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One important goal of cognitive neuroscience is to discover and explain properties common to all human
brains. The traditional solution for comparing functional activations across brains in fMRI is to align each in-
dividual brain to a template brain in a Cartesian coordinate system (e.g., the Montreal Neurological Institute
template). However, inter-individual anatomical variability leads to decreases in sensitivity (ability to detect a
significant activation when it is present) and functional resolution (ability to discriminate spatially adjacent
but functionally different neural responses) in group analyses. Subject-specific functional localizers have
been previously argued to increase the sensitivity and functional resolution of fMRI analyses in the presence
of inter-subject variability in the locations of functional activations (e.g., Brett et al., 2002; Fedorenko and
Kanwisher, 2009, 2011; Fedorenko et al., 2010; Kanwisher et al., 1997; Saxe et al., 2006). In the current
paper we quantify this dependence of sensitivity and functional resolution on functional variability across
subjects in order to illustrate the highly detrimental effects of this variability on traditional group analyses.
We show that analyses that use subject-specific functional localizers usually outperform traditional
group-based methods in both sensitivity and functional resolution, even when the same total amount of
data is used for each analysis. We further discuss how the subject-specific functional localization approach,
which has traditionally only been considered in the context of ROI-based analyses, can be extended to
whole-brain voxel-based analyses. We conclude that subject-specific functional localizers are particularly
well suited for investigating questions of functional specialization in the brain. An SPM toolbox that can per-
form all of the analyses described in this paper is publicly available, and the analyses can be applied retroac-
tively to any dataset, provided that multiple runs were acquired per subject, even if no explicit “localizer” task
was included.

© 2012 Elsevier Inc. All rights reserved.

Introduction

Cognitive neuroscience strives for generality: one of the main
goals is to discover and explain properties common to all human
brains, not just to a particular individual or set of individuals.1 In
functional magnetic resonance imaging (fMRI) studies, for example,
it is important to determine whether a particular activation pattern
is consistent across subjects. The traditional solution for comparing
functional activations across different brains in fMRI is to align each
individual brain to a template brain in a Cartesian coordinate system

(e.g., MNI coordinate space; Devlin and Poldrack, 2007; Poldrack et
al., 2011) and then to examine the effects – across the subjects in
the set – in each unit of analysis, i.e., a voxel. Random-effects and lin-
ear mixed model group analyses, which have become the standard
since Holmes and Friston (1998), further allow the investigator to ex-
tend conclusions from the particular set of subjects to the larger
population.

Because of inter-subject anatomical variability, however, align-
ment of functional activations across individual brains is not perfect
(e.g., Miller et al., 2002;Wohlschläger et al., 2005). Two sources of an-
atomical variability plausibly contribute to this poor alignment. First,
brains vary in their folding patterns (e.g., Duvernoy, 1991; Geschwind
and Levitsky, 1968; Juch et al., 2005; Ono et al., 1990; Tomaiuolo et al.,
1999). And second, brains vary in terms of the locations of the
cytoarchitectonic zones – which plausibly correspond to function
(e.g., Iwamura et al., 1983; Matelli et al., 1991; Rozzi et al., 2008) –

relative to the sulci and gyri (e.g., Amunts et al., 1999; Brodmann,
1909; Fischl et al., 2008; Rajkowska and Goldman-Rakic, 1995a,b;
Zilles et al., 1997). Because of this second kind of variability, even
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1 Another important goal of cognitive neuroscience is to explain the inter-individual

differences in brain anatomy and function, and to relate those differences to behavior on
the one hand, and genetic make-up, on the other. Although the discussion of themethods
for investigating questions related to individual differences is beyond the scope of this pa-
per, the methods advocated here are well suited for looking at inter-individual variability
in functional activations.
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the more advanced normalization methods, which aim to align sulci
and gyri across individual brains (e.g., Fischl et al., 1999), are unlikely
to lead to perfect alignment of functional activations (e.g., Frost and
Goebel, 2012). Furthermore, to the extent that there exists functional
heterogeneity within cytoarchitectonic areas (e.g., self-organizing
neural spatial representations such as the ocular dominance columns
in V1), there is no reason to expect these functional patterns to line up
across individual brains due to their very fine spatial scale. As a result,
methods that rely on inter-subject overlap of functional activations in ste-
reotaxic space to make population-level inferences are likely to a) miss
some effects that are present because functionally equivalent regions
will not be aligned across subjects, aswell as b) detect spurious activation
overlap between conditions because spatially distinct activations will be
blurred together in group analyses.

An alternative method that circumvents the need to align individ-
ual brains in a common stereotaxic space and yet enables the use of
inferential statistics about the human brain in general (rather than
one individual or a small set of individuals) emerged in the mid
1990s. In this method, regions of interest (ROIs) are defined function-
ally in each individual brain using a contrast targeting the cognitive
function of interest (a “localizer” contrast).2 Once a region is identi-
fied in each subject in this way, inferences can be made about the re-
sponses of this region to new experimental conditions by aggregating
the responses across the voxels within these subject-specific areas
(bottom panel of Fig. 1). This method was first applied to cortical re-
gions engaged in visual processing (e.g., the motion-sensitive area MT
and the object-selective lateral occipital complex—Tootell et al., 1995a,
1995b; Malach et al., 1995; retinotopic cortex—Tootell et al., 1998).
For example, visual area MT is commonly defined by comparing the
brain's response to radially moving dots relative to stationary dot ar-
rays. Indeed, it has been the consensus in the vision fMRI community
for a decade that each individual subject must be retinotopically
mapped so that the experimental data can be analyzed and reported
separately for each specific visual region (V1, V2, V3, etc.). Others sub-
sequently applied this subject-specific functional ROI method to inves-
tigations of high-level visual processing. For example, an area
selectively engaged in processing faces was discovered in the fusiform
gyrus (the fusiform face area, FFA), using a contrast between faces and
objects (Kanwisher et al., 1997; see also McCarthy et al., 1997). Several
other high-level visual areas were discovered and characterized, using
this approach, over the following several years, including the
parahippocampal place area, PPA (Epstein and Kanwisher, 1998) and
the extrastriate body area, EBA (Downing et al., 2001). Furthermore,
this approach has now been successfully applied to even higher-level
cognitive domains, such as theory of mind (e.g., Saxe and Kanwisher,
2003; Saxe and Powell, 2006), numerical processing (e.g., Pinel et al.,
2007; Shuman and Kanwisher, 2004), language (e.g., Fedorenko et al.,
2010; Hickok et al., 2009; January et al., 2009), and executive functions
(e.g., Derrfuss et al., 2012).

Although the use of functional localizers is now quite widespread
and although there have been several empirical demonstrations of the
advantages of the subject-specific functional localization method com-
pared to group-based methods (e.g., Brett et al., 2002; Fedorenko and
Kanwisher, 2009, 2011; Fedorenko et al., 2010, 2012; Saxe et al.,
2006), the method remains controversial (e.g., see the debate between
Friston et al., 2006, and Saxe et al., 2006, Neuroimage, for an extensive
discussion of the advantages and disadvantages of the method). The
goal of the current paper is two-fold. First, wewill formally demonstrate

the relationship between inter-subject variability in the loci of function-
al activations and the sensitivity and functional resolution of the analy-
ses, and show that subject-specific functionally-defined ROIs (fROIs)3

surpass subject-independent ROIs, with respect to both sensitivity and
functional resolution, for awide range of variability values. Importantly,
this increase in sensitivity and functional resolution from fROI methods
holds evenwhen the same total amount of data is used for each analysis
(i.e., the localizer plus the experimental runs in the fROI analysis, and all
experimental runs in the traditional group analysis). Furthermore, we
argue that because the use of functional localizers has been typically
framed in the context of ROI analyses, their advantages have often
been interpreted too narrowly, in terms of the relative merits of ROI-
vs. whole-brain voxel-based analyses. Therefore, the second goal of the
paper is to extrapolate the results from ROI-based analyses to
voxel-based analyses. In particular, we will show that standard
multi-subject voxel-based analyses, like ROI-based analyses, im-
prove in sensitivity and functional resolution, and show a reduction
in bias, when subject-specific localizer contrasts are used.

Before proceeding to themain part of the paper, one important issue
deserves discussion. In particular, as we note above, the functional lo-
calization approach circumvents the need to align individual brains in
a common stereotaxic space: all of the analyses can be performed in
the subject's native anatomical space. However, individual-subject
analyses can also be (and often are) performed in the common space.
What are the relative advantages of the native vs. common space? Intu-
itively, it seems that functional localization should be performed using
the subject's own anatomy (e.g., Swallow et al., 2003). This analysis
method results in the least amount of data distortion, and the locations
of the functional activations can be more clearly related to the
macroanatomic landmarks (e.g., Grosbras et al., 1999). However, the
use of the common space has some benefits as well: the results can be
more easily related to other studies that rely on the use of the common
space. This is especially important in the fields where traditional group
methods still dominate the research landscape, like language or social
cognition (cf. the field of vision research). Furthermore, common
space is required in cases where the definition of individual fROIs is
constrained by a group-level representation of the functional data
(e.g., Fedorenko et al., 2010; Thirion et al., 2007). Although for the pur-
poses of method comparison, all of the subject-specific analyses
discussed here – both ROI-based and whole-brain voxel-based – rely
on the use of the common space, fROI analyses performed in the native
subject space (using subject-specific anatomical ROIs) would benefit
from increased sensitivity and functional resolution in much the same
way as those conducted in the common space. Reassuringly, a few pre-
vious studies that have examined the effects of spatial normalization on
the individual-subjects' activations suggest that spatial normalization
as in of itself does not have much of a detrimental effect (e.g., Miki et
al., 2000; Swallow et al., 2003).

2 In some cases (e.g., when working with certain subcortical structures or with cor-
tical areas that have relatively good alignment with the cortical folds, like V1 (Hinds et
al., 2009)), regions of interest can be defined anatomically in each individual brain.
However, for most cortical regions anatomical definition is problematic. As a result, al-
though anatomical ROIs defined in individual subjects have been shown to be superior
to those defined in the common space (Nieto-Castañon et al., 2003; see also Grosbras
et al., 1999), combining subject-specific anatomical ROIs with functional localization
has a better chance of picking out the corresponding functional regions across subjects.

3 There are several ways to define fROIs in individual brains. The traditional way in-
volves examining each individual subject's activation map for the localizer contrast
and selecting a set of active voxels using macroanatomic landmarks as guidelines.
Fedorenko et al. (2010; see also Julian et al., 2012) have recently argued that a more
objective way of defining ROIs is desirable in order to (a) avoid the subjectivity inher-
ent in the traditional procedure, and (b) facilitate the standardization of ROI definition
procedures across subjects, studies, and labs. A solution Fedorenko et al. (2010) pro-
posed was to use spatial constraints (“parcels”) derived from a group-level representa-
tion of functional activation data (e.g., a probabilistic overlap map or a random-effects
map) to constrain the selection of subject-specific voxels. In particular, the group-level
parcels are intersected with individual subjects' thresholded activation maps for the
localizer contrast, and voxels that fall within the boundaries of each relevant parcel
are used for subject-specific ROI definition. A related alternative discussed in Fedorenko
et al. (2012) involves intersecting each individual subject's activationmap for the localizer
contrast with anatomical parcels from standardized atlases (e.g., Duvernoy, 1991;
Maldjian et al., 2003; Tzourio-Mazoyer et al., 2002; Eickhoff et al., 2005; see Thirion et
al., 2007, 2010a,b, for other approaches). Although these recent, more objective and auto-
mated, fROI definition methods may be adopted in the future, the arguments presented
here apply to all subject-specific fROI methods, regardless of the details of the ROI defini-
tion procedure.
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Finally, we clarify some terminology that will be used throughout
the paper. We classify multi-subject analysis methods as group-level
vs. subject-specific. In the former, only group-level activation maps are
used in the analyses (e.g., voxel-based stereotaxically registered group
analyses, or ROI analyses that utilize fixed subject-independent ROIs),
while in the latter, subject-specific functional activation maps are
used at some stage in the analyses. We use the term localizer contrast
to refer to a contrast between conditions/sets of conditions that is
used for constraining the units of analysis, i.e., by limiting the analyses
within each subject to a subset of voxels that show a particular func-
tional characteristic, as indicated by supra-threshold effects in the
localizer contrast. Unless otherwise noted, we use the term sensitivity
to refer to the sensitivity or power (true-positives rate) of multi-
subject analyses, characterizing the ability of a given analysis procedure
to correctly infer a functional response when one is present in the pop-
ulation (see Appendix A for details). We use the term functional resolu-
tion to refer to the ability of a given analysis procedure to discriminate
two spatially adjacent but functionally different neural responses (see
Appendix E for details).

Methods and results

To evaluate the sensitivity and functional resolution of different anal-
ysis procedures, we considered the following general scenario. A re-
searcher is interested in performing an inference on a primary contrast
of interest A (e.g., functional response to high-pitch auditory stimuli com-
pared to some low-level baseline condition, such as silence). As a second-
ary goal, the researcher would like to know whether a second and
orthogonal contrast of interest B (e.g., functional response to low-pitch
auditory stimuli compared to a low-level baseline) elicits responses in
the same or different brain areas. Both of these questions exemplify typi-
cal inferences made from neuroimaging data, with the second question
being of particular importancewhen investigating questions of functional
specialization in the brain. We here evaluate the impact of anatomical
variability on the ability of the researcher to correctly answer both of

these questions. We use two complementary measures: sensitivity
(the ability of a given analysis procedure to correctly answer the first
question; e.g., to infer a functional response to high-pitch stimuli
when one is present in the population), and functional resolution (the
ability of a given analysis procedure to correctly answer the second
question; e.g., to infer a selective neural response to high-pitch but
not low-pitch stimuli when the functional responses to these two stim-
uli are located in adjacent but non-overlapping regions4).

We begin with a demonstration of the impact of inter-subject vari-
ability in the loci of activation on group-level fixed-ROI analyses
(‘Standard group‐level fixed‐ROI analyses’ section). We then discuss
subject-specific fROI analyses and show how they circumvent the prob-
lem of inter-subject variability in the loci of activation, achieving higher
sensitivity and functional resolution and a reduction in bias, compared
to the fixed-ROI method (‘Subject‐specific functional ROI analyses’ sec-
tion). In the section ‘Standard voxel‐based analyses’, we demonstrate
the impact of inter-subject variability on voxel-based analyses, for
unsmoothed and smoothed data. We show how voxel-based analyses
that use smoothing can be considered as a general case of fixed-ROI
analyses. The section ‘Subject‐specific localizers in the context of
whole‐brain voxel‐based analyses’ then discusses the application and
advantages of subject-specific functional localizers in the context of
voxel-based analyses. Finally, the section ‘Simulation examples’ pre-
sents a series of simulations that illustrate the points made in the sec-
tion ‘Standard group‐level fixed‐ROI analyses’ up to the section

Fig. 1. A schematic illustration of ROI-based analyses. Top panel: an a priori ROI is intersected with each subject's activation map for the effect of interest. ROI-level measures are
estimated by aggregating the BOLD data (or single-subject effect estimates) across all of the voxels within the ROI. Bottom panel: an a priori ROI is intersected with each subject's
functional localizer mask. ROI-level measures are estimated by aggregating the BOLD data across all of the voxels within the resulting subject-specific areas. Note that the data used
to derive the values that are aggregated at the ROI level for each subject must come from data left out of the localizer, or from a different, orthogonal contrast (Vul and Kanwisher,
2010).

4 Note that the second question in this example is typically addressed by a conjunc-
tion analysis, inferring a non-selective response to stimulus A if, within the same anal-
ysis unit (ROI or voxel), both effects A and B are found significant at a given threshold.
Inter-subject variability in the loci of activation introduces the potential for false posi-
tives in this conjunction analysis, beyond those related to the threshold level, when
two nearby areas respond selectively to stimuli A and B, respectively (where the re-
searcher might incorrectly conclude that a given analysis unit responds to both
stimuli).
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‘Subject‐specific localizers in the context of whole‐brain voxel‐based
analyses’, and the section ‘Some practical considerations’ discusses
some practical issues important to consider when performing
subject-specific analyses.

Standard group-level fixed-ROI analyses

Here, we consider the case of group-level ROI analyses5 that use a
fixed (subject-independent) ROI across all subjects (top panel of
Fig. 1). This fixed ROI can be defined functionally (using a group-level
map for a localizer contrast, or a set of coordinates from another
study) or anatomically (usingmacroanatomic landmarks or anatomical
atlases; e.g., Duvernoy, 1991; Maldjian et al., 2003; Tzourio-Mazoyer et
al., 2002; Eickhoff et al., 2005). First, wemodel the effect of inter-subject
variability in the loci of activation on the sensitivity and functional res-
olution of group-level fixed-ROI analyses, andwe show how the sizes of
individual activations relative to the size of the ROI mediate this effect.
Then we investigate the detrimental effect of inter-subject variability in
the context of a common practice to accommodate this variability by
using ROI definitions that fully encompass the expected extent of vari-
ability in activation loci (e.g., Mikl et al., 2008; White et al., 2001). We
show that this practice only partially compensates for the loss of sensi-
tivity, evenwhen optimally placed and sized ROIs are used. Last, we dis-
cuss additional bias and functional resolution issues in group-level
fixed-ROI analyses.

In Appendices A and E we derive the general expressions for the
sensitivity and functional resolution of group-level fixed-ROI analy-
ses. Inter-subject variability in the loci of activation has a detrimental
effect on the sensitivity and functional resolution of group-level
fixed-ROI analyses.6 This detrimental effect can be characterized by
the distribution of partial-coverage values across-subjects, i.e., the
sizes of the true loci of activation relative to the size of the ROI. Partial
coverage can be expressed as a percentage of the total number of
voxels in the ROI (e.g., if a subject activates only 30 voxels of the
300 total voxels in the ROI, the partial coverage value for this subject
will be 10%). Both (i) low average partial-coverage values (i.e., activa-
tions within the ROI that are small with respect to the total size of the
ROI), as well as (ii) high variability in partial-coverage values (i.e., dif-
ferences in the size of activations within the ROI across subjects), det-
rimentally affect the sensitivity of the group-level fixed-ROI analyses.
The effect of different distributional properties of partial-coverage
values on the sensitivity and functional resolution of group-level
analyses is illustrated in Fig. 2 (top). Sensitivity and functional resolu-
tion values are computed using an ROI size of 1 resel (resolution ele-
ment; Friston et al., 1994), and average within- and between-subject
variability estimates from Desmond and Glover (2002).7 As illustrat-
ed in the left panel of Fig. 2 (top), sensitivity of fixed-ROI analyses de-
creases with decreasing partial-coverage values. In practical terms

this means that if the true locus of activation is small compared to
the ROI size, fixed-ROI analyses can fail to find a significant effect
that is present within the ROI (because the effect of interest is washed
out by the large number of voxels that do not show the effect). Simi-
larly, as illustrated in the right panel of Fig. 2 (top), functional resolu-
tion decreases rapidly with decreasing partial-coverage values. In
practical terms this means that if an ROI shows a response to two con-
ditions, A and B, we will not know whether the ROI, or areas within it,
respond to both A and B, or whether the ROI instead contains areas
that respond selectively to each of these two conditions (e.g., an
area that responds to A but not B, and a different area that responds
to B but not A), unless the ROI is of similar size or smaller than the
true loci of activation.

Although smaller ROI sizes can lead to higher functional resolu-
tion, the relationship between ROI size and sensitivity is more com-
plex. In particular, a common solution for accommodating some
level of inter-subject variability in the loci of activation in ROI analy-
ses is simply to define an ROI that encompasses the expected variabil-
ity across subjects (e.g., Mikl et al., 2008; White et al., 2001). Fig. 3
(left) illustrates the sensitivity of group-level analyses as a function
of inter-subject variability in the loci of activation, assuming fixed
ROIs centered in the optimal location (the average locus of activations
across subjects), and considering different possible ROI sizes. The
values of the within- and between-subject sensitivities used in this
plot represent the higher range of sensitivity values from Desmond
and Glover (2002). This plot illustrates that maximal sensitivity can
be obtained by using ROI sizes that approximately match the overall
extent of activation across subjects (consistent with the matched fil-
ter theorem; Turin, 1960). The dotted line represents the optimal sen-
sitivity that can be achieved in group-level fixed-ROI analyses (by
placing an optimally-sized ROI at the optimal location) across differ-
ent extents of inter-subject variability. Critically, however, even if a
researcher is able to a priori define optimally-sized and optimally-
located fixed ROIs, the sensitivity of group-level analyses will still be
detrimentally affected by inter-subject variability (the dotted line de-
creases dramatically with increasing inter-subject variability values).
In other words, in the presence of inter-subject variability, increasing
the ROI size to encompass the extent of observed or expected vari-
ability will be at best a partial solution; the analyses will still suffer
from decreased sensitivity compared to that achievable in the pres-
ence of little/no inter-subject variability in the loci of activation, or
compared to subject-specific analyses, as we will show in the section
‘Subject‐specific functional ROI analyses’.

In addition to these sensitivity and functional resolution limita-
tions, it is also worth noting that by aggregating across both “active”
and “inactive” voxels within the ROI in each subject, the effect sizes
will typically be underestimated compared to those within the true
loci of activation (by a factor proportional to the partial-coverage av-
erage; see Appendix A; see Saxe et al., 2006; Fedorenko et al., 2012,
for empirical support). This adds an important bias to analyses that
require accurate effect size estimation (e.g., power analyses), and it
also adds an additional source of variance to other secondary analyses
based on these effect size estimates (e.g., predictive analyses of be-
havioral measures).8 All of these limitations are often used to argue
against ROI-based analyses and in favor of voxel-based analyses (to
avoid aggregating across voxels with non-homogeneous responses;

5 We consider here ROI analyses that take the average time-series within an ROI as a
summarymeasure of the ROI signal. Although some alternative approaches have been ar-
gued to better deal with functionally heterogeneous ROIs (e.g., extracting the first
eigenvariate from a singular value decomposition of the within-ROI covariance, Friston
et al., 2006), the analysis of these alternative methods goes beyond the scope of this
manuscript.

6 Although these analyses consider the specific contribution of inter-subject variabil-
ity in the loci of activation, they also take into account the presence of other sources of
between-subject variability (e.g., variability in the magnitude of the neural response
across subjects; e.g., Aguirre and Detre, 2012).

7 Because the estimates in Desmond and Glover (2002) do not attempt to discrimi-
nate different sources of between-subject variability (i.e., those associated with vari-
ability in the loci of activation vs. those associated with variability in effect size
magnitude due to other sources), the between-subject variability estimates used in
our analyses are likely overestimating the true amount of variability in effect size mag-
nitude from other sources. In the absence of accurate measures of the relative contri-
bution of different sources to the total between-subject variability, we chose this
approach so that our conclusions would err on the conservative side (plausibly
underestimating rather than overestimating the relative contribution of inter-subject
variability in the loci of activation).

8 Note, nevertheless, that the concept of bias is always relative to a particular model
of neural activation, and we are considering here a simplified model of activation that
considers a localized response within the ROI, with unknown strength, position, size,
and shape, which may vary across subjects (see Appendix A for details). Biases are de-
fined as mismatches between the reported effect sizes and the mean strength of the
neural responses in this particular model of activation, and it is only with respect to
this model that fixed-ROI analysis effect size estimates can be considered biased. In
contrast, fixed-ROI analyses clearly would not be biased with respect to a simpler mod-
el where any ROI inhomogeneities are disregarded and the ROI behavior is simply
modeled by its average effect.
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e.g., Friston et al., 2006). The section ‘Subject‐specific functional ROI
analyses’ will show how functional localizers offer an alternative
approach for increasing the sensitivity and functional resolution of

these analyses, and the sections ‘Standard voxel‐based analyses’ and
‘Subject‐specific localizers in the context of whole‐brain voxel‐based
analyses’will further show how functional localizers can be incorporated

Fig. 2. Sensitivity (left) and functional resolution (right) of group-level fixed-ROI analyses (top) and subject-specific fROI analyses (bottom) as a function of partial-coverage values.
Top panel: the sensitivity and functional resolution of group-level fixed-ROI analyses are detrimentally affected by inter-subject variability in the loci of activation. This detrimental
effect can be characterized as a function of the average and variability of partial-coverage values across subjects. The sensitivity (y-axis, left plot) and functional resolution (y-axis,
right plot) of group-level fixed-ROI analyses is plotted for different levels of partial-coverage average values (x-axis), and for all possible partial-coverage variability values (gray
area). (Partial-coverage values represent the proportion of activated voxels within an ROI relative to the total number of voxels in the ROI.). Bottom panel: the sensitivity (y-axis,
left plot) and functional resolution (y-axis, right plot) of subject-specific fROI analyses are plotted for different levels of partial-coverage average values (x‐axis), and for all sensible
partial-coverage variability values (gray area). Compared to the fixed-ROI case (top panel), both sensitivity and functional resolution show a reduced detrimental effect of lower
partial-coverage values or higher partial-coverage variability.

Fig. 3. Sensitivity of group-level fixed-ROI analyses (left) and subject-specific fROI analyses (right) as a function of spatial variability in the loci of activations and as a function of the
ROI size. Left: the sensitivity of multi-subject fixed-ROI analyses (y-axis) is plotted for different levels of inter-subject variability in the loci of activation (x-axis) for three different
ROI sizes (solid lines). ROI sizes that approximately encompass the extent of activation across subjects (dotted line) are optimal, yet the sensitivity of such ROIs still decreases with
increasing inter-subject variability in the loci of activation. Theoretical sensitivity values estimated for a spherical Gaussian-distributed activation with size parameter σact (fixed to
a value of 1, representing approximately an activation extent of 12 voxels FWHM assuming 1 resel=125 voxels) and with the loci of this activation varying randomly between
subjects following a Gaussian distribution in center positions (with σloci varying from 0 to 4 characterizing the inter-subject variability in the loci of activation). The ROI is similarly
characterized as encompassing an isotropic Gaussian sphere with size parameter σROI (varying from 1 to 5). Right: the sensitivity of multi-subject subject-specific fROI analyses
(y-axis) is plotted for different levels of inter-subject variability in the loci of activation (x-axis) for three different ROI sizes (solid lines). ROI sizes that minimally encompass
the extent of activation across subjects are optimal (cf. matched filter theorem). In addition, the sensitivity of optimally-sized ROIs (dotted line) is not detrimentally affected by
increasing inter-subject variability in the loci of activation.
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into voxel-based analyses, increasing their sensitivity and functional res-
olution as well.

Subject-specific functional ROI analyses

The application of subject-specific functional localizers in the con-
text of ROI analyses considers, instead of all of the voxelswithin a fixed
ROI volume, only those voxels within the a priori ROI that are activat-
ed in each subject by the localizer contrast.9 In this context, the a priori
ROI serves as a spatial constraint on the location of the fROI in each
subject, and the individual subjects' fROIs are defined by intersecting
this a priori ROI and the subject-specific localizer mask (see Fig. 1,
bottom). As in the previous section, we first model the effect of
inter-subject variability in the loci of activation on sensitivity and
functional resolution. We then show that when the a priori ROI fully
encompasses the extent of inter-subject variability in activation loci,
this method compensates for the detrimental effect of inter-subject
variability on sensitivity, andwe discuss how this method additionally
addresses the functional resolution and bias limitations present in the
fixed-ROI approach. Last, we discuss the practical conditions for which
this method can be expected to outperform the group-level fixed-ROI
method described in the previous section in terms of the sensitivity of
multi-subject analyses.

In Appendices B and Ewe derive the general expressions for the sen-
sitivity and functional resolution of subject-specific fROI analyses. Fig. 2
(bottom) illustrates the effect of different distributional properties of
partial-coverage values on sensitivity and functional resolution. The
ROI size andwithin- and between-subject variability values exemplified
here are the same as those used in Fig. 2 (top), and we assumed an 80%
power for the localizer contrast when using an FDR-corrected pb .05
false positive threshold (a relatively powerful localizer). This figure il-
lustrates two key findings. First, in contrast to the fixed-ROI case, the
functional resolution of subject-specific fROI analyses remains high
over a wide range of partial-coverage values, which is a natural conse-
quence of aggregating only across “active”, or “responsive”, voxelswith-
in the ROI. In practical terms this means that subject-specific fROI
analyses can effectively identify whether areas within the ROI show a
joint or selective response to two conditions A and B (e.g., it can identify
whether there are areas within an ROI that respond to A but not B by
using a localizer contrast A and examining the response to B across
the suprathreshold voxels within this ROI, or vice versa). And second,
unlike in the fixed-ROI case, this additional functional resolution does
not come at the cost of reduced sensitivity. On the contrary, in this ex-
ample the sensitivity of subject-specific fROI analyses is the same as or
higher than that of the fixed-ROI analyses over a wide range of
partial-coverage values. In the remainder of the section, wewill investi-
gate a) the effect of ROI size (i.e., of the size of the spatial constraint used
to select the relevant subject-specific voxels) on subject-specific fROI
analyses compared to fixed-ROI analyses; and b) whether the higher
sensitivity and functional resolution values observed in the current ex-
ample generalize to other conditions.

Fig. 3 (right) illustrates sensitivity at different levels of inter
-subject variability in the loci of activation, when considering the
same parameter values as in the example of group-level fixed ROIs
(Fig. 3, left), and assuming an 80% power level for the localizer con-
trast. Similar to fixed-ROI analyses, optimally-sized ROIs in subject-
specific fROI analyses encompass (at least) the overall extent of acti-
vation across subjects. In contrast to fixed-ROI analyses, however, the
optimal sensitivity of subject-specific fROI analyses does not decrease
with increasing extents of inter-subject variability in the loci of acti-
vation (dotted line remains approximately constant for the entire
range of variability values), highlighting that this methodology com-
pensates for the variability in the loci of activation without incurring
an associated loss of sensitivity that characterizes the fixed-ROI
methodology.

In addition to the increased robustness to inter-subject variability
in the loci of activation, it is also worth noting that, by aggregating
only across active voxels within the ROI in each subject, the effect
sizes will typically be more accurately estimated than in a fixed-ROI
methodology (see Appendix B). The simulations in the section
‘Simulation examples’ will illustrate the theoretical advantages of
the subject-specific ROI methodology discussed in this section, show-
ing how spatially non-homogeneous responses within the ROI can be
differentiated, and how non-overlapping responses to different con-
ditions can be correctly identified in these analyses.

It could be argued, however, that the advantages of using function-
al localizers are to be weighted against two potential disadvantages.
First, using separate (orthogonal) contrasts to define the ROIs and to
estimate the strength of the BOLD responses results in decreased
power because some portion of the data is not being used to estimate
the strength of the response (Neyman–Pearson lemma). Second, the
effectiveness of the subject-specific approach relies on being able to
(relatively accurately) estimate the location of the responses using a
localizer contrast. Depending on the power of the localizer contrast,
we might not be able to obtain accurate representations of the
subject-specific locations of activation, which would adversely affect
the sensitivity of the multi-subject analyses. In other words, one
would wish to use a large portion of the data for the localizer contrast
in order to obtain accurate representations of the location of activation
for each subject. Yet one would also wish to use a large portion of the
data for the estimation of the strength of the responses in order to
maximize the within-subject sensitivity (minimize the estimation
error impacting the sensitivity of multi-subject analyses). This issue
could raise concerns that the sensitivity and functional resolution
gains exemplified in Fig. 3 (right) might not generalize to other condi-
tions. However, we show in Appendix B (Eq. (B2)) that regardless of
how the data are split (including the use of cross-validation, discussed
in the section ‘Some practical considerations’ below) and for any arbi-
trary distribution of partial-coverage values, it is always possible to
find a minimal single-subject power that will result in improved sen-
sitivity and functional resolution of the multi-subject analyses when
using the subject-specific fROI method compared to using the group-
level fixed-ROI method. In other words, for the same amount of total
functional data, and nomatter howmuch of the data we use for defin-
ing the localizer contrast, if the first-level design is sufficiently
high-powered (e.g., the total amount of functional data acquired for
each subject is large enough) the sensitivity of the resulting subject-
specific fROI analyses always surpasses that of a fixed-ROI methodol-
ogy applied to the entire dataset. Although this result is theoretically
interesting, the question remains of what exactly is a “sufficiently”
high-powered first-level design.We address this question next, by ex-
plicitly comparing the sensitivity and functional resolution of the
fixed-ROI and subject-specific methods for the same amount of exper-
imental data.

Following the description of the general experimental setup at the
beginning of the section ‘Methods and results’, we consider and exper-
iment with two contrasts/conditions A and B, acquired acrossmultiple

9 The general application of the subject-specific fROI methodology includes both (i) cases
where the response is estimated for the same conditions that are used to define the
ROIs (as considered here; for example, we can use the faces>objects contrast in
the even runs to define the ROIs and then extract the response to these two condi-
tions from the odd runs in order to estimate the magnitude of the responses; see
the section ‘Some practical considerations’ for a discussion of how cross-validation
can be used in such cases to maximize the power of these analyses), and (ii) cases
where the response is estimated for a new condition or set of conditions (as discussed
in the context of functional resolution, later in this section); for example, we can use
the faces>objects contrast to define face-sensitive regions and then examine the re-
sponse of these regions to body parts). In either case, either independent subsets of
the data or orthogonal contrasts should be used for defining the ROIs vs. for estimat-
ing the responses (e.g., Kriegeskorte et al., 2009). Examples of these different applica-
tions will be shown in the simulations in the section ‘Simulation examples’.
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runs for each subject (6 runs), and spanning the entire set of function-
al acquisitions. The fixed-ROI method will estimate the average effect
of the A conditionwithin the ROI using the entire dataset for each sub-
ject (6 runs), while the subject-specific fROI method will estimate the
average effects within the fROI using a cross-validation approach
(it will use 5 runs to localize the key region in each subject individual-
ly, and the remaining run to quantify the magnitude of response in
that region, repeating this procedure iteratively to cover all sensible
partitions of the data and averaging across the magnitudes so
obtained; see the section ‘Orthogonality of the localizer contrast and
the contrast of interest’ for details). When addressing questions
about functional resolution, the fixed-ROI method will use a conjunc-
tion of the contrasts A and B to evaluate the selectivity of the response
in the ROI, while the subject-specific fROImethodwill examine the re-
sponse to condition Bwhen using condition A as the localizer contrast.

In Fig. 4 we illustrate the relative sensitivity and functional resolu-
tion advantages of the subject-specific fROI method over the group-
level fixed-ROImethod, for a range of average partial-coverage values,
which are inversely related to the relative extent of inter-subject var-
iability (x-axis), and single-subject design sensitivities (y-axis; these
values characterize the “quality” of the functional data, with higher
values representing stronger effects, less noise, and/or longer acquisi-
tions). The plot illustrates the conditions that result in improved
multi-subject sensitivity (left) and functional resolution (right) for
the subject-specific fROI method (green area), or the group-level
fixed-ROI method (red area).10

The subject-specific fROImethod outperforms thefixed-ROImethod
across a range of different (realistic) conditions. For example, if the av-
erage extent of activation within an ROI (partial-coverage) is below
80%, the subject-specific methodwill outperform the fixed-ROI method
in both sensitivity and functional resolution for any ROI size and any
level of partial-coverage variability as long as the single-subject design
sensitivity is above 4.4 (or, equivalently, when the localizer contrast
power is above 80%). In contrast, the group-level fixed-ROI method
will outperform the subject-specific fROI method only for extremely
low-powered single-subject designs (with single-subject design sensi-
tivity below 1.37, or, equivalently, with the localizer contrast power

below 2%11). For intermediate values of the localizer contrast power
(between 2% and 80%), the relative advantages of one method over
the other will depend on the ROI size and the level of partial-
coverage variability, with larger ROIs and higher inter-subject vari-
ability leading to relative advantages for the subject-specific fROI
method. In practice, it is not unreasonable to expect power levels
of 90% or above for individual voxel-level analyses. For example,
single-subject design sensitivity values explored by Desmond and
Glover (2002) suggest that with n=100 independent timepoints
per condition, single-subject design sensitivity values range from 4
to 100, with average values around 25, which are well above the
displayed range of single-subject sensitivity values in our analyses
(from 0 to 6). This suggests that for a well-powered single-subject
design (with sensitivity of 6 or above), the subject-specific fROI
method will outperform the group-level fixed-ROI method in all
cases except when the activation extent in every subject encom-
passes the entire ROI and the inter-subject overlap is perfect (aver-
age partial-coverage greater than 0.99), not a realistic possibility
under any amount of inter-subject variability in the loci and extent
of activation (Hellier et al., 2003).

Standard voxel-based analyses

As we noted above, because the use of functional localizers is typi-
cally framed in the context of ROI analyses, their advantages are often
interpreted too narrowly (i.e., in terms of the relative merits of ROI-
vs. whole-brain voxel-based analyses). We here discuss how the most
widely used group analysis method, multi-subject voxel-based analy-
ses, can be considered a special case of fixed-ROI analyses. In particular,
voxel-based analyses can be thought of as fixed-ROI analyses with ROI
size of 1 voxel (see Appendix C). In this case, partial-coverage values
for each subject are dichotomous, equaling 1 if the subject shows activa-
tion in the relevant voxel, or 0 if the subject does not show activation in
the voxel. The average partial-coverage value represents in this case the
level of inter-subject overlap (i.e., the proportion of subjects for whom
the voxel is active), and partial-coverage variability is determined

Fig. 4. A comparison of multi-subject sensitivity (left) and functional resolution (right) in subject-specific fROI analyses vs. group-level fixed-ROI analyses. The plot displays the
relative advantages of the subject-specific fROI method compared to the group-level fixed-ROI method, for a range of single-subject design sensitivities (y-axis) and average
partial-coverage values (x-axis). Both methods are constrained to use the same limited amount of functional data. The “quality” of the data is represented by the 1st-level design
sensitivity (y-axis, where higher values correspond to stronger effects, less noise, and/or longer acquisitions). For any given partial-coverage value, the subject-specific fROI meth-
odology will result in increased multi-subject sensitivity and functional resolution compared to the fixed-ROI methodology as long as the single-subject design is sufficiently
high-powered (green area).

10 To derive the power and false-discovery rates associated with each sensitivity lev-
el, we assumed that individual subjects' functional localizer masks were defined using
an uncorrected voxel-level pb .001 false-positive level. We considered ROI sizes be-
tween 1 voxel and 100 resels (approximately 10% of the brain volume), partial-
coverage values between 0 and k(1−k), n=100 independent time-points per condi-
tion, and (for functional resolution comparisons) average between-subject variability
estimates from Desmond and Glover (2002).

11 Single-subject design sensitivities are expressed as signal-to-noise ratios, and they
represent the overall quality of the functional data for each subject. Localizer power is
expressed as a true-positive rate, and it represents the proportion of voxels that appear
in the fROI localizer among those voxels that are truly active for this contrast (a mea-
sure related to the single-subject design sensitivity, but also to the false-positive
threshold used in the localizer as well as to the proportion of sessions worth of data
used for the localizer contrast).
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fully by the average partial-coverage value (so it no longer plays a role
independent from the partial-coverage average measure).

Fig. 5 illustrates the detrimental effect of reduced inter-subject
overlap on the sensitivity of multi-subject voxel-based analyses. The
values of the within- and between-subject sensitivities used in
this plot (different solid lines) represent low-sensitivity and
high-sensitivity values adapted from Desmond and Glover (2002).
The dotted line represents the theoretical bound on the voxel-level
sensitivity that can be achieved for any combination of within- and
between-subject sensitivities. For reference, a sensitivity value of 1
corresponds approximately to a 90% power level in a study with 25
subjects with a false-positive level of pb .001. This bound means, for
example, that in a study with 25 subjects, and when using an
uncorrected voxel-level p-value of .001, we will only be able to detect
with a power greater than 80% voxels that show 43% overlap or above
across subjects, irrespective of how strong the effect is (no matter how
many scans we perform for each subject, how strong the underlying
effect is in the subjects where it is present, or how consistent this ef-
fect is across this reduced set of subjects—in the limit, zero
between-subject variability). In summary, group-level voxel-based
analyses are extremely sensitive to the degree of inter-subject over-
lap of activations.

The voxel-based sensitivity analyses presented here considered
the effect of limited inter-subject overlap on any given voxel. A stan-
dard practice in the field is to use a certain amount of spatial smooth-
ing (up to 12 mm FWHM) in order to increase the effective amount of
overlap of activations across subjects (Scouten et al., 2006). With re-
spect to the sensitivity of the resulting multi-subject analyses,
smoothing is equivalent to increasing the ROI size in fixed-ROI analy-
ses (see Appendix C for a more formal correspondence). As in the
fixed-ROI case, increasing the amount of spatial smoothing only offers
a partial solution to the presence of inter-subject variability in the loci
of activation, and the sensitivity of group-level voxel-based analyses
will still decrease with increasing amounts of inter-subject variability
even in the case of optimally-sized smoothing kernels. In addition to
these sensitivity limitations, there are two main caveats with multi-
subject voxel-based analyses that use smoothing as a way to combat
the effect of inter-subject variability in the loci of activation. (These
are directly parallel to the caveats discussed for group-level fixed-
ROI analyses.) First, smoothing potentially aggregates across both

active and inactive voxels so the effect sizes can be underestimated
compared to those within the true loci of activation.12 And second,
smoothing effectively decreases the functional resolution of these
analyses. In this case, the decrease in functional resolution can be
characterized as an effective decrease in the spatial resolution of the
multi-subject analyses. In other words, spatial smoothing limits the
maximal spatial frequency of the effects that are detectable at the
group level below the spatial resolution achievable by the single-
subject analyses. Since the main goal of this paper is to discuss the
merits of subject-specific localizers in the presence of inter-subject
variability in the loci of activation, we will now discuss how the
subject-specific approach – traditionally only applied to ROI-based
analyses – can also be applied to voxel-based analyses. In particular,
building on the analogy between smoothed voxel-level analyses and
fixed-ROI analyses, we will now discuss a voxel-based analog of the
subject-specific fROI method.

Subject-specific localizers in the context of whole-brain voxel-based
analyses

This section introduces an improved method of smoothing for
voxel-based analyses that uses functional localizers to obtain all of
the gains typically associated with spatially smoothing the functional
data (increased sensitivity and increased robustness to inter-subject
variability in the loci of activation), without suffering from its detri-
mental effects (reduced functional resolution).

Themotivation behind thismethod is straightforward: we saw in the
context of the fixed-ROImethod that increasing the size of the ROI to en-
compass the extent of expected inter-subject variability (matched filter
theorem) is at best a partial solution to the problem of inter-subject var-
iability in the loci of activation, and that a better solution is to increase
the ROI size while limiting the within-ROI aggregation to functionally
homogeneous voxels (using a functional localizer to identify functionally
homogeneous areas). A direct application of this method to voxel-based
analyses is to constrain smoothing at each voxel so that it operates only
over functionally homogeneous neighboring voxels (identifying these
voxels using an orthogonal functional localizer contrast, see Fig. 6). The
resultwould be a subject-specific nonstationary smoothing operation in-
formed by functional localizers (we call this method subject-specific
voxel-based analyses, due to its similarities with the subject-specific
fROI method), and its implementation, properties, and interpretation,
are relatively simple to characterize, which we do next.

Implementation
First, a particular contrast between conditions is chosen to serve as a

localizer, effectivelymasking the entire brain to include only voxels that
pass a certain threshold level of activation for that contrast (in indepen-
dent data). Then, the data from each voxel in the brain (whether includ-
ed in the mask or not) are smoothed based on a given kernel (e.g., a
Gaussian) that operates only on the voxels in that mask. Thus, each
voxel is smoothed only with nearby voxels that have the functional
property selected in the “localizer” contrast; any other nearby (and per-
haps spatially interleaved) voxels that do not show this property are
given zero weight in the smoothing kernel. This procedure enables an
effect to be detected even if it is present in a small proportion of voxels
in a local region, and even if other, spatially interspersed voxels show
the opposite pattern of activation, because those other voxelswill be ex-
cluded from the smoothing operation. However, those other voxels
showing the opposite pattern can also be detected, if they show this

Fig. 5. Sensitivity of voxel-based analyses as a function of spatial variability in the loci
of activations and as a function of within- and between-subject sensitivities. The sensi-
tivity of multi-subject voxel-based analyses (y-axis) is plotted for different levels of
inter-subject variability in the loci of activation, i.e., different proportion overlap values
(x-axis) for a normal range of within- and between-subject sensitivity levels
(Desmond and Glover, 2002) (solid lines). The dotted line shows the maximal power
achievable by any (arbitrarily high) set of within- and between‐subject sensitivities
(that depend on how many scans we perform for each subject, and how strong and
consistent the underlying effect is in the subjects where it is present), highlighting
the fact that partial across-subject overlap imposes a concrete and severe limit on
the maximal power achievable in group-level voxel-based analyses, and the size of
this detrimental effect depends on the level of overlap.

12 As discussed in the case of fixed-ROI analyses, the notion of bias is relative to a par-
ticular model of neural activation. The analyses in this paper attempt to dissociate the
extent of activation and the strength of the neural response. It is only with respect to
this dissociated measure of the neural response strength (robust to small variations
in the exact location and size of the activation near each voxel) that the effect size es-
timation of voxel-based analyses can be considered biased.
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pattern replicably, in a parallel analysis of the same data that startswith
a different (perhaps opposite) masking contrast. This method of selec-
tively smoothing each voxel only with voxels that have been selected
for a certain functional property, and excluding voxels that do not
show this property, enables us to detect each of two distinct (and per-
haps opposite) activation patterns that may arise in spatially inter-
leaved voxels, and that would cancel each other in a standard (not-
functionally-constrained) smoothing procedure. This analysis can thus
reveal, via two different functional masks, that each of two different
(and perhaps even opposite) contrasts can be present in the same
voxel, which simply means that both patterns of functional response
are reliably present in voxels located in the vicinity of that voxel. Impor-
tantly, this selective-smoothingprocedure is not circular, since the actu-
al response magnitudes and statistical activation maps are based on
data independent of the functional data used in the smoothing mask,
as in the subject-specific fROI analyses (see Fig. 7).

These benefits of selectively smoothing over functionally similar
voxels in first-level individual-subject analyses, as just described, trans-
late into benefits for second-level multi-subject analyses. Here again,
separate analyses are conducted for each functional contrast/mask
that is used to constrain the smoothing. Thus, all the individual sub-
ject data that have been smoothed based on a certain localizer con-
trast mask (as described above) would enter into one group analysis,
and all the same data that have been smoothed as constrained by a
different functional contrast, would enter into a different group
analysis. In this fashion, the same voxel in the group space could
show a significant effect of two different (and perhaps opposite)
contrasts, again meaning that some voxels in the vicinity of that
voxel reliably show one effect, and other voxels in its vicinity reli-
ably show the other/opposite effect. Here too, of course, the actual
data that go into the group analysis are independent of those used
to constrain the smoothing. Crucially, by performing separate
group analyses in which the smoothing of the data was constrained
by two different functional contrasts, this method can detect two
different effects in the group analysis even if there is no alignment

of the specific voxels showing those effects in the common space.
In this sense, this method improves both sensitivity and functional
resolution (see Appendix D for details), although, as with any
smoothing procedure, there is a loss of spatial resolution.

Properties
Subject-specific voxel-based analyses share the qualitative and quan-

titative properties with the subject-specific fROI method, as they can be
characterized as multiple small fROIs centered at every voxel and with
size equal to the smoothing kernel support. In addition, since the tradi-
tional smoothing operation for voxel-based analyses can be similarly
characterized as multiple small fixed-ROIs (equally centered at every
voxel and with size equal to the smoothing kernel support), all of the
properties and comparisons in the section ‘Subject‐specific functional
ROI analyses’ equally apply to the comparison between smoothed
voxel-based analyses and subject-specific voxel-based analyses. In partic-
ular, for any size of the smoothing kernel, the subject-specific voxel-based
analyses will show increased sensitivity, increased functional resolution,
and reduced bias, compared to the standard (smoothed) voxel-based
analyses, under the general conditions discussed in the section ‘Subject‐
specific functional ROI analyses’ (Fig. 4, see Appendix D for further
details).

Interpretation
Subject-specific voxel-based analyses allow researchers to exam-

ine questions about the presence of an effect at or near each voxel,
while (i) permitting variability in the precise location of the effect
across subjects (unlike voxel-based analyses without spatial smooth-
ing), and (ii) maintaining high functional resolution (i.e., the ability to
discriminate functionally different effects within the support of the
smoothing kernel), unlike voxel-based analyses with spatial smooth-
ing, which aggregate across all of the voxels within the smoothing
kernel support. To illustrate the importance of this latter point, con-
sider the case of ocular dominance columns in V1. Let's assume for a
moment, as a thought experiment, that the spatial resolution of

Fig. 6. A schematic illustration of the use of functional localizers in the context of voxel-based analyses. Standard voxel-level analyses (top) that use smoothing as a way to com-
pensate for inter-subject variability in the loci of activation aggregate, for each voxel, the BOLD data (or single-subject estimates) across a surrounding area defined by the smooth-
ing kernel support. The application of functional localizers in the context of voxel-based analyses (bottom) limits this aggregation to only those surrounding voxels within the
subject-specific functional localizer mask (obtained from an orthogonal contrast or independent dataset). In the presence of inter-subject variability in the loci of activation this
approach offers higher sensitivity and functional resolution, and a reduction of bias, in the resulting voxel-level estimates.
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single-subject functional data was high enough to differentiate re-
sponses to right- vs. left-eye stimuli. Of course, due to their very
fine spatial scale, ocular dominance maps cannot be expected to line

up across subjects, and spatial smoothing cannot be expected to
help improve this alignment. If we were to perform a standard voxel-
based paired t-test looking for left- vs. right-dominant responses in V1

Fig. 7. Diagram describing subject-specific voxel-level analysis steps, in the presence of a distributed representation of two opposite effects. Each subject's data is divided into a
masking dataset and a second independent dataset where statistical inferences will be evaluated. The masking dataset is used to derive subject-specific functional localizers for
the two contrasts of interest (mask A for a x>y contrast, and mask B for the opposite y>x contrast). The independent dataset for each subject is then smoothed using two separate
procedures, which operate only over voxels in mask A or B, respectively. Aggregating the resulting maps across multiple subjects allows the discovery of opposite distributed effects
within the same area.
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across subjects, we would conclude that no voxels in V1 exhibit ocular
dominance because of the lack of an appropriate inter-subject match
of these responses (independent of the level of spatial smoothing). In
contrast, a subject-specific voxel-based analysis using a sufficiently
large smoothing kernel allows the researcher to explore the differential
left- vs. right-dominant responses at or near each voxel while
maintaining the functional resolution to discriminate these different re-
sponseswithin the support of the smoothing kernel, as discussed above.
The diagram in Fig. 7 illustrates these analyses (with x and y standing
for the responses to left- and right-eye stimuli, respectively). For exam-
ple, by using a left>right (x>y) localizer contrast when exploring the
non-orthogonal responses to left- and right-eye stimuli, the researcher
would correctly identify V1 as showing left- vs. right-dominant re-
sponses at or near each voxel within V1 despite responses across differ-
ent subjects not spatially overlapping (because only voxels with a
left>right response for each subject would be aggregated around
each voxel in these analyses). In addition, these analyses would also
be able to determine that the left- and right-dominant areas within
V1 are spatially non-overlapping (e.g., by using a x>y localizer contrast
to identify voxels that respondmore strongly to left-eye stimuli than to
right-eye stimuli and then examining the response of those voxels to
the right-eye stimuli – y condition – or vice versa). In this thought ex-
periment standard voxel-based analyses could not address any of
these questions because the assumption of overlapping responses
across subjects would not be met.

Simulation examples

In order to exemplify the behavior of the different analysis methods
discussed in this paper in the presence of inter-subject variability in the
loci of activation, we present a series of simulations. Fig. 8 illustrates the
nature of the simulated data. The data were designed so that each sub-
ject had nearby but fully distinct (non-overlapping) areas that respond
to stimulus A and stimulus B. Within the area of interest and for each

subject there are voxels that respond to either A or B, but there are no
voxels that respond to both of the stimuli. In addition, the loci of activa-
tion (a sphere with a radius of 10 voxels) were varied across subjects
(randomly distributed following a normal distribution with a standard
deviation of 10 voxels). The strength of the responses to each stimulus
type was also randomly distributed across subjects (following a normal
distribution with a mean of 1% and a standard deviation of 0.25% BOLD
signal change). Single-subject estimates of each subject's responsewere
simulated by adding a random and spatially independent noise compo-
nent with the mean 0% and a standard deviation of 0.25% BOLD signal
change to each subject's modeled response.

Themain goal of this simulated experimentwas to investigate the in-
dividual and joint responses to the two stimuli as a function of the type of
analysis. In particular, the research questions this experiment addresses
are: a) whether the BOLD responses within the area of interest are mod-
ulated by any of the two stimuli (yes); b) whether the BOLD responses
within the area of interest are differentiallymodulated by the two stimuli
(yes); and c)whether the possible BOLD responses to these twodifferent
stimuli originate from the same locations/neural substrates (no). The
bottom panel of Fig. 8 shows the results of a standard voxel-based anal-
ysis if therewas no inter-subject variability in the loci of activation (i.e., if
the activations were perfectly aligned across subjects). In the absence of
inter-subject variability, these analyseswould correctly identify: a) areas
responding toA and/orB separately (first twoplots); b) areas responding
more strongly to A than B, and areas responding more strongly to B than
A (next twoplots); and c) no areas responding to both stimuli (A|B and B|
A tests, last two plots). The simulations below illustrate how these con-
clusions would be affected by the presence of inter-subject variability
in the loci of activation when using group-level vs. subject-specific
analyses.

Four methods of analysis, discussed in the section ‘Standard group‐
level fixed‐ROI analyses’ up to the section ‘Subject‐specific localizers
in the context of whole‐brain voxel‐based analyses’, respectively,
were implemented: (1) a fixed-ROI approach, using a fixed (subject-

Fig. 8. Spatial distribution of simulated data.Within an area of 100×100 voxels, the entire activation of interest for each subject (n=25)was assumed to lie within a spherewith a radius of 10
voxels. The left half of this sphere, for each subject, responded to stimulus A and the right half responded to stimulus B. The location of the sphere of activation varied randomly for each subject
(with a standard deviation of 10 voxels). Top: the leftmost plots display the overlap among all of the subjects' response to each stimulus type. The four plots to the right show examples of the
response strength and location of voxels activated by each condition in four sample subjects (added noise not shown). The strength of the BOLD responses (average 1% BOLD signal change) is
color coded. Note that the responses to A and B are fully spatially separated for each subject (there is no individual voxel that responds to both A and B). Bottom: if there was no inter-subject
variability in the loci of activation (i.e., if the spheres of activation perfectly aligned across subjects) a voxel-wise analysiswould correctly indicate that: a) there are some areas that respond to A
and/or B, and the effect sizes of the responses are approximately 1% BOLD signal change for each condition (individual effects plots; dotted grey line represents significant areas); b) these same
areas respond differentially to the two stimuli (differences plots A>B and B>A); and c) there are no areas that respond jointly to both stimuli (conjunction plots A|B and B|A). Contrast inferences
that are expected to be answered positively for at least some analysis unit are marked light grey (A, B, A>B, and B>A), while those that are expected to be answered negatively for all analysis
units are marked dark grey (A|B, and B|A).
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independent) spherical Gaussian ROI with 60 voxels FWHM and cen-
tered at the average locus of activation; (2) a subject-specific fROI ap-
proach constrained to the entire 100×100 voxel area; (3) a smoothed
voxel-based approach using a 12 mm FWHM smoothing filter; and
(4) a subject-specific voxel-based approach using the same 12 mm
FWHM smoothing kernel. For each of these methods, we performed
six group-level analyses addressing the three research questions, with
the first two examining the main effects of A and B, the next two exam-
ining the differential (one-sided) effects A>B and B>A, and the last two
examining the conjunction of A and B in the form of the conditional ef-
fects A|B and B|A. For the standard group-level methods, the conditional
A|Bwas computed by masking the estimated group-level response to A
with the supra-threshold voxels (pb .001) of the estimated group-level
response to B. For the subject-specific methods, the conditional A|Bwas
computed by estimating the effect of A when using B as the localizer
contrast. Localizer contrasts were simulated using an independent and
equally distributed dataset and supra-threshold voxels were computed
using an FDR-corrected p-value of .05 (uncorrected single-subject
p-values were estimated using a Gaussian approximation to the
T-statistics appropriate for high degrees of freedom).

The results of the ROI-based analyses are shown in Fig. 9. Significant
responses to each of the stimuli, A and B, are found (pb .0001) at the ROI
level in both the fixed-ROI and the subject-specific fROI methods. How-
ever, the estimated effect sizewithin the ROI is severely underestimated
by the fixed-ROI method (estimated average effect sizes A: 0.05, B:
0.05%BOLD signal, cf. modeled population with mean 1%BOLD signal,
the average true effects in the simulated sample were A: 1.02, B:
0.91). The amount of underestimation in the subject-specific fROImeth-
od is considerably lower (estimated average effect sizes A: 0.96,B: 0.85).
When considering the A>B and B>A contrasts, aimed at detecting
areas that respond differentially to the two stimuli, the fixed-ROImeth-
od fails to find areas with a significant difference (p>.37), while the
subject-specific fROI method finds strong differential responses to A
and B (pb .0001). As stated above, the simulated data contained voxels,
for each subject, that responded only to either A or B. Because the
fixed-ROI method averages across voxels that respond only to A and

voxels that respond only to B in approximately equal proportions, it
has little sensitivity to find these differential responses. When consider-
ing the A|B and B|A contrasts, aimed at detecting areas that respond to
both stimuli A and B, the fixed-ROI method finds strong evidence
(pb .0001) for these types of responses, while the subject-specific fROI
method finds no evidence (p>.13). (Again note that in the simulated
data there were no voxels in any of the individual subjects that
responded to both A and B.) Because the fixed-ROI method averages
across some voxels that respond to A and some other voxels that re-
spond to B, even if these voxels are never truly the same for any given
subject, it has little functional resolution to discriminate against common
responses to A and B.

The voxel-based analyses (Fig. 10) show the same pattern as the
ROI-based analyses when comparing the standard group-level and the
subject-specificmethods. The areas that respond to A and B are success-
fully identified by both methods (dotted lines in the plots show signifi-
cant areas at an uncorrected pb .001 level). The standard group-level
method severely underestimates the effect sizes (average effect within
significant voxels A: 0.17, B: 0.12%BOLD signal change, over areas of 517
and 595 voxels, respectively), while the subject-specific method is
much more accurate in estimating effect sizes (A: 1.08, B: 0.98%BOLD
signal change, over areas of 805 and 848 voxels, respectively). Similar
to the fixed-ROI method, group-level voxel-based analyses show low
sensitivity to the A>B and B>A contrasts (no significant voxels at
pb .001) and low functional resolution indicated by false positive results
in the A|B and B|A contrasts (the conjunction analyses show a cluster of
241 voxels that respond to both A and B). In contrast, the subject-
specific method results in high sensitivity to the A>B and B>A con-
trasts (785 and 850 supra-threshold voxels, respectively), and high
functional resolution indicated by true negative results in the A|B and
B|A contrasts (no significant voxels at pb .001).

Regarding the sensitivity of the differentmethods, these simulations
corroborate the theoretical analyses presented in the section ‘Standard
group‐level fixed‐ROI analyses’ up to the section ‘Subject‐specific
localizers in the context of whole‐brain voxel‐based analyses’ and com-
plement previous empirical demonstrations (e.g., Fedorenko et al.,

Fig. 9. Simulation results: ROI-based methods. Group-level fixed-ROI analyses (top) compared to subject-specific fROI analyses (bottom) on the same simulated dataset. Top: in the
presence of inter-subject variability in the loci of activation group-level ROI-based results fail to find significant activation differences between the two conditions A and B (A>B or
B>A, p>.37), and incorrectly find significant responses to the conjunction of A and B (pb .0001). Bottom: subject-specific fROI analyses result in the correct inferences in all cases
(pb .0001 for A>B and B>A tests, and p>.13 for A|B and B|A tests). Significant effects are marked light grey and non-significant effects are marked dark grey (compare to expected
behavior in the absence of inter-subject variability, Fig. 10 bottom plot).
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2010, 2012; Saxe et al., 2006), showing that inter-subject variability in
the loci of activation can dramatically decrease the sensitivity of stan-
dard group-level analyses (both ROI- and voxel-based). Furthermore,
these simulations highlight that standard group-level methods consis-
tently underestimate effect sizes and the selectivity of the areas under
investigation. Consequently, relying exclusively on the results of
group-level analyses (ROI- or voxel-based) may lead researchers to er-
roneously conclude that some region responds to both A and B in a
non-differentiable way. In contrast, subject-specific analyses (both
ROI- and voxel-based) would correctly indicate that there are voxels
that respond only to stimulus A, others that respond only to stimulus
B, and no voxels that respond to both. In summary, the subject-
specific analysismethods offer an effective solution to the potential sen-
sitivity, bias, and functional resolution issues present in the group-level
fixed-ROI and voxel-based analyses, while offering robust inferences in
the presence of inter-subject variability in the loci of activation.

Some practical considerations

Orthogonality of the localizer contrast and the contrast of interest
Subject-specific analyses require the localizer contrast and the

contrast of interest to be orthogonal (e.g., Kriegeskorte et al.,
2009; Vul and Kanwisher, 2010). In some cases, one might want
to use the same contrast both as the localizer and as the contrast
of interest (e.g., using faces>objects localizer contrast to define
the ROIs and then estimating the size of the faces-objects effect in
these areas). In other cases one might want to use different con-
trasts that may or may not be conceptually orthogonal (e.g., using
the faces>objects contrast to define face-sensitive regions and
then examining the response of these regions to body parts). In
order to guarantee orthogonality, a typical solution involves
partitioning the dataset and defining the localizer contrast and
the contrast of interest using non-overlapping partitions (e.g., a

localizer contrast defined in the even runs, and a contrast of inter-
est defined in the odd runs). However, a more powerful approach
involves M-fold cross-validation. For example, in the context of M
runs, one could define a contrast of interest A1 that uses estimates
only from the first run, associated with a localizer contrast B1 that
only uses estimates from the rest of the runs (2 to M). This could
be repeated for each of the runs resulting inM pairs of localizer con-
trasts and associated contrasts of interest (A1 B1 to AM BM). One can
then obtain a run-specific estimate from each of these pairs and av-
erage the resulting estimates to obtain the subject-specific esti-
mates. This approach maintains the full within-subject sensitivity
of the original data (cf. Neyman–Pearson lemma), while at the
same time providing high power for the localizer contrasts
(approaching the entire dataset power as the number of partitions
increases).

Thus, all of the benefits of functional localizers as detailed in this
paper can be obtained even for studies that were run without an ex-
plicit localizer contrast (see e.g., Friston et al., 2006, for arguments
against using a separate localizer session). Researchers may simply
use most of the data in any given contrast to localize the key region
in each subject individually, and then use the remaining left-out
data to quantify the magnitude of response in that region (repeating
this iteratively to cover all sensible partitions of the data, and averag-
ing across the magnitudes so obtained). In this fashion, it is possible
to obtain all of the benefits of a functional localizer retroactively in
the analysis of any experiment, even if an explicit localizer contrast
was never run in the first place.

Population-level inferences in subject-specific analyses
The general method of multi-subject analyses that use function-

al localizers is the following: a) define a localizer contrast and its
associated voxel-level threshold; b) define a contrast of interest; c) de-
fine the units of analysis (a set of a priori ROIs for ROI-based analyses,

Fig. 10. Simulation results: voxel-based methods. Group-level voxel-based analyses with spatial smoothing (top) compared to subject-specific voxel-based analyses (bottom) on
the same simulated dataset. Top: in the presence of inter-subject variability in the loci of activation group-level voxel-based results fail to find significant activation differences be-
tween the two conditions A and B (A>B or B>A hypotheses, no significant voxels using a height threshold level of pb .001), and incorrectly find significant responses to the con-
junction of A and B (A|B and B|A hypotheses result in a cluster of 241 voxels at the same threshold level). Bottom: subject-specific voxel-based analyses result in the correct
inferences in all cases (large clusters at a height threshold of pb .001 for the A>B and B>A hypotheses, and no significant voxels at this same threshold level for the A|B and B|A
hypotheses). Significant effects are marked light grey and non-significant effects are marked dark grey (compare to expected behavior in the absence of inter-subject variability,
Fig. 10 bottom plot).
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or the extent of the “smoothing” kernel for voxel-based analyses);
and d) perform multi-subject analyses of the contrast of interest,
spatially constrained by (a) and (c). This procedure performs
population-level inferences about the strength of the effect (b)
spatially constrained to the subject-specific conjunction of (a) and (c).
These inferences generalize to the subpopulation for which this con-
junction is not empty within each analysis unit (ROIs or voxels).
False-positive control of these inferences is afforded by resulting
multi-subject analysis p-values. The threshold used to define the
subject-specific voxels of interest from the localizer contrast (αW) does
not influence the presence of false positives in the population-level infer-
ences, but it affects the size of the population that these inferences gener-
alize to. In particular, highly conservative thresholds may lead to only
a small percentage of subjects in the study sample showing any
supra-threshold voxels within the unit of analysis (within a ROI or near
a voxel). In this case, any inferences from this subset of the study sample
will generalize to the same proportion of the population (e.g., if only 50%
of the subjects show some localizer voxels within the a priori ROI, then
any observed effect within this subsample will generalize to only 50%
of the population). In practice and depending on the particular applica-
tion, researchers might want to use a strongly corrected localizer thresh-
old (low αW values) or a more liberal one (high αW values, see Duncan
and Devlin, 2011, for a useful discussion). In the extreme liberal case of
choosing a αW threshold value of p=1 (100% false positive level), the
localizer contrast will include all voxels, and the subject-specific method
will perform exactly like the standard group-level methods (fixed-ROI
or voxel-based analyses with spatial smoothing). In this way, subject-
specific methods generalize the corresponding standard (group-level)
methods, simply adding one additional level of control (choice of αW

level on a separate localizer contrast) and performing exactly like these
standard methods in the limiting minimal-specificity case (αW=1),
which disregards the localizer contrast information. The option of defin-
ing a separate localizer contrast and contrast of interest allows for greater
flexibility in the research questions that can be addressed with this
method.

After performing subject-specific analyses, a recommended prac-
tice would be to explore the subject-specific localizer masks (a) and
compute the proportion overlap across subjects over the original
units of analyses (c). This procedure enables the researcher to charac-
terize the amount and nature of inter-subject variability in the loci of
activation, and the proportion of subjects showing an effect at the
level of the chosen unit of analysis (ROIs or voxels). Statistically sig-
nificant results that show low inter-subject overlap might lack practi-
cal significance (as they relate to only a small proportion of the
population), or they might indicate larger inter-subject variability in
the loci of activation than anticipated (if this is the case, then using
larger ROIs or smoothing kernels may be necessary).

The units of analysis (a priori ROIs for ROI-based analyses, or the ex-
tent of the “smoothing” kernel for voxel-based analyses) can be viewed
as priors characterizing the expected spatial distribution of the responses
to the localizer contrast across subjects. In practice, subject-specific anal-
yses are considerably more resilient to ROI sizes (or smoothing kernel
sizes) that extend beyond the true variability in the loci of activation
across subjects than to those that fall short of the true variability (see
Fig. 3, right). Depending on the particular application, researchers
might use liberal priors (e.g., larger “smoothing” kernels) in order to
maximize sensitivity, for example when exploring novel effects or
areas, or more conservative ones in order to improve the specificity
of the analyses, for example when studying areas that have been al-
ready characterized in previous studies.

Tools for performing subject-specific analyses
An SPM toolbox for performing all of the subject-specific analyses de-

scribed in this paper is available at http://www.nitrc.org/projects/spm_ss.
The toolbox is implemented as an alternative second-level analysis proce-
dure, and it can be used on any existing set of first-level analysis results.

The toolbox implements both ROI- and voxel-based subject-specific anal-
yses, performs automatic cross-validation across runs when the localizer
contrast and the contrast of interest are not orthogonal, and implements
both restricted maximum likelihood as well as ordinary least squares es-
timation of population-level effects and multivariate hypothesis testing
for mixedwithin- and between-subject designs (see Appendix F for sam-
ple scripts and description of the analysis parameters).

Discussion and conclusions

In this study we quantified the conditions under which analyses
that use functional data to constrain the correspondence of voxels
or regions across subjects outperform standard stereotaxically regis-
tered group-level analyses in terms of their expected sensitivity (to
detect significant activations) and functional resolution (to discrimi-
nate between two different functional activations). We demonstrated
that in the presence of inter-subject variability in the loci of activa-
tions, analyses that take into account differences in the precise loca-
tions of functional activations across subjects have higher sensitivity
and functional resolution, as well as a reduction in bias (i.e., more ac-
curate estimation of effect sizes13), compared to traditional group
analyses, even when the same total amount of data is used for each.

Our analyses have three important implications. First, from amethod-
ological perspective, themerits of subject-specific functional localizers are
independent of the debate about ROI- vs. voxel-based analyses (e.g., see
the debate between Friston et al., 2006, and Saxe et al., 2006). In particu-
lar, to understand the advantages of subject-specific functional localizers,
it is not relevant whether the units of analysis are ROIs or voxels. Both
ROI- and voxel-based analyses (assuming some spatial smoothing) use
some form of aggregation across voxels, even if they differ in the size of
these aggregation regions. Fixed-ROI analyses aggregate across all voxels
within a (typically large) ROI. Standard voxel-based analyses aggregate
across all voxels in the vicinity (the support of a typically small spatial
smoothing kernel) of each voxel. Irrespective of the size of the aggrega-
tion region, functional localizers allow a more selective aggregation:
only across a subset of those voxels (within an ROI, orwithin a smoothing
kernel support) that show supra-threshold responses in a functional
localizer contrast. In this way, aggregation occurs over a subset of voxels
that show more homogeneous functional responses, compared to
methods that perform aggregation based only on stereotaxic coordinates
without functional information. Such selective aggregation increases the
functional resolution of the resulting inferences, sincewe can now choose
to aggregate over different subsets of what was previously considered a
homogeneous region. It could be argued that this increase in functional
resolution comes at the cost of reduced sensitivity, since some portion
of the available functional data must be used to compute the functional
localizer contrasts. However, we showed – using theoretical analyses
and simulations – that this intuition is, in general, not supported. On the
contrary, sensitivity of multi-subject analyses not only does not decrease
but, in most cases, increases when the aggregation across voxels is
constrained by functional localizers (for the same amount of functional
data). We argue that this benefit occurs because in standard group-level
analyses sensitivity is reduced by the lower functional homogeneity
across the aggregated voxels (e.g., in the presence of inter-subject vari-
ability in the loci of activation). Finally, in addition to increases in func-
tional resolution and sensitivity, we showed that functional localizers
result in a more accurate estimation of the effect sizes of functional
responses.

13 In this manuscript we consider a simple model of neural activation that considers a
localized response, with unknown strength, position, size and shape, where all of these
parameters vary across subjects (see Appendix A for details). The reported biases re-
flect a mismatch between the effect size measures from different analysis types and
the modeled mean strength of (localized) activation.
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The theoretical analyses and simulations presented here constitute a
strong case for the use of functional localizers in neuroimaging studies,
especially when investigating questions of functional selectivity (rela-
tive responses to multiple stimuli/conditions within the same area).
Standard group-level methods and conjunction analyses are not partic-
ularly well suited to answer questions about functional selectivity, and
they can easily miss important functional dissociations, especially in
cases of adjacent but functionally distinct regions (as shown in the sim-
ulations in the section ‘Simulation examples’). In contrast, subject-
specific analyses allow researchers to explore the response to one stim-
ulus/condition spatially constrained to those areas that show significant
responses to a second stimulus/conditionwithin each subject, resulting
in a level of functional resolution only limited by the spatial resolution
of the subject-level functional data (and most importantly not limited
by the assumption of stereotaxic alignment of functional activations).

To illustrate this point with an example from the literature, consider
the controversy currently surrounding language-sensitive regions and
the questions related to the degree of functional specialization of those re-
gions (similar controversies exist in other domains). A marked discrep-
ancy exists between studies of patients with focal lesions that have
revealed cases of highly specialized linguistic deficits and neuroim-
aging studies that have argued for overlap between language and a
number of non-linguistic cognitive processes, such as arithmetic
processing (e.g., Dehaene et al., 1999), musical processing (e.g.,
Levitin and Menon, 2003), general working memory (e.g., Owen et
al., 2005), aspects of action representation (e.g., Binkofski et al.,
2000), or general processing of hierarchically structured representa-
tions (e.g., Koechlin and Jubault, 2006) One possible reason for this
discrepancy is that selectivity of language-sensitive cortex is
underestimated in neuroimaging studies because they almost exclu-
sively rely on group-level methods and in some cases don't even direct-
ly compare a language task to a non-language task, relying on
approximating the locations of language activations in the common
space (see Fedorenko et al., 2010, 2012, for additional discussion).
This possibility is especiallyworrisome because regions engaged in sim-
ilar kinds of computations (as claimed for aspects of language and some
of the non-linguistic processes listed above) are plausibly located near
each other. Therefore, in order to conclusively determine the extent of
overlap between linguistic processing and candidate non-language pro-
cesses, methods should be used that have been shown to be the most
sensitive/selective, such as the methods that use subject-specific func-
tional masks. Exclusive reliance on the data from group-based analyses
may lead tomisguided theorizing and incorrect models of the function-
al architecture of the language system, and human cognitionmore gen-
erally. Indeed, we have recently shown for the case of high-level
language processing that fROI-based methods reveal much greater
functional specificity than was apparent in prior work using traditional
methods (Fedorenko et al., 2011).

Second, the analyses presented here point to an important practi-
cal advantage of the subject-specific methodology. In particular, im-
provements in the quality of individual subjects' data (due to better
scanner acquisition sequences, larger field strengths, or improve-
ments in physiological noise reduction methods) that result in in-
creased single-subject sensitivity will directly lead to an increase in
multi-subject sensitivity for the subject-specific analyses (either ROI-
or whole-brain voxel-based). In contrast, these improvements will
have at best a small effect on the sensitivity of the stereotaxically reg-
istered multi-subject analyses, because the power of such analyses
will be limited by the amount of inter-subject variability (i.e., by the
average coverage of the ROI volume in ROI-based analyses, or by the
proportion of subjects showing an effect at any given voxel
in voxel-based analyses). If we further consider the fact that increases
in the spatial resolution of single-subject analyses can directly lead
to an increase in multi-subject functional resolution for the subject-
specific analyses (but not for the stereotaxically registered group
analyses), we can conclude that subject-specific functional localizers

are optimally suited for taking advantage of current and future tech-
nical developments in functional neuroimaging.

The limited effect that reductions in within-subject noise have on
group-level statistics has been reported before (Desmond and Glover,
2002; Scouten et al., 2006). Unfortunately, many neuroimaging stud-
ies (i) still rely primarily on traditional group-based methods, rather
than using high-powered within-subject designs, and (ii) often
don't explore the locations of activations in individual subjects
(Devlin and Poldrack, 2007). This reliance on group-based analyses
has limited the potential impact of technical developments aimed at
reducing within-subject noise or increasing within-subject resolution
(e.g., Hutton et al., 2011; Logothetis, 2008; Preibisch et al., 2003;
Stringer et al., 2011; Triantafyllou et al., 2011). The subject-specific
methods discussed here can take full advantage of the improvements
in SNR (increasing sensitivity) and within-subject resolution
(increasing functional resolution), which would directly translate
into similar improvements in multi-subject analyses. Furthermore, al-
though current methods do not yet enable us to clearly relate fMRI ac-
tivations to the cytoarchitectonic properties of the underlying cortical
regions in individual brains, increases in the resolution of anatomical
MRI may make such analyses possible in the foreseeable future (see
e.g., Barbier et al., 2002; Walters et al., 2003; Bridge et al., 2005;
Eickhoff et al., 2005; Bridge and Clare, 2006; Carmichael et al., 2006;
Sigalovsky et al., 2006; Walters et al, 2007; Hinds et al., 2009;
Turner et al., 2008, for promising strides in this direction). Paradigms
that elicit robust functional activations at the individual-subject level
will be of particular use in this enterprise.

The issue of native vs. common space, which we raised in the
Introduction, is worth revisiting briefly, as it is relevant to high-
resolution fMRI studies. As discussed in the Introduction, subject-
pecific fROI analyses can be performed directly in the subject's native an-
atomical space (and at the resolution atwhich the datawere acquired), or
they can beperformedon the normalized data (as long as an approximate
inter-subject coregistration is possible). In either of those cases subject-
specific analysis methods will take advantage of the increases in spatial
resolution, which will translate directly into the increases in functional
resolution. In contrast, standard group analyses performed in the com-
mon space would hardly benefit at all from the increased spatial resolu-
tion. Thus, high-resolution studies are necessarily restricted to analyses
of single subjects' activation patterns, typically focusing on some re-
gion(s) of interest. The voxel-based subject-specific analysis presented
here allows performing whole-brain analyses, which nevertheless retain
the benefits of high spatial resolution.

And third, note that an explicit “localizer contrast” is not needed to
benefit from the advantages of the subject-specific methods described
in this paper, thus obviating concerns about the use of separate localizer
sessions raised by Friston et al. (2006). In particular, Friston et al. (2006)
discussed the advantages (increased sensitivity and better control of
contextual factors) of using an orthogonal localizer contrast within a
factorial design compared to a split session design (e.g., one localizer
session and one main-experiment session). The cross-validation
approach to multi-session studies – described in the section
‘Orthogonality of the localizer contrast and the contrast of interest’ –
permits the application of subject-specific analyses irrespective of the
chosen experimental design. Provided that the subject-level designs
are reasonably high-powered and that multiple functional runs have
been acquired for each subject, an iterated leave-one-out procedure
across runs allows researchers to analyze any data collected from a sin-
gle contrast. For example, all but one of the functional runsmay be used
to localize the region of interest in each subject individually, and the
remaining left-out run may be used to quantify the magnitude of
response in that region (repeating this iteratively to cover all sensible
partitions of the data). This method allows the researcher to benefit
from the increased sensitivity and a more accurate estimation of effect
sizes of subject-specific analyseswhen considering a single contrast of in-
terest (for both ROI- and voxel-based analyses). In addition, in the
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presence of multiple contrasts of interest, researchers may also investi-
gate the selectivity (relative strength) of the responses to these contrasts
using the subject-specificmethods described in this paper (e.g., exploring
the response to one stimulus/condition spatially constrained to those
areas that show significant responses to a second stimulus/condition
within each subject), benefitting from the increased functional resolution
of these analyses, even if none of these contrasts had been originally
thought/designed as an explicit “localizer contrast”. Because this proce-
dure does not require orthogonality between the contrasts of interest, re-
searchers have the flexibility of choosing a context-dependent localizer
(e.g., in a factorial design) or a context-independent one (e.g., a separate
localizer-specific task), depending on their specific goals, no longer
constrained by the limitations of the analysis methods.

We hope that the analyses presented in this paper lead to increased
interest in multi-subject studies that utilize high-powered within-
subject designs and in further exploration and interpretation of the pat-
terns of activation at the individual-subject level. These practices can
help lead to a synergistic relationship between physicistswhowork to in-
crease the power of single-subject analyses and scientists who could use
that power to obtain a clearer picture of the functional architecture of
human cognition. Of course, in deciding on an analysis method, some of
the caveats raised previously with respect to some of the methods
discussed here (e.g., ROI-based methods that use either subject-specific
or fixed ROIs; Friston et al., 2006; Friston and Henson, 2006) should be
kept in mind. For example, in some cases, focusing on a particular region
or set of regionsmay lead to somedegree of scientific “myopia”,where re-
searchers do not consider as deeply as they should i)what happens in the
rest of the brain, outside of their ROIs, and/or ii) how the effects observed
in the ROI(s) may be affected by activity in other parts of the brain. This
approach may thus unwittingly constrain the hypotheses entertained
about the ROI(s) and/or obscure important generalizations. ROI-based
analyses should therefore always be supplemented with whole-brain
voxel-based analyses, and the subject-specific version of such an analysis
presentedhere allows researchers to reap thebenefits typically associated
with subject-specific fROI analyses (higher sensitivity, higher functional
resolution, and more accurate estimation of effect sizes).

One way to reduce the differences in sensitivity and functional res-
olution between group-level vs. subject-specific methods is to develop
better co-registration methods. As discussed in the Introduction, due to
inter-subject variability in the locations of cytoarchitectonic areas with
respect to sulci and gyri, even the most advanced methods – which at-
tempt to align folding patterns across subjects (Fischl et al., 1999) –

will be limited in their ability to align functional regions across brains
(e.g., Frost and Goebel, 2012). Some recent work (e.g., Chen et al.,
2012; Sabuncu et al., 2010; Yeo et al., 2010) has begun using functional
activations to complement anatomical landmarks in the co-registration
process. This line of work seems promising for the development of bet-
ter methods for aligning brains in a common space. However, in order
for thesemethods to be successful, powerful within-subject designs are
still critical. Furthermore, we believe that increases in spatial resolution
will ultimately challenge the premise of a one-to-onemapping between
activation patterns across subjects (e.g., ocular dominance patterns in
V1 cannot be expected to meaningfully match across subjects). In this
way, we foresee that multi-subject analysis methods will be increasingly
facedwith the issue of between-subject variability irrespective of fu-
ture improvements in inter-subject co-registration methods. The
alternate methods sketched here provide a solution to this prob-
lem, by exploiting the functional activation patterns present in
each subject to inform the ways that data are aggregated across
subjects.
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Appendix A. Bias and sensitivity in fixed-ROI analyses

Within a fixed-ROI, of size N0 voxels, we will assume that the true
activation locus for each subject encompass only a proportion of the
voxels in the ROI (Ni voxels, for subject i),14 and that the strength of
activation within these active voxels is constant for each subject
(purely homogenous area) and it can be characterized across-
subjects by a random variable μi with mean μ and (between-subject)
variability σB

2. In addition we will assume that measurements at each
voxel are affected by a certain degree of estimation error character-
ized by a random variable εwith mean zero and (within-subject) var-
iability σW

2 . We will define the random variable ki (with mean k and
variance σk

2) as the ratio between Ni and N0, characterizing the partial
coverage of each subject-specific activation relative to the group-level
ROI. For example, if in a given subject only half of the voxels within
the ROI are truly active in the relevant contrast, ki for this subject
would equal 0.5. The average BOLD response xi within this fixed-ROI
for each subject can then be characterized as:

xi ¼ ki⋅μ i þ N−1=2
0 ⋅εi:

The average (across n subjects) of the BOLD response within this
fixed-ROI will then be a random variable with mean

μG ¼ k⋅μ

and variance

σ2
G ¼ n−1⋅ k2 þ σ2

k

� �
⋅σ2

B þ μ2⋅σ2
k þ N−1

0 ⋅σ2
W

h i
:

First, we could note that, as an estimator of the population-level
mean μ of the strength of the activation, the above measure provides
a biased estimate, underestimating μ by a factor proportional to the
average partial-coverage measure k. Second, we should note that the
variability is not only affected by the within- and between- subjects
terms σW

2 and σB
2 but that variability increases with factors proportional

to the average and variability in partial coveragemeasures (k andσk
2, re-

spectively). Overall, the sensitivity of group-level fixed-ROI-based anal-
yses, expressed as the signal-to-noise power ratio15 δ2, would be:

δ2G≡
μ2
G

σ2
G

¼ n
N−1

0 ⋅k−2⋅δ−2
W þ 1þ δ−2

k

� �
⋅δ−2

B þ δ−2
k

ðA1Þ

where δk2 (=k 2/σk
2), δW2 (=μ2/σW

2), and δB2 (=μ2/σB
2), are the

signal-to-noise power ratios of the partial-coverage, within-subject,
and between-subject effects, respectively. In order to better under-
stand the different factors affecting the sensitivity of fixed-ROI

14 While referring to voxels for simplicity, more accurately volume units should be
expressed in resels (resolution elements) to accommodate the spatial covariance of
the BOLD measurements.
15 The power ratio δ2 measure is directly related to the true-positive rate β of the
analyses. For example, for a one-sided T-test:

β ¼ T δ−T0; n−1ð Þ
T0≡T−1 1−α; n−1ð Þ

where T(t,dof) represents the cumulative distribution function of the t-statistic, α is the
pre-specified false-positive rate and T

0
the corresponding t-statistics cutoff value.
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analyses it is useful to consider some sensitivity bounds derived from
considering the extreme cases for each of these effects.

First, if we consider the extreme case of perfect inter-subject over-
lap, with all of the voxels within the ROI being part of the true loci of
activation for all subjects, the sensitivity reduces to the familiar form
combining the within- and between‐subjects sensitivities, with the
additional (compared to voxel-based analyses) beneficial reduction
in the within-subject variability resulting from averaging across mul-
tiple voxels/resels:

k≤1⇒δ2G≤
n

N−1
0 ⋅δ−2

W þ δ−2
B

In contrast, in the presence of partial coverage (where the true
locus of activation for each subject only covers a portion of the ROI),
the sensitivity of the multi-subject analyses is detrimentally affected
not only by the reduction in average coverage (increase in k−2) af-
fecting the within-subject term (which can be partially compensated
by improvements in single-subject sensitivity). It is also affected by
the increase in the inter-subject variability in partial coverage values
(characterized by the term δk). The sensitivity of fixed-ROI analyses,
in the presence of inter-subject variability in the extent of activation
within the ROI (kb1), will then always be smaller than the above
extreme-case, only reaching this maximum sensitivity value in the
case of perfect inter-subject overlap (k=1).

Second, if we consider the extreme case of perfect within-subject
sensitivity (δw=∞, e.g., if we obtain an arbitrarily large number of
scans for each subject), we see that the sensitivity of the group-
level ROI analyses will be bounded by a value that depends not only
on the between-subject variability but also on the distribution of par-
tial coverage values:

δW≤∞⇒δ2G≤
n

δ−2
B þ δ−2

k ⋅ 1þ δ−2
B

� �

This bounds means, for example, that in a study with 25 subjects,
and when using an uncorrected ROI-level p-value of 0.01, for an effect
that, without inter-subject variability in partial coverage would be
detectable at a power greater than 80%, the presence of inter-
subject variability in the loci of activation (e.g., uniformly distributed
loci between 1 and N0 voxels across subjects) would reduce the
power of these analyses to only 28%.

Third, it is also interesting to note that the sensitivity of fixed-ROI
analyses is still bounded irrespective of both the within- and between‐
subject variabilities/sensitivities by a value that only depends on the dis-
tribution of partial coverage values:

δW≤∞; δB≤∞⇒δ2G≤n⋅δ2k :

This illustrates that, even if we consider an arbitrarily strong and
consistent effect, variability in its precise location or in its spatial ex-
tent across subjects can limit the sensitivity and consequently the
power to find this effect using fixed-ROIs.

Appendix B. Bias and sensitivity in subject-specific ROI analyses

Functional localizers can be expected to detect a proportion
βW (the power of the independent within-subject analyses) of
the true loci of activation (Ni voxels for each subject), while ad-
ditionally including a proportion αW of false-positives. Averaging

within these voxels eliminates the detrimental effect due to the
variability in the sizes of the activation loci, as the average effect
size within the active voxels is no longer modulated by the size
of the loci of activation. This procedure also increases the func-
tional resolution of the resulting analyses, as we are only consid-
ering those voxels that show a significant effect for each subject,
and reduces the possible bias in effect size estimates. In particu-
lar, the average BOLD response xi within this subject-specific ROI
for each subject can then be characterized as:

xi ¼ 1−αWð Þ⋅μ i þ 1−αWð Þ−1⋅βW⋅Ni

� �−1=2⋅εi

where βW and 1−αW are the sensitivity and specificity,16 respec-
tively, of the within-subject localizer contrast. The weighted av-
erage17 (across n subjects) of the BOLD response within this
subject-specific ROI will have a mean:

μG ¼ 1−αWð Þ⋅μ

and variance:

σ2
G ¼ n−1⋅ 1þ δ−2

k

� �
⋅ 1−αWð Þ2⋅σ2

B þ N−1
0 ⋅k−1⋅ 1−αWð Þ⋅β−1⋅σ2

W

h i
:

First, we could note that, as an estimator of the population-level
mean μ of the strength of the activation, the above measure pro-
vides a reduced amount of bias, underestimating by a factor propor-
tional to the specificity of the localizer contrast (1−αW), compared
to the underestimation by a factor proportional to the average
partial-coverage measure (k) in the case of fixed-ROI analyses.
This is important because, while k represents the coverage within
the ROI and this is typically a property of the data beyond the con-
trol of the analyst, 1−αW represent the specificity of the within-
subject analyses, which we can potentially make arbitrarily large
(for example, by simply obtaining more acquisitions for the
localizer contrast, or by taking advantage of improvements in scan-
ning acquisition techniques). Second, we should note that the vari-
ability is no longer affected by any term that is independent of the
within- and between‐subjects terms σW

2 and σB
2, which we will see

has important implications in the robustness of these analyses to
inter-subject variability in the locus and extent of activations.

16 αW is expressed as false discovery rate. In these derivations we are disregarding the
effect of the variability of actual false discovery rates across subjects since that variabil-
ity has a small and bounded effect when conservative FDR-controlled localizers are
used. For more liberal localizer thresholds it may be necessary to take into account this
additional source of variance for a more accurate representation of the sensitivity of
these analyses.
17 We are considering first a simple estimator that uses whitening to compensate for
differences in within-subject variances. In particular, this estimator takes the form of a
weighted average of the subject-specific signals xi using as weights the number of ob-
served supra-threshold voxels in the localizer contrast for each subject. This estimator
is not the maximum likelihood estimator (which would consider the relative contribu-
tions of both the within- and between‐subject variances to determine the optimal
whitening weights, see the discussion at the end of this appendix). We chose to discuss
first this simple but suboptimal estimator instead because: a) it results in the theoret-
ical sensitivity equations that are most directly and easily comparable to the fixed-ROI
case; and b) it can be considered a limiting case of the more sensitive maximum like-
lihood estimator discussed below.
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Overall, the sensitivity of subject-specific fROI analyses, expressed
as the signal-to-noise power ratio δ2, would be:

δ2G≡
μ2
G

σ2
G

¼ n
N−1

0 ⋅k−1⋅ 1−αwð Þ−1⋅β−1
W ⋅δ−2

W þ 1þ δ−2
k

� �
⋅δ−2

B

: ðB1Þ

Comparing this equation to the sensitivity of the fixed-ROI analy-
ses in the previous section (Eq. (A1)), we can directly derive the con-
ditions for which the subject-specific analyses will result in improved
sensitivity:

δ2SS > δ2fixed⇔ 1−αwð Þ⋅βW ⋅ 1þ δ2W ⋅N0⋅σ
2
k

� �
> k ðB2Þ

It can be seen that, for any arbitrary distribution of partial-
coverage values (characterized by k and σk

2 values), and as long as
the between-subject variability in partial coverage values σk

2 is differ-
ent from zero, we can always find a minimal single-subject power
(characterized by δW2 and βW) that will result in improved sensitivity
when using the subject-specific fROI method compared to the fixed
ROI method.18

If instead of the simple weighted average estimator discussed
above we use a restricted maximum likelihood estimation (reML) ap-
proach, we can define a set of more general whitening factors of the
form:

wi ¼ r þ N−1
i

� �−1=2
:

The constant r (different for each ROI) is obtained in the process
of maximum likelihood estimation, and it represents the ratio of
the between- to within‐subjects variance. The reML approach re-
duces to a line search maximization of the residual likelihood func-
tion:

L ¼ − log σ2
ε

� �
þ 1
n

Xn
i¼1

log wið Þ

where σ2
ε ¼ 1

n

Pn
i¼1

wi⋅ εi−�εð Þ2 and �ε ¼ 1
n

Pn
i¼1

wi⋅εi represents the sample

weighted variance and mean, respectively, of the residuals εi
obtained from a first pass of the second-level general linear model.
The sensitivity of subject-specific fROI analyses using this reML esti-
mator would be:

δ2G≡
μ2
G

σ2
G

¼
Xn
i¼1

1
N−1

0 ⋅ki−1⋅ 1−αwð Þ−1⋅β−1
W ⋅δ−2

W þ δ−2
B

ðB3Þ

which is always equal or greater than the sensitivity of the simplified
case considered in Eq. (B1) (equality achieved in the case of constant
partial-coverage values or infinite within-subject variance). Also
note that, if we consider the extreme case of perfect within-subject

sensitivity (δw=∞, e.g., if we obtain an arbitrarily large number of
scans for each subject), the sensitivity of the reML estimator would
be:

δW≤∞⇒δ2G≤
n

δ−2
B

where the detrimental effect of limited partial-coverage values
has been completely removed (cf. compare this to the equivalent ex-
treme case in Appendix A).

Appendix C. Bias and sensitivity in (unsmoothed) voxel-level analyses

Standard voxel-level analyses assume a homogeneous subject
population at the level of each voxel. Here we will consider how
power in the group-level analyses is affected by a relaxation of
this homogeneity assumption in the presence of reduced inter-
subject overlap. In particular we will consider here the possibility
that due to inter-subject variability in the precise location of the
functional activations, for any given voxel, only a proportion p of
the subjects present a true effect (while the rest present a null ef-
fect). These initial analyses consider a voxel in isolation where the
true activation can be considered to be either present or absent
for any given subject. We characterize this effect by the random
variable pi, taking the values 1 with probability p or 0 with proba-
bility 1−p. In this case, the BOLD response xi at a given voxel for
each subject can be characterized as:

xi ¼ pi⋅μ i þ εi:

The average (across n subjects) of the BOLD response at a given
voxel will then be a random variable with mean

μG ¼ p⋅μ

and variance

σ2
G ¼ n−1⋅ p⋅σ2

B þ μ2⋅p⋅ 1−pð Þ þ σ2
W

h i
:

First, we could note that, as an estimator of the population-level
mean μ of the strength of the activation, the above measure provides
a biased estimate, underestimating μ by a factor proportional to the
proportion overlap p. Second, we should note that the variability is
not only affected by the within- and between‐subjects terms σW

2

and σB
2 but that variability increases with factors proportional to

the proportion overlap measure p. Overall, the sensitivity of
group-level voxel-based analyses, expressed as the signal-to-noise
power ratio δ2, would be:

δ2G≡
μ2
G

σ2
G

¼ n⋅p2

δ−2
W þ p⋅δ−2

B þ p⋅ 1−pð Þ : ðC1Þ

At this point it might be worth noting that, unsurprisingly, this
equation can be considered a special case of Eq. (A1) that expresses
the sensitivity of fixed-ROI methods. If we consider N0=1 (one
voxel), and assume that the random variable Ni (number of active
voxels) follows a Bernoulli distribution with parameter p, Eq. (C1) di-
rectly follows from Eq. (A1). It is interesting to consider in this con-
text the interpretation of some of the limitations found in the
context of fixed-ROI methods.

First, if there is a complete inter-subject overlap (p=1, all of the
subjects show an effect at this voxel), the signal-to-noise ratio reduces

18 Eq. (B2) assumes that the within-subject signal-to-noise power ratio δW2 is the
same for the two methods. For comparisons that consider the same amount of func-
tional data available for the two methods this assumption is only valid if the localizer
contrasts have been defined using cross-validation. For methods that use a simpler
partitioning of the data (e.g. one session used to define the localizer contrast, and the
rest of the sessions used to define the other effects/contrasts of interest) the left-
hand side of Eq. (B2) should include one additional multiplicative (1−γ) factor, where
γ characterizes the proportion of the data used to obtain the localizer. Similarly in this
case the localizer power βw will be equal to β ¼ T

ffiffiffiffi
γ

p ⋅δw−T0;n−1
� �

. Note, neverthe-
less, that the above proposition still holds in this more liberal scenario.
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to the familiar form (the combination of within- and between‐subjects
sensitivities):

δ2G ¼ n
δ−2
W þ δ−2

B

:

In contrast, in the presence of reduced inter-subject overlap, and
irrespective of the within- and between‐subjects sensitivities, the sensi-
tivity of the group-level analyses is always bounded by amaximumvalue
that depends on the amount of inter-subject overlap p:

δ2G≤
n⋅p
1−p

Importantly, this bound means that, for any false-positive
level chosen, and any desired power-level, there will be a mini-
mal amount of inter-subject overlap necessary to achieve this
power level, no matter how strong the original signal is in each
individual subject. The minimal amount of inter-subject overlap
would be:

pmin ¼ δ20
nþ δ20

where δ0≡T−1(β,n−1)+T−1(1−α,n−1), β is the desired power
level, α is the false-positive level used, and n is the number of subjects.
For example, in a study with 25 subjects, and when using an
uncorrected voxel-level p-value of 0.001, we will only be able to detect
with a power greater than 80% voxels that shows 43% overlap or above
across subjects, irrespective of how strong the effect is (no matter how
many scans we perform for each subject, how strong the underlying ef-
fect is in the subjects where it is present, or how consistent this effect is
across this reduced set of subjects—in the limit, zero between-subject
variability).

The voxel-based sensitivity analyses presented here consid-
ered the effect of limited inter-subject overlap on any given
voxel. A standard practice in the field is to use a certain amount
of spatial smoothing (up to 12 mm FWHM) in order to increase
the effective amount of overlap of activations across subjects
(Scouten et al., 2006). Yet smoothing introduces a new source
of variability in the analyses due to the possible variability in
the extent of true activations within the smoothing kernel sup-
port. In addition, smoothing can decrease the functional resolu-
tion of the analyses and result in underestimation of effect sizes
as a result of averaging within each subject across some voxels
that do and some voxels that do not show a true effect. The rea-
soning here is similar to the reasoning used in the context of
fixed-ROI methods. Indeed, spatially smoothed voxel-based anal-
yses can also be conceptually treated as a general form of the
fixed-ROI analyses considered here, where the analyses are
performed for every possible ROI (one ROI centered at each
voxel, and with the size of the ROI determined by the size of
the spatial smoothing kernel). As such, these analyses enjoy the
same general advantages, and suffer from the same caveats, as
the fixed-ROI analyses considered in the Introduction. In practice,
Eq. (A1) can be directly applied to study the power of voxel-
based analyses in the presence of spatial smoothing if we simply
extend this to “soft” ROIs by considering N0 to represent the ef-
fective size of the smoothing kernel (e.g., using the Welch–
Satterthwaite equation):

N0 ¼
∫h xð Þdx

� �2

∫h xð Þ2dx
¼ 4πσ2

� �3=2≈3:4115⋅FWHM3

where N0 and FWHM are both expressed in voxels here, and if we
extend k to represent a weighted-average measure of partial

coverage, computed as the average of the presence/absence of
an effect pi at the surrounding voxels and using h(x) as a proba-
bility measure:

ki ¼
∫h xð Þ⋅pi xð Þdx

∫h xð Þdx
:

In practice and when considering Eq. (A1) in the context of
smoothed voxel-level analyses, N0 can typically be assumed to take
values close to one resel, and the random variable ki can be thought
to represent the proportion of truly active voxels within the support
of the smoothing kernel for each subject.

Appendix D. Subject-specific voxel-level analyses

These analyses can be specified simply by a transformation of the
subject-specific contrast of interest volumes βi(x) (volume of esti-
mated single-subject effect of interest for subject i of the form:

β̃ i xð Þ ¼ βi xð Þ⋅Ti xð Þ½ �⊗h xð Þ
Ti xð Þ⊗h xð Þ

where ⊗ represents the convolution operator, Ti(x) represents a
thresholded subject-specific localizer-contrast volume (taking
the value 1 at supra-threshold voxels, and 0 otherwise), and
h(x) represents the ROI-defining spatial “smoothing” kernel.
Note that if Ti(x)=1 for all voxels x, this transformation reduces
to the familiar spatial smoothing strategy19 using the smoothing
kernel h(x):

β̃ i xð Þ ¼ βi xð Þ⊗h xð Þ
∫h xð Þdx

In contrast, when Ti(x) represents a subject-specific thresholded
localizer contrast volume, the transformed volumes β̃ i xð Þ represent
the weighted average among supra-threshold voxels for each subject
and within an ROI centered at each voxel and with size determined
by the support of h(x). In this way, group-level analyses performed
on the transformed volumes effectively implement the subject-
specific analysis methodology in the context of voxel-based analyses.
As in the case of subject-specific fROIs and in order to compensate for
heteroscedasticity we can use a voxel-specific whitening factor of the
form:

wi xð Þ ¼ Ti xð Þ⊗h xð Þ½ �1=2

which results in the weighted average estimator discussed in the con-
text of sensitivity analyses (with weights wi(x)2), or more generally
we can use reML estimation leading to a voxel-specific whitening fac-
tor of the form:

wi xð Þ≡ r xð Þ þ Ti xð Þ⊗h xð Þ½ �−1
� �−1=2

where r(x) represents the ratio of between- to within‐subjects vari-
ance implicitly estimated over the MLE procedure (see Appendix B).
Unlike the traditional group-level voxel-based analyses, the effective
degrees of freedom of the subject-specific voxel-based analyses will
be nonstationary. Methods that do not assume spatially stationary de-
grees of freedom (e.g., permutation tests; Hayasaka et al., 2004)

19 Smoothing the beta volumes is equivalent to smoothing the original BOLD time-
series, for any linear first-level analyses.
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should be preferred when performing cluster- or set-level inferences
from these voxel-based analyses.

In the same way that Eq. (A1) could be directly applied to study
the sensitivity of voxel-based analyses in the presence of spatial
smoothing, Eq. (B1) can be directly applied to study the sensitivity
of the presented subject-specific voxel-based analyses by simply con-
sidering N0 to represent the effective size of the smoothing kernel
h(x) and k to represent a weighted measure of partial coverage. In
this way, the advantages of functional localizers can be shown to ex-
tend to both ROI- and voxel-based analyses. In particular, for any
given smoothing kernel size, using subject-specific voxel-based anal-
yses will result in increased sensitivity, functional resolution, and re-
duced bias, compared to the standard voxel-based analyses in the
presence of smoothing, under the general conditions discussed in
the section ‘Methods and results’.

Appendix E. Functional resolution in fixed-ROI and subject-specific
fROI analyses

Functional resolution refers to the ability to detect an effect Awhile
discriminating against a spatially adjacent but non-overlapping sec-
ond effect B. It can be generally characterized as the joint likelihood
of detecting effect A while not detecting effect B:

S ¼ βA⋅ 1−βBjA
� �

where βA represents the sensitivity (power) to detect the effect A, and
βB|A represents the a posteriori sensitivity to detect the effect B given
A. In the case where effect B represents a null effect, this measure of
functional resolution equals the product of the true-positive rate
times the true-negative rate. This measure is also known as the AUC
(area under the curve), representing the area under the receiver op-
erating characteristic (ROC) curve, and characterizing the discrimina-
tion ability of a statistical test.

In order to address the impact of inter-subject variability in
the loci of activation on the functional resolution of the different
analysis approaches, we will consider a given true loci of activa-
tion of interest (an area that responds selectively to effect A)
surrounded by areas that show a markedly different response
(areas that respond selectively to effect B). We will assume that
the researcher defines a ROI around the expected location of
the true loci of activation (where the effect A alone should be
present), but due to inter-subject variability in the exact loca-
tion/shape of this locus of activation, the effect B might also be
present within the ROI for a small proportion of voxels (due to
“leakage” from nearby areas where the effect B instead of A is
present). We will investigate the ability of the different analysis
approaches to identify the effect A while discriminating against
the effect B in the presence of inter-subject variability in the
loci of activation.

In particular, following the definitions in Appendix A we will
consider ROI-based analyses with a given ROI of size N0, where
the loci of activation of interest within this ROI covers Ni voxels
for each subject i (with ki as the ratio between Ni and N0).
These voxels respond to the effect A and not B (the strength of
activation to the condition A within these voxels is characterized
by a random variable with mean μ and within- and between-
subjects variability σW

2 and σB
2, while for the condition B it is

characterized by a random variable with zero‐mean and within-
subject variability σW

2 ). The rest of the voxels (N0−Ni) respond
to the effect B and not A (opposite pattern than before, same
mean and variability values for simplicity). In addition the effects
A and B are assumed to be independent and all tests are assumed
one-sided.

Fixed-ROI analyses

Fixed-ROI analyses exploring selective responses to A can be
implemented through a group-level conjunction of A and B (explor-
ing the responses to B over those ROIs that show a significant re-
sponse to A). The functional resolution of fixed-ROI analyses can
then be expressed as:

S ¼ βA⋅ 1−βBð Þ ¼ T
ffiffiffiffiffi
δAG

q
−t

� �
⋅ 1−T

ffiffiffiffiffi
δBG

q
−t

� �� �

where T represents the cumulative distribution of the T-statistic, t
represents a t-value threshold (inverse cumulative distribution of
the T‐statistic at the chosen false positive level), δGA represents the
sensitivity (power-ratio) of the fixed-ROI analyses when considering
the effect A (with partial coverage values ki) in isolation:

δAG ¼ n
N−1

0 ⋅k−2⋅δ−2
W þ 1þ δ−2

B

� �
⋅δ−2

k þ δ−2
B

and δGB represents the sensitivity of the fixed-ROI analyses when con-
sidering the effect B in isolation. In this case, a proportion 1−k of the
ROI voxels will suffer from “leakage” of the effect B from nearby areas,
and δGB will take the value:

δBG ¼ n
N−1

0 ⋅ 1−kð Þ−2⋅δ−2
W þ 1þ δ−2

B

� �
⋅δ−2

k ⋅ 1−kð Þ−2⋅k2 þ δ−2
B

Subject-specific fROI analyses

Subject-specific fROI analyses exploring selective responses to A
can be implemented through a subject-specific conjunction of A and
B: within each ROI and for each subject, exploring the responses to
B over those voxels that show a significant response to A (in other
words B is the contrast of interest while A is the localizer contrast).
The functional resolution of subject-specific fROI analyses can then
be expressed as:

S ¼ βA⋅ 1−βBjA
� �

¼ T
ffiffiffiffiffi
δAG

q
−t

� �
⋅ 1−T

ffiffiffiffiffiffiffiffi
δBjAG

q
−t

� �� �

where δGA represents the sensitivity (power-ratio) of the subject-specific
fROI analysis when exploring the effect A in isolation:

δAG ¼
Xn
i¼1

1
N−1

0 ⋅k−1
i ⋅ 1−αwð Þ−1⋅β−1

W ⋅δ−2
W þ δ−2

B

≥ n
N−1

0 ⋅k−1⋅ 1−αwð Þ−1⋅β−1
W ⋅δ−2

W þ 1þ δ−2
k

� �
⋅δ−2

B

and δGB|A represent the sensitivity (power-ratio) of the subject-specific
fROI analyses when exploring the effect B while using the effect A as a
functional localizer. In this case, only a small proportion (controlled by
the false-positive level of the localizer contrast) of the voxels analyzed
within each ROI will suffer from “leakage” of the effect B from nearby
areas. The average response xi to the effect B within the subject-
specific ROI can then be characterized as:

xi ¼ αW ⋅μ i þ 1−αWð Þ−1⋅βW⋅Ni

� �−1=2⋅εi

and δGB|A will take the value:

δBjAG ¼
Xn
i¼1

1
N−1

0 ⋅k−1
i ⋅α−2

W ⋅ 1−αW

� �
⋅β−1

W ⋅δ−2
W þ δ−2

B

≥ n
N−1

0 ⋅k−1⋅α−2
W ⋅ 1−αW

� �
⋅β−1

W ⋅δ−2
W þ 1þ δ−2

k

� �
⋅δ−2

B
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Explanation of the analysis parameters

type type of subject-specific analysis (“mROI”: ROI-based (with
pre-existing ROI volumes); “voxel”: whole-brain voxel-based;
“GcSS”: whole-brain ROI-based (with ROI volumes being auto-
matically defined based on the activation patterns observed
across subjects)).

The mROI analysis is appropriate when the researcher already
has some ROI volume(s) that they would like to use. These
ROI volumes could, for example, be anatomical regions, func-
tional parcels created from the GSS (formerly GcSS) analysis
(see below), or ROIs defined based on peak coordinates/acti-
vated regions from other studies.
The voxel analysis and the GcSS (a.k.a. GSS) analysis are both ap-
propriate when the researcher does not have spatial priors on

where to expect to observe activations. And both of these analy-
ses are alternatives to the traditional random-effects voxel-level
analysis.
The voxel analysis is equivalent to an mROI analysis that con-
siders small spherical ROIs centered at each voxel. This analysis
asks where in the brain are activations spatially consistent
across subjects, except that in contrast to the standard analysis
the subject-specific method softens the assumption of perfect
inter-subject coregistration (by testing hypotheses at or near
a coordinate in normalized space, instead of exactly at a
given coordinate in normalized space).
The GcSS (a.k.a. GSS) analysis also asks where in the brain are
activations spatially consistent across subjects, except that in
contrast to the standard analysis the GSS method does not re-
quire voxel-level inter-subject overlap, and hypotheses are
tested at the level of empirically-obtained spatial parcels. Par-
cels generated in one study can be used in subsequent studies
to constrain activations (e.g., we generated parcels for brain re-
gions sensitive to high-level linguistic processing in Fedorenko
et al., 2010, and now use those parcels in all subsequent
studies).

20 For additional sample scripts (e.g., those where data come from separate experi-
ments within a session, where conjunctions or disjunctions of multiple contrasts are
used, etc.), feel free to contact EF (evelina9@mit.edu).

Appendix F. Sample spm_ss toolbox script and details of the analysis parameters20
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Localizer_contrasts specify the localizer contrast name(s).

Localizer_thr_type this parameter determines the correction for mul-
tiple comparisons for thefirst-level voxel-based analysis used to
define the localizer mask. It can be set to “none” (uncorrected),
“FDR” (false discovery rate) or “FWE” (family-wise error), similar
to the options built into SPM. In addition to these standard op-
tions, this parameter can also be set to “automatic” or “percentile”.
The “automatic” option represents some of our ongoing re-
search. The analyses in this manuscript suggested that sensi-
tivity of the subject-specific analyses was related to the “area
under the curve” product βW (1−αW), where αW and βW rep-
resent the localizer false positive threshold (expressed as a
false-discovery rate) and power, respectively. The “automat-
ic” option finds the “optimal” false discovery rate threshold
that empirically maximizes this product for each study.
Last, the “percentile” option is a simpler option that, instead
of selecting voxels based on their absolute voxel-level statis-
tics, uses only their relative values, selecting a fixed percent-
age of voxels within each ROI as the localizer mask for each
subject.

Localizer_thr_p localizer threshold value, in units determined by the
value of the above “Localizer_thr_type” option (e.g., if choos-
ing “FDR”, this value represents the false discovery rate
threshold value that should be used to create the localizer
masks).

EffectOfInterest_contrasts specify the effect-of-interest contrast
name(s).

model select and define the second-level analysis model and
between-subject contrast. Currently implemented automatic
models21 include:

• 1—one-sample t-test (e.g., for single-group analyses);
• 2—two-sample t-test (e.g., for analyses comparing two subject
groups);

• 3—multiple regression (e.g., for ANOVA or correlation analyses; e.g.,
Henson and Penny, 2003).

estimation select the estimation method. Currently implemented
methods include:
• OLS (ordinary least squares): straight averaging;
• ReML (restricted maximum likelihood): weighted
averaging.

[NB: the weighted averaging option is implementing a linear
mixed model (or “mixed-effects” analysis, which is typically consid-
ered more robust than a pure “random-effects” analysis, particularly
for first-level data that can be expected to show varying estimation
error across subjects). The actual weight values are derived as a
function of the number of voxels active for each subject, and the
function relating the number of active voxels and the weight values
is specific to each ROI and is estimated via a maximum likelihood fit,
as the optimal form of this function depends on the within- and
between-subject variances, which are not known a priori and thus
must be estimated. The weights are reported in the *data*.csv file
(under a subheading “Weights”). Note also that using the ReML

estimation option will lead to degrees of freedom being
non-integer numbers.]

ExplicitMasking (optional) this option allows using an explicit mask
image so that the analyses are limited to voxels within the
mask. You can specify here an image file (for example the
thresholded group-level results image), or leave the field
empty if you do not want to use any explicit mask. If you use a
mask file, the ROI analyses will be restricted to the intersection
of the subject-specific masks, the ROIs volume, and the explicit
mask.

ask this parameter can be set to “none” (in which case any miss-
ing information is assumed to take default values), to “miss-
ing” (in which case any missing information will be asked
about), or “all” (in which case each parameter will be asked
about).

ManualROIs (for “mROI” analyses only) here you can specify the
path to the ROI volume(s). This should be an analyze or
nifti image containing natural numbers, each number refer-
ring to a single ROI (e.g., a volume containing 1's for voxels
within ROI#1, 2's for voxels within ROI#2, and 0's
otherwise).

overlap_thr_roi the ROI-level overlap threshold limits what areas
(for voxel-based analyses) or ROIs (for ROI-based analyses)
are considered in the results of the subject-specific analyses.
This threshold (the default value is .5) represents the mini-
mum proportion of subjects that need to show any signifi-
cant localizer effect within an ROI (for ROI-based analyses)
or within a sphere around a voxel (for voxel-based analy-
ses) in order for this ROI or voxel to be considered in the dis-
play of the analysis results. Depending on the localizer
threshold, there might be some subjects that do not show
any localizer effects within an ROI (or near a voxel). The cur-
rent parameter allows researchers to disregard ROIs/voxels
where only a small subset of the population shows the ef-
fect), by choosing the minimum proportion of the popula-
tion that they wish their inferences to apply to. When
interested in effects that are widely prevalent in the popula-
tion, choose a relatively large ROI-level overlap threshold
(e.g., .8–.9). For a more exploratory approach or when inter-
ested in effects that may exist in only a small subset of the
population, choose a relatively small low ROI-level overlap
threshold (e.g., .1).

smooth (for “voxel” and “GcSS” analyses only) select the level of
smoothing. For analyses of type “voxel”, this parameter defines
the extent of the “smoothing” kernel (i.e., a soft region of interest
around each voxel). For analyses of type “GcSS”, this parameter
defines the smoothing kernel used to smooth the estimated
inter-subject overlapmap to improve the parcellation (in partic-
ular, to prevent over-parcellation; see e.g., Fedorenko et al.,
2010).

overlap_thr_voxel (for “GcSS” analyses only) this parameter defines
the overlap threshold (i.e., minimum proportion of subjects
showing an effect in each voxel) when empirically estimating
the parcels of interest. This parameter constrains the extent of
these parcels. For example, you can eliminate from the overlap

21 Other general linear models can also be manually defined entering the desired de-
sign matrix and contrast vectors, as in the SPM package.
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map voxels where fewer than .10 of the subjects show activa-
tion by setting the threshold to .10. [NB: researchers tend to
overestimate the extent of voxel-level inter-subject overlap.
In our experience, the overlap typically does not exceed ~.70,
and for most voxels it is considerably lower. As a result, we
recommend using unthresholded, or liberally thresholded,
overlap maps.]
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