel
across two sessions. An asterisk before the r-value indicates (uncorrected) statistical significan
Fedorenko et al., 2010 for details; see Julian et al., 2012, for an applica-
tion of this approach to high-level visual cortical regions) to derive a
set of parcels corresponding to regions of activation that are spatially
consistent across individuals.We here focus on eight “core” cortical lan-
guage regions in the frontal and temporal/temporo-parietal cortices
(and their RH homologs; cf. Fedorenko et al., 2010, for discussion of
several additional regions that emerge as consistently active across peo-
ple). However, the question of how to carve up the language network
ipants scanned across two sessions. An asterisk before the r-value indicates (uncorrected)
e in a subset of 32 participants scanned across two sessions. An asterisk before the r-value
sed lateralization measure in a subset of 32 participants scanned across two sessions. An
iability of the volume-based lateralization measure in a subset of 32 participants scanned
ce (p b 0.05).
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into regions – or whether such division is even warranted – remains
open (Fedorenko and Thompson-Schill, 2014). Moreover, a number of
studies have suggested that regions within the language network are
correlated in their activity both during rest (e.g., Blank et al., 2014; Tie
et al., 2014; Turken and Dronkers, 2011) and during naturalistic lan-
guage comprehension (Blank et al., 2014; Yue et al., 2013). It is therefore
important to know how correlated the different fROIs are with respect
to our fourmeasures. This issue is important for the problem ofmultiple
comparisons in brain-behavior and brain-genetics investigations: in
particular, if a set of language regions show little or no correlation in
their functional profiles, they should be treated as independent, and
hypotheses tested should be corrected for the number of regions
examined; if, on the other hand, a set of language regions show
highly correlated functional profiles, they should not be treated as inde-
pendent, and a milder form or the multiple-comparisons correction
may be appropriate.

To evaluate the relationship among our sixteen regions, we calculat-
ed the correlation across 150 subjects between each pair of regions for
each functional measure, except for region volume, which is omitted
due to its low across-session reliability as shown in our section on
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"The reliability of different neuralmeasures of language activity." In line
with prior findings of correlated time-courses among the different re-
gions (e.g., Blank et al., 2014), we found correlations across subjects be-
tween each fROI and every other fROI, as shown in Fig. 6. (Note that we
do not correct for multiple comparisons here given that we are not try-
ing to make claims about the significance for any particular pair of re-
gions; in a dataset consisting of pure noise, we would expect 5% of our
correlations to be significantly different from 0.). The three measures
show comparable mean levels of correlation across regions: the mean
correlation among regions for the Sentences N Nonwords effect size is
0.53; for the effect-size-based lateralization is .34; and for the volume-
based lateralization is 0.44.

Notably, however, it is clear that some pairs of regions are more
correlated than others. To further assess the relationship among re-
gions, we ran a clustering algorithm on the three functional mea-
sures that showed high across-sessions reliability (effect size,
effect-size-based lateralization, and volume-based lateralization) to
determine which pairs of ROIs show the most similar responses
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across the 150 participants. To do so, we first normalized the func-
tional measures for each ROI across participants such that each func-
tional measure for each ROI had a mean value of 0 across
participants. Without this normalization procedure, the clustering
algorithm would cluster regions largely based on the overall
strength of activation (such that regions with the highest effect
sizes and strongest lateralizations would be clustered). By scaling
the values, the algorithm instead focuses on the relative functional
profile across participants. We then used these values to create a
vector for each ROI. We used a package pvclust (Suzuki and
Shimodaira, 2006) in the R statistical programming language (R
Core Team and others, 2012) with average clustering. Average clus-
tering is a hierarchical clustering procedure that seeks to minimize
the average distance between elements in a cluster. A correlation-
based distance measure was used to quantify the distance between
the ROI vectors. To assess the significance of the resulting clusters,
we computed an AU (Approximately Unbiased) p-value (the num-
bers shown in black in Fig. 7). In effect, these p-values measure
how consistent the clusters are with the data. An AU p-value of 1.0
would mean that the cluster is perfectly supported by the data.
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Fig. 6. a: Correlations betweenpairs or regions for the SentencesNNonwords effect sizemeasure. The color of the box reflects the strength and direction of the correlation (darker blueboxes
are oneswith higherpositive correlations, darker red boxes are oneswith higher negative correlations, and lighter boxes have values close to 0).b: Correlations betweenpairs or regions for
the effect-size-based lateralizationmeasure. The color of the box reflects the strength and direction of the correlation (darker blue boxes are ones with higher positive correlations, darker
red boxes are ones with higher negative correlations, and lighter boxes have values close to 0).c: Correlations between pairs or regions for the volume-based lateralization measure. The
color of the box reflects the strength and direction of the correlation (darker blue boxes are ones with higher positive correlations, darker red boxes are ones with higher negative corre-
lations, and lighter boxes have values close to 0).
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We observe a significant (AU = 0.95) cluster, which included the
three frontal regions (LIFGorb, LIFG and LMFG fROIs) and the
LMidPostTemp region (highlighted with a red box in Fig. 7). Intrigu-
ingly, the same cluster was recently reported in the analysis of the
time-courses of the language regions during naturalistic story com-
prehension (Blank et al., 2014; Fig. 6). Jointly, these results strongly
suggest that the LMidPostTemp fROI forms an integrated system
with the frontal language regions, in spite of the fact that it is more
spatially proximal to the language regions in the temporal and pari-
etal cortices.

Another quite reliable cluster (AU = 0.91) emerged in the anterior
temporal cortex, comprising LAntTemp and LMidAntTemp fROIs.

The relationship among the different neural measures of language activity

Finally, it is important to knowhowdifferent functionalmeasures re-
late to one another. In other words, do these different measures capture
(at least somewhat) distinct aspects of the phenotype? For example, can
we predict lateralization scores from the Sentences N Nonwords
effect size? Or does eachmeasure capture something unique about indi-
vidual subjects relative to other measures? To evaluate the relationship
among our functional measures, we calculated the correlation across
150 subjects between each pair of functional measures – except for
volume due to its low across-session reliability as shown in the previous
section – for each ROI.

As can be seen in Fig. 8, the two lateralization measures are quite
strongly inter-correlated (rs between 0.31 and 0.53; all significantly
different from 0 at p b .001 and still significant after Bonferroni correc-
tion). Furthermore, the effect-size-based lateralization measure is
(trivially) correlated with the Sentences N Nonwords effect size measure
in the LH (rs between 0.34 and 0.84; all significantly different from 0 at
p b .001 and still significant after Bonferroni correction), such that
individuals with a larger LH Sentences N Nonwords effect show a
bigger difference in effect sizes between the LH and RH (i.e., our
effect-size-based lateralization measure). However, the volume-based
lateralization measure is almost entirely uncorrelated with the size of
the Sentences N Nonwords effect in the LH regions (rs between −0.09
and 0.17; 0.02 on average across regions; no regions showing a correla-
tion significantly different from 0 at p b .05), and it is negatively
correlated with the size of the Sentences N Nonwords effect in the RH
regions (rs between −0.34 and −0.58; all significantly different from
0 at p b .001 and still significant after Bonferroni correction). The latter
is likely because individuals with larger Sentences N Nonwords effects in
the RH also have bigger RH regions, and are thus less strongly left-
lateralized in the volume-based measure.

Summary and conclusions

Here, we have characterized neural activity in the fronto-temporal
language system – which has been shown to support high-level
linguistic processing in a relatively selective manner (Fedorenko et al.,
2010, 2011; Scott et al., in press) – in a dataset comprised of 150
right-handed native-English-speaking individuals. We examined four
functional measures: the Sentences N Nonwords effect size, the
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Sentences N Nonwords volume, and two lateralization measures (one
based on the effect size, and one — on volume). To summarize the key
results:

1. We have observed that all four measures exhibit substantial inter-
individual variability.

2. Activations for the language “localizer” task (based on the contrast
between sentences and nonword sequences; Fedorenko et al.,
2010) are highly stable within individuals both within and across
sessions. We suspect that similar contrasts (based on comparisons
between linguistic stimuli and degraded versions of those stimuli)
would show similar reliability as long as sufficient amount of data
is collected from each individual. We found, however, that effect
sizes tend to be more reliable than volume measures, consistent
with some prior findings (e.g., Cohen and Dubois, 1999), although
both effect-size-based and volume-based lateralization measures
showed quite high reliability.

3. We observed strong positive correlations across regions with
respect to all the functional measures, suggesting that these regions
should not be treated independently. Furthermore, a clustering
analysis using a combination of functional measures suggested
that some sets of ROIs are especially strongly related, including
a) LMidPostTemp and the three frontal ROIs, b) LAntTemp and
LMidAntTemp, and possibly c) LPostTemp and LAngG (see Blank
et al., 2014, for converging evidence).

4. Finally, we found that the two lateralization measures are correlated
with each other, but the volume-based lateralization measure is not
correlated with the size of the Sentences N Nonwords effect in the
LH ROIs.

Based on these results, we offer several guidelines for researchers
who wish to examine relationships between language activations – as
assessed with this or similar language localizers – and a) behavior, or
b) genetic variability.

• We recommend focusing on the measures of effect size rather than
volumes, because the former prove to be more reliable within
Fig. 7. Hierarchical ROI clustering results based on three functional measures: the
Sentences N Nonwords effect size, the effect-size-based lateralization measure, and the
volume-based lateralization measure. The numbers denote AU (Approximately
Unbiased) p-values. Red boxes highlight significant clusters at p ≥ 0.95.
individuals.
• The inter-region correlations strongly suggest that different language
regions form an integrated functional system, consistent with prior
claims from the analyses of low-frequency fluctuations at rest and
during language comprehension (Blank et al., 2014; Tie et al., 2014).
Thus future studies may want to consider the fronto-temporal high-
level language system as a whole, instead of focusing on one or two
regions within it. Doing so may yield greater experimental power
for detecting relationships between neural markers on the one hand,
and behavioral or genetic markers on the other hand. (NB: Of course,
these high-level language-processing regions are distinct from
e.g., the lower-level perceptual speech regions, the visual word-form
area, the lower-level articulatory motor regions, and the domain-
general cognitive control regions, implicated in some aspects of
language comprehension and production (e.g., Fedorenko and
Thompson-Schill, 2014). Functional properties of those regions/sys-
tems can thus be examined independently from those of the fronto-
temporal language systemandmay relate to distinct aspects of behav-
ioral and genetic variability.).

• The ROI clustering results suggest that some divisions of the language
system into regions adopted here and based on the most common
topographic patterns across subjects (Fedorenko et al., 2010)
may not be warranted. In particular, instead of the division into
eight regions, our clustering suggests a tripartite division, with
a) the LMidPostTemp region being grouped with the frontal ROIs,
b) the LAntTemp and LMidAntTemp ROIs forming a single region,
and possibly c) the LPostTemp and LAngG ROIs forming a single
region.

• Finally, it appears that two of the functional measures examined
here are not correlated with one another and thus may reflect
distinct phenotypic characteristics. These are i) the size of the
Sentences N Nonwords effect, and ii) volume-based lateralization.
These measures can thus be examined independently in future
studies, with a proper correction for the number of measures.

In addition to the measures examined here, a number of other
measures – both functional and structural – may be worth consider-
ing in future studies. For example, instead of considering the func-
tional properties of different regions/subsets of the language
system separately, one may examine the relationships among them.
For example, we have observed in this dataset that individuals vary
in terms of which regions show the largest Sentences N Nonwords ef-
fect or have the most Sentences N Nonwords voxels. For example,
some individuals show the strongest effect in the inferior frontal re-
gions, others in the anterior temporal regions, and yet others in the
posterior temporal regions. To the extent that these different compo-
nents of the language system are somewhat functionally distinct,
these inter-individual differences in which region is “dominant”
(i.e., most robustly active) may be important. Using our subset of
32 participants who were scanned twice, we assessed the reliability
of this measure, asking whether a participant who shows more acti-
vation in Region A than Region B in session 1 also showsmore activa-
tion in Region A than Region B in session 2. For the
Sentences NNonwords effect sizemeasure, 30/32 participants showed
a positive correlation across ROIs (mean r = 0.63 for the LH ROIs),
and for the volume measure, all 32 participants showed a positive
correlation (mean r = 0.79). Thus, these relative patterns of greater
or lesser activation in different parts of the language system appear
to be highly stable within individuals across time and may serve as
an additional useful characteristic of individuals.

Furthermore, as we briefly mentioned in the Introduction, having
reliable functional activations in individual subjects can allow
researchers to obtain better structuralmeasures than those based pure-
ly on macroanatomy. For example, we can examine the cortical
thickness of language-responsive parts of the left inferior frontal



Fig. 8. a: Correlations among the three functional measures – the Sentences N Nonwords effect size in the LH, the effect-size-based lateralization measure, and the volume-based
lateralization measure – for each LH ROI. The color of the box reflects the strength and direction of the correlation (darker blue boxes are ones with higher positive correlations, darker
red boxes are ones with higher negative correlations, and lighter boxes have values close to 0). b: Correlations among the three functional measures – the Sentences N Nonwords effect
size in the RH, the effect-size-based lateralization measure, and the volume-based lateralization measure – for each RH ROI. (The correlation values for the relationship between the
two lateralization values are the same as in Fig. 8.). The color of the box reflects the strength and direction of the correlation (darker blue boxes are ones with higher positive
correlations, darker red boxes are ones with higher negative correlations, and lighter boxes have values close to 0).
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gyrus instead of using anatomical sulcal/gyral boundaries, and this
functional-activation-based measure is likely to work better than pure
anatomy-based measures because we know that these cortical regions
contain structurally (e.g., Amunts et al., 2010) and functionally (e.g.,
Fedorenko et al., 2012a, 2012b) distinct sub-regions.

To conclude, we report a number of reliable functional markers of
language activity based on fMRI activation patterns for a robust con-
trast that activates the fronto-temporal language system long impli-
cated in high-level language processing (e.g., Binder et al., 1997;
Fedorenko et al., 2010). Although determining which markers
prove to work best in explaining behavioral and genetic variability
is likely to be a long and iterative process, we offer some recommen-
dations based on the patterns observed in a large dataset of 150 indi-
viduals, which should constrain the space of possibilities, at least
somewhat, in future investigations of brain-behavior and brain-
genes relationships.
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