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Do domain-general executive resources play a role in linguistic prediction? 
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A B S T R A C T   

Most current accounts of language comprehension agree on a role for prediction, but they disagree on the importance of domain-general executive resources in 
predictive behavior. In this opinion piece, we briefly review the evidence for linguistic prediction, and the findings that have been used to argue that prediction draws 
on domain-general executive resources. The most compelling evidence is an apparent reduction in predictive behavior during language comprehension in pop
ulations with lower executive resources, such as children, older adults, and second language (L2) learners. We propose that these between-population differences can 
be explained without invoking executive resources. Instead, differences in the quantity and kind of language experience that these populations bring to bear may 
affect the probability of engaging in predictive behavior, or simply make prediction effects more difficult to detect in paradigms designed for young adult native 
speakers. Thus, domain-specific prediction mechanisms remain a viable possibility. We discuss ways to further test accounts of linguistic prediction that do vs. do not 
require domain-general executive resources, using behavioral, computational, and brain imaging approaches.   

Prediction is ubiquitous in human cognition (Clark, 2013; James, 
1893): we anticipate trajectories of moving objects, upcoming notes in a 
melody, and others’ emotional reactions. In recent years, evidence has 
accumulated that language comprehension is similarly not a passive 
experience in which we receive linguistic input and then process it. 
Instead, listeners and readers appear to actively predict upcoming ma
terial based on what they know about language and the world (Dell and 
Chang, 2013; Federmeier, 2007; Kuperberg and Jaeger, 2016; Lupyan 
and Clark, 2015; Pickering and Garrod, 2013). When incoming infor
mation conforms to these predictions, processing is facilitated, and vi
olations of these predictions incur processing costs. 

The link between linguistic predictability and behavioral or elec
trophysiological outcomes has been extensively investigated. However, 
the underlying mechanisms remain a topic of debate (Hasson et al., 
2018; Hauk, 2016). In particular, does linguistic prediction rely on 
language-specific mechanisms – i.e., the mechanisms that store our lan
guage knowledge and use those knowledge representations to interpret 
incoming input, or does it instead, or in addition, require domain-general 
executive resources, like working memory and cognitive control? 

In this piece, we briefly introduce linguistic prediction (Section 1). 
We then review the evidence that has been used to argue for a role of 
domain-general executive resources in prediction during language 
comprehension – namely, reduced prediction in populations with 

limited executive resources (Section 2), and speculate about ways in 
which such resources could be involved in predictive behavior (Section 
3). We then provide a re-interpretation of key patterns discussed in 
Section 2 with respect to between-population differences in linguistic 
experience (Section 4). Finally, we discuss experimental and computa
tional approaches that could be used to distinguish between the two 
possibilities in future work (Section 5) and conclude (Section 6). 

1. Prediction in language comprehension 

Evidence for a predictive processing view of language comes from 
several experimental paradigms (for a recent review, see Kuperberg and 
Jaeger, 2016; cf. Nieuwland, 2019). On-line measures of sentence 
reading reveal that readers spend less time processing a word (as evi
denced by e.g., shorter average fixation duration or lower probability of 
fixation) when that word is highly predictable given the preceding 
sentence context (e.g., the word “shark” in “The coast guard warned that 
someone had seen a shark off the north shore of the island.“) compared 
to when it is not predictable (e.g., “The zookeeper explained that the life 
span of a shark is much longer than those of other animals.“; Ehrlich and 
Rayner, 1981). Similarly, measures of eye movements recorded while 
listeners hear a sentence and observe a visual scene (the visual world 
eye-tracking paradigm; Tanenhaus et al., 1995) reveal that listeners 
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incrementally look to objects in the scene that are likely to be referred to 
next (e.g., more looks to a cake after hearing “the boy will eat the …” 
compared to “the boy will move the …“; Altmann and Kamide, 1999). 

Studies using recordings of electrical activity over the scalp (EEG/ 
ERP) have identified multiple components of the signal that are modu
lated by linguistic context. For instance, the N400—a negative deflec
tion that peaks approximately 400 ms after the onset of a critical 
word—is reduced when that word is predictable in context (e.g., “He 
planted string beans in his garden.“) relative to when it is not (e.g., “He 
planted string beans in his car.“; Kutas and Hillyard, 1984; inter alia 
Dambacher et al., 2006; Dimigen et al., 2011; for a review see Kutas and 
Federmeier, 2011). Moreover, the N400 is also reduced to incongruous 
words that share features with the predicted word, relative to a word 
that belongs to a different category than the predicted word (e.g., “The 
yard was completely covered with a thick layer of dead leaves. Erica 
decided it was time to get out the shovel (vs. hammer).” [“rake” is 
predicted]; Federmeier and Kutas, 1999). The N400 is thus thought to 
index the process of retrieving the meaning of the critical word from 
multimodal, long-term memory and its amplitude is therefore tied to 
how much of the nearby semantic space has been pre-activated by the 
context. Further, a later positive deflection appears to index situations 
where a strong prediction was generated and then disconfirmed (e.g., 
“The groom took the bride’s hand and placed the ring on her dresser.” 
[“finger” is predicted]; Federmeier et al., 2010; Federmeier et al., 2007), 
perhaps reflecting the neural activity related to the listener updating 
their model of the language. 

Recent computational accounts of language comprehension have 
formalized processing difficulty in terms of surprisal (Hale, 2001; Levy, 
2008): the negative log probability of the word, wi, given the preceding 
context, where the context encompasses the previous words w1 through 
wi-1, in the sentence and any context outside of the sentence, C. 

surprisalðwiÞ¼ � log Pðwij w1;…;wi� 1;CÞ

The surprisal of a word is inversely related to its predictability. When 
a word is highly probable given its context, surprisal is low. When a 
word is not likely given the context, surprisal is high. 

Reading time differences among words (on a log scale), as well as 
N400 amplitudes, are well approximated by word-by-word surprisal 
values estimated from large corpora (Frank et al., 2015; Luke and 
Christianson, 2016; Smith and Levy, 2013), linking the mechanism of 
prediction directly to the statistical properties of the language. Of 
course, many factors beyond the conditional probability of a word given 
the preceding words likely affect the prediction that a person may 
generate, including who they are talking to, all manner of 
sensory-perceptual input, and world knowledge (e.g., Heller et al., 2008; 
Kamide et al., 2003; Van Berkum et al., 2008), but these are more 
challenging to quantify. As a result, most prior work on linguistic pre
diction has construed predictability as the probability of a word given 
preceding linguistic input alone – often estimated using n-gram fre
quencies or cloze task responses. 

The precise mechanism of prediction, and how it differs from other 
comprehension-related processes, like bottom-up integration of 
incoming elements, remains an area of active debate in the literature 
(Ferreira and Chantavarin, 2018; Kuperberg and Jaeger, 2016; Man
tegna et al., 2019; Nieuwland et al., 2019; Pickering and Gambi, 2018). 
Several accounts ground prediction in a process of forward-simulating 
through the language production system (Dell and Chang, 2013; Fed
ermeier, 2007; Pickering and Garrod, 2013). But these and other ac
counts vary along at least two key dimensions, which – although 
independent – sometimes co-vary across proposals. 

One dimension concerns the ubiquity of predictive processing during 
language comprehension. Some argue that prediction is a core compo
nent of language comprehension, and so all humans always predict 
upcoming linguistic events (Fitz and Chang, 2019; Kuperberg and 
Jaeger, 2016; Rabovsky et al., 2018), in line with general predictive 
processing accounts of cognitive and neural functioning (Clark, 2013; 

Friston, 2010; Keller and Mrsic-Flogel, 2018; Rao and Ballard, 1999). In 
contrast, others postulate that prediction is an optional component of 
language processing (e.g., Huettig and Mani, 2016; Pickering and 
Gambi, 2018), which may take time to mature over the course of human 
development (Gambi et al., 2018; Pinker, 2009; Rabagliati et al., 2016; 
cf. Chang et al., 2006; Chang et al., 2012; Dell and Chang, 2013; Elman, 
1990; Fitz and Chang, 2019; Ramscar et al., 2013). Whether or not a 
comprehender engages in predictive processing may be determined by 
some utility function based on a trade-off between the cognitive effort 
required for prediction vs. the resulting processing benefits, properties 
of the context (e.g., how much evidence the context contains for a 
predictable next word), and the amount of cognitive resources available, 
inter alia. 

The second dimension concerns the nature of the predicted infor
mation. In particular, proposals vary with respect to the granularity of 
predictions: do comprehenders predict one most likely continuation 
(Van Petten and Luka, 2012) or multiple possible continuations, 
weighted by their likelihood (e.g., Fitz and Chang, 2019; Kuperberg and 
Jaeger, 2016; Levy, 2008)? 

And to what extent do predictions feed back down from higher-level 
(e.g., semantic/syntactic) features to lower-level (orthographic/phono
logical) ones (DeLong et al., 2005; Nicenboim et al., 2019; Nieuwland 
et al., 2019; Van Berkum et al., 2005; Wicha et al., 2004; Yan et al., 
2017)? 

Understanding whether and how domain-general executive re
sources (e.g., Friedman and Miyake, 2017) affect predictive linguistic 
behavior can importantly constrain the possibilities above and is an 
important step towards uncovering the essential computations and 
representations that support predictive processing in language 
comprehension. 

2. Evidence consistent with a role of domain-general executive 
resources in linguistic prediction 

Domain-general executive functions encompass a wide range of 
cognitive processes, from working memory maintenance and updating, 
to inhibitory control, to set shifting (e.g., Friedman and Miyake, 2017). 
These processes have been implicated in goal-directed behavior, broadly 
construed (Duncan, 2010a). Over the years, many have argued for the 
importance of executive processes in language comprehension (e.g., Just 
and Carpenter, 1992; Nozari et al., 2016a), including their potential role 
in core linguistic processes, like inhibiting irrelevant meanings or parses 
(e.g., Novick et al., 2005). Here we ask whether executive resources are 
critical for predictive language processing. 

The most compelling evidence for the role of domain-general exec
utive resources in linguistic prediction comes from an apparent reduc
tion in prediction1 in populations with limited executive resources, 
including children (Friedrich and Friederici, 2005; Gambi et al., 2018; 
Mani and Huettig, 2012), older adults (Dagerman et al., 2006; Dave 
et al., 2018; Federmeier and Kutas, 2019; Federmeier et al., 2010; 
Federmeier et al., 2002; Payne and Federmeier, 2018; Wlotko and 
Federmeier, 2012; see Payne and Silcox, 2019 for a review), and second 
language (L2) learners (Grüter et al., 2012; Lew-Williams and Fernald, 
2010; Martin et al., 2013; Mitsugi and Macwhinney, 2016). Executive 
functions do not reach full maturity until early adulthood (Davidson 

1 Empirical evidence of “prediction” may originate both from measures of 
pre-stimulus (anticipatory) activity and from activity during/after the (not) 
predictable stimulus. Though the distinction between these signals may be 
crucial to the understanding of the mechanisms of prediction, they have typi
cally been discussed together in the literature and used interchangeably as 
indices of predictive processes. Because both indices can be fruitfully leveraged 
to investigate the key question we are interested in here – whether executive 
resources play a crucial role in linguistic prediction – we follow the prior 
literature in including both types of effects in our discussion. 
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et al., 2006; De Luca and Leventer, 2010), and they begin to decline soon 
thereafter (Hartshorne and Germine, 2015; Park et al., 2002; Salthouse, 
2009). So, reduced linguistic prediction in both children and older 
adults has been argued to result from this lower amount of available 
executive resources (e.g., Huettig and Mani, 2016; Pickering and Gambi, 
2018). And L2 learners may find language processing more effortful thus 
loading on the same pool of executive resources that would typically be 
used for prediction (Linck et al., 2014). These between-population dif
ferences (see Table 1 for a summary of some representative findings) 
provide the most compelling evidence to date for a core role of executive 
resources in linguistic prediction. 

Some investigations of individual differences among native-speaking 
young adults have also been used to argue for the role of domain-general 
executive resources in linguistic predictions. In particular, many 
behavioral, and some electrophysiological, investigations (e.g., Caplan 
and Waters, 1999; Just and Carpenter, 1992; King and Just, 1991; 
Misyak and Christiansen, 2012; Payne et al., 2014; Swets et al., 2007; 
Van Dyke et al., 2014) have found that readers who perform well on 
tasks that measure executive resources (e.g., reading span) are better at 
understanding sentences with high surprisal (often discussed in terms of 
syntactic complexity or memory demands but these are typically 
correlated with surprisal) or exhibit greater differences in ERP (e.g., 
P600) response magnitude for predictable vs. unpredictable words (Kim 
et al., 2018; Nakano et al., 2009; Tanner and Van Hell, 2014). However, 
much of this evidence suffers from limitations, including poor psycho
metric properties of the comprehension measures (see James et al., 2018 
for relevant discussion) and lack of agreement on the right instruments 
for assessing executive functions (e.g., Stroop vs. an anti-saccade task). 
Further, correlations between two measures x and y provide only an 
indirect route to understanding underlying processes, as they may 
reflect a common cause (e.g., motivation or general intelligence, factor 
g; Duncan, 2010a; Spearman, 1929). As a result, we here focus on the 
claims that have come from the between-population comparisons. 

3. How could domain-general executive resources affect 
linguistic prediction? 

Broadly speaking, executive resources could affect i) the likelihood 
of engaging in predictive behavior (cf. proposals whereby prediction is 
ubiquitous), and/or ii) the nature and/or quality of the predictions. To 
our knowledge, no specific account of a mechanism by which executive 
functions might support predictive processing during language 
comprehension has been proposed in the literature, although most 
theoretical papers have argued for the lower likelihood of engaging in 
predictive behavior in populations with limited executive resources 
rather than for changes in the nature/quality of the predictions (cf. 
Borovsky et al., 2012; Kaan, 2014). Here, we sketch three specific hy
potheses, which are all instantiations of the broad Hypothesis (Hy
pothesis 1 in Fig. 1, left panel) whereby domain-general executive 
resources play a role in linguistic prediction.2 In Hypotheses 1a and 1b, 
linguistic predictions are generated by language-specific mechanisms, 
and executive resources play a critical supporting role, and in Hypothesis 
1c, executive resources play a core role. 

Hypothesis 1a. Executive resources are needed to maintain the context in 
working memory. 

To generate precise and accurate predictions about upcoming lin
guistic events, a comprehender needs a faithful representation of the 
preceding linguistic (and non-linguistic) context. Executive resources (in 
particular, a domain-general working memory store) could be critical 
for maintaining these contextual representations and integrating diverse 
kinds of information (e.g., the identity of the interlocutor, sensory- 
perceptual input, world knowledge). In this way, the amount of execu
tive resources would determine the quality of the input that the lan
guage model uses to generate predictions (e.g., Futrell and Levy, 2017). 
When executive resources are plentiful, the representation of the context 
in working memory is detailed, accurate, and plausibly spanning a 
longer time-window, allowing for specific, and more likely, correct, 
predictions to be made, thus leading to facilitation when the predicted 
continuation is encountered. On the other hand, when executive re
sources are limited, the memory representation of the context may be of 
poor quality, leading to less specific and sometimes inaccurate pre
dictions, and thus frequent difficulty. 

Hypothesis 1b. Executive resources are needed to generate/maintain 
predictions in working memory. 

Executive resources could also be important for keeping the gener
ated predictions active in working memory as linguistic input continues 
to unfold, especially if our linguistic mechanisms generate multiple 
possible continuations. When executive resources are plentiful, we can 
maintain several likely continuations or features thereof active in 
working memory (weighted by their probability), thus maximizing the 
chances of the input matching those predictions and leading to facili
tation when there is a match. On the other hand, when executive re
sources are limited, the representation of the generated prediction may 
be of poor quality (e.g., perhaps only a single likely continuation is 
maintained, or only a subset of the relevant features, or perhaps even the 
weighting of the continuations/features is affected), decreasing the 
probability of the input matching the predictions and leading to pro
cessing difficulty. 

Hypothesis 1c. Linguistic prediction is implemented in domain-general 
inhibitory and selection mechanisms. 

This hypothesis construes prediction as inhibition of low-probability 
continuations and selection of high-probability continuations. In 
particular, selection and inhibitory control acting in tandem (Mirman 
et al., 2011; Nozari et al., 2016a, 2016b) may be essential to circum
scribe activation to the likely continuation(s) or features thereof. When 
executive resources are plentiful, (the features of) high-probability 
continuations are active and (the features of) low-probability continu
ations are efficiently inhibited, leading to facilitation when the pre
dicted continuation is encountered and difficulty when a non-predicted 
continuation is encountered. On the other hand, when executive re
sources are limited, the selection and inhibition of (the features of) high- 
and low-probability continuations respectively may not always be suc
cessful, leading to less specific and less accurate predictions. 

4. Reinterpreting the existing evidence for the role of domain- 
general executive resources in linguistic prediction 

As noted above, taken at face value, the reduction or absence of 
prediction in populations with lower executive function abilities may 
appear to provide compelling support the for the role of executive re
sources in linguistic prediction. However, we here argue that this evi
dence can be accounted for without alluding to executive resources. The 
key insight is that young native-speaking adults differ from children, 
older adults, and L2 learners not only in the availability of executive 
resources, but also in the amount and kind of linguistic experience. We 
outline two specific hypotheses, which are both instantiations of the 
broad hypothesis (Hypothesis 2 in Fig. 1) whereby domain-general ex
ecutive resources do not play a role in linguistic prediction. According to 
Hypothesis 2a, the previously reported population differences are 

2 In what follows we do not restrict the use of “prediction” to any particular 
level of representation, though the majority of existing literature has focused on 
lexical prediction. A discussion of whether/how executive resources may be 
differentially involved in prediction at different levels of representation is 
beyond the scope of this piece. In the absence of evidence to the contrary or a 
more precise understanding of how predictions are computed in the first place, 
it seems most parsimonious to start with the assumption that whatever mech
anism may or may not change the process of linguistic prediction over the 
lifespan operates similarly across levels of representation. 
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artifactual in nature. In particular, all comprehenders engage in pre
diction, but they differ in the nature of the predicted information. As a 
result, population-specific norms are needed to detect effects of predic
tion. And according to Hypothesis 2b, prediction is, in fact, reduced in 
children, older adults, and L2 learners, but due to differences in the 
amount and nature of linguistic experience, leading to less utility asso
ciated with predictive behavior.3 

Hypothesis 2a. Ubiquitous but differing predictions across populations. 

The predictions that comprehenders make reflect the statistics of 
their prior linguistic experience (see also Cuetos et al., 1996; Fine et al., 
2013; Levy, 2008; MacDonald, 2013; Ryskin et al., 2017; Verhagen 
et al., 2018). Linguistic input differs in quantity and nature between 

young native-speaking adults, children, older adults, and L2 speakers, 
leading to different language models used to predict upcoming linguistic 
events (for a similar argument focused on L2 comprehension specifically 
see Kaan, 2014). 

In many experiments that have investigated linguistic prediction 
across populations (see Table 1), norms (e.g., cloze task responses) from 
young adults are used to create stimuli and categorize them into high- 
and low-predictability conditions (or more fine-grained bins in some 
cases). The implicit assumption is that, to the extent that any other 
group of participants (not native-speaking young adults) engages in 
predictive behavior, the content of their prediction will match those 
norms. We here argue that the nature of predictions may differ between 
groups due to differences in their language experience. Naturally, older 
adults have more years of experience with their native language than 
young adult native speakers, whereas children and L2 speakers have 
much less experience. As a result, older adults are more likely to have 
heard infrequently occurring words, phrases, or structures (Ramscar 
et al., 2014), whereas children and L2 learners begin by learning higher 
frequency words (Braginsky et al., 2019; Goodman et al., 2008). In 
addition, over the many years of an older adult’s experience, the lan
guage is itself changing (e.g., Biber and Finegan, 1989; Wolk et al., 
2013). As languages evolve, some words and structures fall out of 
fashion (e.g., “davenport”), while others are born (e.g., “to google”, 
“because [Noun]”). Furthermore, the language experience of these 

Table 1 
Examples of studies of predictive language processing across populations. This set of studies is not meant to be exhaustive. Instead, we tried to showcase the kinds of 
linguistic prediction effects that have been investigated across cohorts. In some of these studies, the authors did not explicitly link linguistic prediction to executive 
functions. (L2 ¼ Second language).  

Population Paper Method Indices of predictive language processing Population comparison 

Children (3–10 years) vs. 
young adults (18–28 
years) 

Borovsky et al. 
(2012) 

Visual World Paradigm 
eye-tracking 

More anticipatory fixations to target picture when it is 
plausible given the agent and action verb than when it 
is not. 

Children and adults anticipate the targets 
but the effect is smaller in children with low 
vocabulary. 

Children (2–5 years) vs. 
young adults (18–24 
years) 

Gambi et al. 
(2018) 

Visual World Paradigm 
eye-tracking 

More anticipatory fixations to target picture after a 
disambiguating determiner (a/an) than after one that 
doesn’t disambiguate the subsequent referent. 

Adults anticipate the targets, but the effect 
is smaller or absent in children. 

Children (1 year vs. 19 
months) vs. adults 

Friedrich and 
Friederici (2005) 

Event-related potentials 
(looking at pictures 
while listening to labels) 

Larger N400 responses when listening to a word 
that’s incongruous with the picture than when it 
matches the picture. 

Adults and 19-month-olds show an N400 
difference but not 12-month-olds. 

Children (2 years) Mani and Huettig 
(2012) 

Visual World Paradigm 
eye-tracking 

More anticipatory fixations to target picture when it is 
plausible given the action verb than when it is 
neutral. 

Children with high productive vocabulary 
anticipate the targets. Those with low 
vocabulary don’t. (No adult control group.) 

L2 learners of English 
(native language: 
Spanish) 

Lew-Williams and 
Fernald (2010) 

Visual World Paradigm 
eye-tracking 

More anticipatory fixations to target picture after a 
gender-disambiguating determiner (in Spanish) than 
after one that doesn’t disambiguate the subsequent 
referent. 

Unlike native speakers, L2 learners are not 
able to take advantage of gender 
information to anticipate the target. 

L2 learners of English 
(native language: 
Spanish) 

Grüter et al. 
(2012) 

Visual World Paradigm 
eye-tracking 

More anticipatory fixations to target picture after a 
gender-disambiguating determiner (in Spanish) than 
after one that doesn’t disambiguate the subsequent 
referent. 

Unlike native speakers, L2 learners are not 
able to take advantage of gender 
information to anticipate the target. 

L2 learners of English 
(native language: 
Spanish) vs. native 
speakers 

Martin et al. 
(2013) 

Event-related potentials 
during reading 

Larger N400 responses to determiners predictive of 
words that are unexpected in context. 

Native speakers, but not L2 learners showed 
effects of prediction on the N400. 

L2 learners of Japanese 
(native language: 
English) vs. native 
speakers 

Mitsugi and 
Macwhinney 
(2016) 

Visual World Paradigm 
eye-tracking 

More anticipatory fixations to target picture when it 
fits the syntactic context (case-marking information) 
compared to when the context is predictive of a 
syntactic alternative. 

Native speakers, but not L2 learners showed 
a preference for the target consistent with 
the case-marking cue. 

Older adults (mean age: 
73 years) vs. young 
adults (under 30) 

Dagerman et al. 
(2006) 

Cross-modal naming Speakers are faster to name ambiguous words when 
the preceding sentence context is supportive 
compared to un-supportive. 

Young adults are faster in supportive 
contexts but older adults are not. 

Older adults (64–79 
years) vs. young adults 
(18–33 years) 

Dave et al. (2018) Event-related potentials 
during reading 

Larger N400 responses to words that are unexpected 
in context (vs. expected) and larger Post-N400 
Positivity (PNP) when the context is strongly 
constraining. 

N400s are reduced in older adults but not 
PNPs 

Older adults (60–76 
years) vs. young adults 
(18–24 years) 

Federmeier et al. 
(2010) 

Event-related potentials 
during reading 

Larger late frontal positivity (FP) in response to a 
congruent word when a different word was strongly 
predicted (but disconfirmed by the input). 

FPs are reduced in older adults relative to 
young adults. 

Older adults: continuous 
age range (32–77 
years) 

Huettig and Mani 
(2016) 

Visual World Paradigm 
eye-tracking 

More anticipatory fixations to target picture which 
fits the context, a gender-marked determiner, than to 
distractors which are not consistent with the 
determiner gender. 

Target to distractor fixation ratio is higher 
in participants with higher working 
memory, which is (negatively) correlated 
with age in this sample.  

3 One interesting thing to note is that, by some metrics (e.g., vocabulary 
knowledge, syntactic judgments, offline text comprehension), our language 
abilities are stable or continue to improve with age, well into our 70s–80s 
(Hartshorne and Germine, 2015; Shafto and Tyler, 2014; but see Johnson, 
2003; Payne et al., 2014). If it turns out that older adults engage less in pre
dictive behavior than younger adults, this would suggest that linguistic pre
diction only benefits the ease of processing incoming words in real time, but 
does not impact our ability to extract information from linguistic signals (see 
Huettig and Mani, 2016; Pickering and Gambi, 2018 for proposals along these 
lines). 
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Fig. 1. A schematic illustration of the two main hypotheses that can give rise to the same data pattern: one where domain-general executive resources play a role in 
linguistic prediction, and one where they don’t. Left: The top panel shows the probabilities assigned to two words, one high- and one low-predictability, by the 
comprehender’s language model (grey dots are other words), and the middle panel shows the strength of executive functions (EF) over the lifespan. Because the 
amount of executive resources affects the ability to generate and maintain linguistic predictions (see Hypotheses 1a-c for specific proposals), responses to the low- 
predictability and high-predictability word differ more, when EF is high (i.e., around age 20) compared to when EF is low (e.g., around ages 5 or 75, or in L2 speakers 
[not depicted for clarity]). Right: The top panel shows the probabilities of words in context across the lifespan. The high-predictability and low-predictability words 
are defined in terms of probabilities assigned by a young adult at the time of data collection (grey lines are other words). In this Hypothesis (see Hypotheses 2a-b for 
specific proposals), generating and maintaining linguistic predictions does not require executive resources. However, due to variation in the respective probabilities 
of words over the lifespan, responses to the low-predictability (for a young adult) and high-predictability (for a young adult) word also differ more around age 20 
than around ages 5 or 75 (L2 speakers can be thought of as having ~5 years of “age” in terms of cumulative non-native language exposure, though other features of 
L2 linguistic experience beyond cumulative exposure, e.g., first language transfer, plausibly also play a role). On the bottom, the same pattern is shown as in the left 
panel but with a different explanatory mechanism. 
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populations likely differs in a number of other ways (see Wulff et al., 
2019 for a review of how the lexicon changes over the lifespan). For 
instance, the typical source of recent language input (e.g., news outlets 
vs. social media vs. children’s books; Montag et al., 2015; Montag and 
MacDonald, 2015), the quantity of recent input (e.g., older adults may 
be more likely to live alone and have fewer interactions, while L2 
speakers are perhaps spending most of their time experiencing a 
different language) and sensory processing (e.g., vision and hearing may 
be impaired in old age) may all differ between these groups and have 
downstream consequences for the content of their linguistic pre
dictions.4 The existing evidence for reduced prediction in children, older 
adults, and L2 learners is therefore plausibly explained by the use of 
young adult language norms which do not carve up the predictability 
space in the appropriate way to detect prediction in the other three 
populations.5 

We are not the first to consider the possibility that different pop
ulations may have different linguistic expectations. Federmeier et al. 
(2002) noted this issue with respect to older adults but did not observe 
significant differences when comparing cloze task responses of 20 older 
adults to those of 132 young adults. On the other hand, inspection of the 
Hamberger et al. (1996) cloze norms from 30 young adults and 100 
older adults reveals many completions that are produced only by the 
young cohort or only by the old cohort. Similarly, Lahar et al. (2004) 
reported some consistency in cloze responses across age groups (young, 
middle, young-old, old-old) but stronger correlations between age 
groups that were closer together in age. Further, in a sentence comple
tion paradigm, L2 speakers of English were found to have different 
subcategorization biases (Dussias et al., 2010) than native English 
speakers (Garnsey et al., 1997), and children’s grammaticality judg
ments diverge from those of adult, native speakers (Ambridge et al., 
2008). Thus, the possibility that differential linguistic experience leads 
to different kinds of predictions during language comprehension – which 
do not necessarily match the normative patterns from young adults – 
deserves further investigation. 

Hypothesis 2b. Reduced prediction in populations with either too little or 
“too much” linguistic experience. 

Prior reports of reduced prediction in children, older adults, and L2 
learners have emphasized that generating prediction is costly (Pickering 
and Gambi, 2018). (The exact nature of this cost has not been fleshed out 
in the literature, but it would presumably depend on the nature of the 
postulated mechanism for how predictions are generated and main
tained; see e.g., Hypotheses 1a-c above.) As a result, in populations 
where executive resources are immature, declining, or taxed, the costs 
may outweigh the benefits of engaging in predictive behavior. However, 

an alternative explanation is that the cost of generating predictions is 
negligible and/or does not draw on domain-general executive re
sources,6 but the benefits are insufficient to justify prediction in some 
populations. If predictions confer little to no processing advantage, 
engaging in predictive behavior would not be rational (Anderson, 1990). 
(Though note that prediction error in this case can still serve the purpose 
of allowing the comprehender to learn and update their language 
model.) 

One possibility is that there is some optimal amount of language 
experience at which our predictions are correct (elicit small prediction 
error signals) frequently enough for them to be useful in facilitating the 
processing of incoming words. For example, children and L2 learners 
have relatively small vocabularies. As a result, their predictions would 
necessarily be wrong whenever they encounter an unfamiliar word, 
which would happen a lot early on during language acquisition. In other 
words, prediction may not substantively facilitate processing in these 
populations leading them to engage in it less. In line with this idea, 
vocabulary is a better predictor than age for predictive processing in 
children (Borovsky et al., 2012; also see Ylinen et al., 2017) and verbal 
fluency is positively correlated with the magnitude (or presence) of 
prediction-related ERP effects in older adults (Federmeier et al., 2010). 
On the other hand, vocabulary keeps increasing with age (e.g., Hart
shorne and Germine, 2015; Verhaeghen, 2003). Integrating over lan
guage experience from several decades and potentially more 
idiosyncratic sources (as described in Hypothesis 2a) may lead older 
adults to generate a very different set of predictions than young adults. 
This may lead to frequently incorrect predictions in certain language 
settings (e.g., doctor’s visits, interacting with younger family members, 
psychology research experiments) where the distributions may be more 
reflective of the younger person’s linguistic distribution, and thus to 
predictive behavior being less useful than for young adults. 

The precise mechanisms for the switching on and off of predictive 
behavior would need to be worked out, but we can speculate that – 
starting with some non-zero probability of making a prediction – the 
probability of generating a prediction p increases when the previously 
generated prediction p-1 turned out to be correct (this increase can be 
driven via e.g., the activity of dopamine neurons; e.g., Schultz et al., 
1997; Stauffer et al., 2014; Steinberg et al., 2013), and decreases when 
p-1 turned out to be incorrect. In children and L2 learners, a high 
number of incorrect predictions would lead to an overall low probability 
of making a prediction (although this probability never gets to 0; 
otherwise, a separate mechanism would be required for initiating the 
process again at a later age). By adolescence/young adulthood, lin
guistic predictions are correct sufficiently frequently, so the probability 
of making a prediction is approaching 1. As individuals age, the pro
portion of incorrect predictions is increasing again, leading to a decrease 
in the probability of future predictions. This additional process may also 
be subject to individual differences, such that some people’s predictive 
mechanisms are more strongly affected by the ratio of correct to incor
rect predictions. 

Adding a mechanism for probabilistically switching prediction on 
and off makes this proposal more complex than Hypothesis 2a. Indeed, 
of the five hypotheses described above, Hypothesis 2a provides the 
simplest account of all the relevant phenomena. However, although 

4 Could differences in how well context is encoded fully explain differences in 
prediction, without appealing to differences in linguistic experience? For 
example, older adults may have more difficulty hearing speech, especially in 
noisy situations, or seeing small fonts, and may therefore miss some critical 
parts of the context. As a result, they may predict a different continuation than a 
young adult who encoded the context faithfully. Such differences are unlikely to 
fully account for the relevant prior findings because older adult participants are 
typically screened for auditory and visual acuity. Moreover, children and L2 
learners are not likely to differ from young adults in their ability to perceive the 
context, arguing against a general low-level perceptual mechanism as an 
explanation of reduced prediction in older adults, children, and L2 learners.  

5 It is worth noting that some decrease in the difference between high- and 
low-predictability items across populations is expected simply due to regression 
to the mean. Maximizing the difference between responses in one group will 
lead to smaller differences in any other group (for those same stimuli). How
ever, it seems unlikely that regression to the mean would be the sole factor, 
given that norming and testing are typically done across different samples and 
yet prediction effects have been robustly observed. Therefore, differences in the 
quantity and sources of the linguistic input may play an important role in 
explaining prediction discrepancies between populations. 

6 Another plausible source of prediction cost is forward-modeling through the 
production system, which has been proposed as a key element of prediction 
(Pickering and Gambi, 2018; Federmeier, 2007; Dell and Chang, 2013). If these 
production costs are thought to be at the level of neural implementation (e.g., 
speed of synaptic transmission), then—as with perceptual acuity (discussed in 
footnote 4)—this explanation is pertinent to older adults and, perhaps, very 
young children, but not to L2 speakers. Alternatively, these production costs 
could reflect the higher-level processes of accessing/assembling utterances (e. 
g., children/L2 speakers may be lacking certain representations, whereas in 
older adults they may be difficult to access). 
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parsimony favors Hypothesis 2a (Myung, 2000), additional systematic 
empirical work is needed to rigorously evaluate all of the hypotheses 
above. 

5. A path forward: how to distinguish between proposals that do 
vs. do not require domain-general executive resources for 
linguistic prediction? 

5.1. Behavioral and electrophysiological investigations 

The first key step in moving forward would be to assess prediction in 
children, older adults, and L2 learners using population-specific norms. 
In particular, prediction in each relevant population (young adults, 
children, older adults, and L2 learners) would be measured basing the 
predictability manipulation in the experimental materials on norms 
produced by the target population vs. by one of the other three groups. 
The use of young adult norms should replicate prior findings of reduced 
prediction (as indexed by eye-movements, ERPs, or other measures) in 
children, older adults, and L2 learners. The critical question is whether 
the use of population-specific norms (i.e., using norms from older adults 
in testing prediction in older adults) would eradicate these effects. The 
use of norms from children, older adults, or L2 learners to test prediction 
in young adults should also lead to an apparent reduction in prediction 
effects in this population. If these predictions of Hypothesis 2a hold, that 
would provide compelling evidence for a non-executive-resource-based 
explanation of between-population differences.7 

Another approach to evaluating the role of executive resources in 
linguistic prediction would be to manipulate the availability of such 
resources within individuals over time using a resource-depletion para
digm (Muraven and Baumeister, 2000; but see Xu et al., 2014), where an 
individual performs a linguistic prediction task before and after per
forming a demanding executive function task, or a dual-task paradigm 
(Kahneman, 1973), where an individual performs a linguistic prediction 
task in parallel with an executive function task. Observing reduced ef
fects of prediction following executive-resource depletion or in the 
presence of a secondary task would suggest that executive resources are 
indeed important for some aspect(s) of linguistic prediction. To mean
ingfully interpret the results of such an experiment, it would be critical 
to compare the linguistic prediction task to two other critical tasks: one 
where executive resource depletion is expected to affect performance (e. 
g., another executive function task), and one that should not be affected 
by executive resource depletion (e.g., a face perception task). To argue 
for the role of executive resources in linguistic prediction, one would 
need to demonstrate a reduction in linguistic predictive behavior 
following executive resource depletion, similar to impaired performance 
on the executive function task, and different from unimpaired perfor
mance on the control (face perception) task. 

If the role of executive resources in linguistic prediction is supported 
by future empirical investigations, it will be important to articulate 
specific testable accounts of how exactly executive processes support 
predictive behavior (e.g., see Hypotheses 1a-c above). If different ac
counts favor different kinds of executive processes (e.g., working 
memory updating vs. inhibitory control), then more targeted individual- 

differences investigations may be able to tease them apart. 

5.2. Computational modeling 

The effects of language experience vs. executive resources on lin
guistic prediction can also be fruitfully investigated with a computa
tional approach. A model trained to predict the next word in a sentence 
(e.g., n-gram, RNN, incremental grammar-based parser) has the training 
set as its language experience and presumably no “executive resources.” 
Thus training computational models on different amounts8 and kinds of 
data (e.g., texts from different time periods or genres) and comparing 
how the models assign relative probabilities to words from the same test 
set is analogous to using norms from one population to assess prediction 
in other populations. For example, a model trained on a corpus of texts 
written between 1920 and 1950 can be used to generate a probability 
distribution over words given a context (e.g., She likes sugar in her …). 
The most probable continuation, w1 (e.g., tea), and an improbable 
continuation, w2 (e.g., socks), can be selected and the difference be
tween their surprisal values, ΔS1, can be computed. Next a model trained 
on a corpus of texts written between 1970 and 2000 can generate a 
distribution over potential continuations given the same context and a 
ΔS2 can be computed for the same pair of words (e.g., tea and socks). It 
may be the case that on average, over many contexts and word pairs, ΔS1 
and ΔS2 will not differ. On the other hand, ΔS2 may be on average 
smaller than ΔS1, perhaps because the relative probabilities of contin
uations change over time (e.g., coffee replaces tea as the highest prob
ability continuation in the modern corpus).9 The latter result would be 
similar to what is observed in behavioral and ERP experiments: larger 
predictability effects when high-predictability and low-predictability 
stimuli are defined by language users with a similar linguistic back
ground (e.g., young adult participants in an experiment based on norms 
from young adults) than when the comprehender and source of stimuli 
differ in linguistic experience (e.g., older adult participants in an 
experiment based on norms from young adults). Convergence in the 
results from this kind of a computational investigation and experiments 
like the ones outlined above could provide compelling evidence 
regarding what executive resources need to be posited to account for 
apparent differences in linguistic prediction between populations. 

5.3. Brain imaging 

We now know that the human brain is comprised of a number of 
large-scale functionally distinct networks (e.g., Alexander-Bloch et al., 
2013; Bernard et al., 2012; Chen et al., 2012; Fox et al., 2005; Hagmann 
et al., 2008; Konopka et al., 2012; Power et al., 2011; Raznahan et al., 
2011; Seeley et al., 2009; Toro et al., 2008; van den Heuvel and Sporns, 
2011; Yeo et al., 2011; inter alia). Given that different networks have 
been associated with distinct kinds of cognitive processes, understand
ing which network(s) give rise to linguistic prediction effects can help 
decipher the underlying mechanisms (Mather et al., 2013). In particular, 
language comprehension has been linked to at least two brain networks: 

7 We are grateful to an anonymous reviewer for pointing out another avenue 
for experimentally dissociating language experience and executive function. 
This could be accomplished by teaching participants—from all four pop
ulations—an artificial language and then testing them with sentences from this 
novel language which either end with a predictable “word” or one that is un
predictable given the context. One challenge with this approach, apart from the 
lack of ecological validity and potentially additional executive demands asso
ciated with learning novel stimuli, is to ensure that the (artificial) language 
experience is indeed equated across the groups. A potential solution may be to 
allow participants to learn to some high accuracy criterion before testing their 
predictions. 

8 More training data/experience typically leads to better accuracy. However, 
this assumes that the training data and the test data are generated from the 
same underlying (in this case, language) distribution. This assumption may not 
be valid for humans belonging to different groups (e.g., young vs. old), if we 
think of the training data as all the language that an adult has experienced up 
until the point where they enter the lab for an experiment. Often the test set is 
generated by aggregating the distributions reported by young adult participants 
(i.e., norming). An older adult participant certainly has more years of language 
experience (i.e., a “larger” training set) than a young adult participant entering 
the lab, but the young adult may have a model much more similar to that which 
generated the test set, yielding potentially higher accuracy, on this particular 
prediction task, despite an overall smaller amount of input.  

9 In part, ΔS2 is likely to be smaller than ΔS1 simply because of regression to 
the mean (see footnote 5). 
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a language-specific fronto-temporal network that selectively supports 
lexico-semantic and syntactic processes (Fedorenko et al., 2011; 
Fedorenko et al., 2010; Menenti et al., 2011; Silbert et al., 2014), and a 
domain-general fronto-parietal network that supports executive pro
cesses, like attention, working memory, and cognitive control, some
times referred to as the Multiple Demand (MD) network (e.g., Duncan, 
2010b, 2013). 

If linguistic prediction is localized to the domain-general MD 
network or to both the language and the MD network, that would give 
credence to accounts whereby prediction draws on executive resources. 
Given that linguistic surprisal has been linked to processing difficulty (e. 
g., Frank et al., 2015; Smith and Levy, 2013), such a finding would be 
consistent with the signature increase in the activity of MD brain regions 
for cognitively effortful tasks (Duncan and Owen, 2000; Fedorenko 
et al., 2013; Hugdahl et al., 2015; Peelle et al., 2010), and would provide 
further support for claims that this network encodes predictive signals 
across domains and relays them as feedback to other, domain-specific, 
brain regions (Chao et al., 2018; Cristescu et al., 2006; Egner et al., 
2008; Strange et al., 2005; Strijkers et al., 2019; Wacongne et al., 2011). 
If, on the other hand, linguistic predictive processing is localized to the 
language-specific network, which plausibly stores our linguistic 
knowledge representations (Fedorenko, 2014; Fedorenko et al., 2018), 
that would suggest that prediction is carried out by mechanisms that 
selectively support language comprehension, and does not draw on ex
ecutive resources. This result would be particularly (though not exclu
sively) consistent with prediction being ubiquitous within and across 
individuals, and would align with a growing body of cognitive neuro
science research supporting prediction as a “canonical computation” 
(Keller and Mrsic-Flogel, 2018) locally implemented in domain-specific 
circuits (Alink et al., 2010; Bastos et al., 2012; Bubic et al., 2010; 
Montague et al., 1996; Rao and Ballard, 1999; Singer et al., 2018; 
Wacongne et al., 2011). Because reliance of linguistic prediction on 
executive resources is a pillar argument for accounts whereby prediction 
is not obligatory, finding that linguistic prediction does not engage the 
MD network would present a fundamental challenge to those accounts 
as they are currently construed (Huettig and Mani, 2016; Pickering and 
Gambi, 2018). However, as laid out in Section 4, prediction varying 
across the lifespan of an individual, or between populations, can also be 
consistent with a language-experience-based account of linguistic 
prediction. 

Only a handful of studies have used fMRI to probe prediction during 
language processing. So far, no clear and consistent picture has emerged, 
perhaps in part due to the variable ways in which prediction has been 
operationalized across studies. Some studies have actually failed to 
observe effects of linguistic predictability on brain activation (e.g., 
Schuster et al., 2016). Others have observed reliable effects of predic
tion, but the implicated brain regions have differed across studies (e.g., 
Lopopolo et al., 2017; Willems et al., 2016). For example, using a se
mantic priming paradigm, Weber et al. (2016) found that the facilitation 
effect was increased in situations of high predictive validity, and this 
effect was localized to left inferior frontal gyrus (IFG) and left posterior 
superior/middle temporal gyrus (post-S/MTG) – two important regions 
of the fronto-temporal language-selective network (e.g., Fedorenko and 
Thompson-Schill, 2014). Similarly, Matchin et al. (2017) found that IFG 
and posterior superior temporal sulcus (pSTS) were more strongly 
activated by sentences (e.g., the poet will recite a verse) than sequences 
of two-word phrases (e.g., the fencer the baby their bill) (see also Pallier 
et al., 2011, for the same empirical finding), and interpreted these re
sults with respect to predictive processing. Some studies that have used 
naturalistic comprehension tasks have also implicated regions in the 
fronto-temporal language network. For example, Henderson et al. 
(2016) used a word-by-word reading task and localized surprisal effects 
to left IFG, but did not observe effects in posterior temporal cortex. In 
contrast, Willems et al. (2016) observed surprisal effects in posterior 
temporal cortex during a naturalistic story listening task, but not in left 
IFG. Using MEG, Eisenhauer et al. (2019) localized lexico-semantic 

prediction effects, measured by priming-based facilitation, to the left 
temporal pole. Others have implicated regions traditionally considered 
to belong to the fronto-parietal executive network in linguistic predic
tion. For example, functional (task-related) connectivity analyses have 
suggested a role for anterior cingulate cortex (ACC) – a region thought to 
be involved in monitoring changes in statistical contingencies between 
stimuli and stimulus-response mappings (Behrens et al., 2007; Botvinick 
et al., 2004). And Strijkers et al. (2019), based on an MEG finding of 
early sensitivity to a contextual linguistic manipulation, have argued for 
a role of a domain-general network in the prefrontal cortex in predictive 
top-down activation. 

However, the bulk of this evidence does not clearly speak to the 
mechanism underlying linguistic prediction. First, artificial task-based 
paradigms often conflate multiple processes, which may in turn 
engage multiple distinct mechanisms simultaneously. For example, 
sentences and “Jabberwocky” sentences (Bonhage et al., 2015), or sen
tences and sequences of phrases (Matchin et al., 2017) differ in many 
ways other than differential prediction demands (e.g., semantic 
composition, memory demands). Leveraging a well-studied, formal 
operationalization of predictability (i.e., surprisal) may more directly 
inform our understanding of the neural basis of prediction (Brennan 
et al., 2016; Hale et al., 2018; Henderson et al., 2016; Shain et al., 2019). 
Second, most of these studies have used whole-brain analyses and/or 
anatomically defined regions of interest (e.g., Lopopolo et al., 2017; 
Willems et al., 2016), which preclude inferences about underlying 
processes due to the lack of a consistent mapping between function and 
anatomy across people, especially in the higher-order association cortex 
(e.g., Frost and Goebel, 2012; V�azquez-Rodríguez et al., 2019), and the 
resulting low functional resolution (e.g., Nieto-Casta~n�on and Fedorenko, 
2012). Sensitivity is also low in whole-brain analyses (e.g., 
Nieto-Casta~n�on and Fedorenko, 2012; Saxe et al., 2006), with the 
consequence of a high chance of Type II error. 

An alternative approach would be to use independent functional 
localizers (e.g., Brett et al., 2002; Saxe et al., 2006; Fedorenko et al., 
2010) to target the language-specific and the domain-general MD net
works, and then probe the responses of these functionally defined areas 
to a critical linguistic task where prediction demands vary between 
conditions or over time (in naturalistic stimuli). Recent neuroimaging 
evidence using this functional localization approach has suggested that 
the domain-general MD network is not critically engaged during typical 
language processing. For instance, during naturalistic reading of stories 
containing both high and low surprisal words and structures—which on 
most accounts should engage predictive processing—the neural signal in 
the language network closely “tracks” linguistic input, as evidenced by 
high inter-subject correlations (Hasson et al., 2008), whereas the neural 
signal in the MD network does not (Blank and Fedorenko, 2017; see also 
Lerner et al., 2011; for other evidence of the lack of the MD network’s 
engagement in language processing under passive listening/reading 
conditions, see Campbell an Tyler, 2018; Diachek et al., 2019). Finally, 
Shain et al. (2019, this issue) specifically examined responses to pre
dictive processing in the language and the MD networks in a large set of 
participants listening to naturalistic stories (Futrell et al., 2017). They 
found robust effects of predictability, controlling for unigram frequency, 
in the language network, but not in the MD network, arguing against the 
role of executive resources in linguistic prediction. 

Multivariate analytic approaches in fMRI, MEG, EEG, and ECoG are 
likely to yield other promising avenues of investigation. For example, 
decoding methods (e.g., Haxby et al., 2001; Baker and van Gerven, 
2018; Norman et al., 2006) allow the researcher to ask not only what 
stimuli/tasks elicit strong responses in a particular brain region but also 
what information is contained in the neural signal. This methodology 
can be fruitfully leveraged to understand how linguistic information is 
represented in the brain, including the language model in general, the 
particular contextual information used to generate predictions, and the 
predicted information. A number of studies have established that lin
guistic meanings, for both single words and sentences, can be reliably 
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decoded from neural activity (Anderson et al., 2017; Huth et al., 2016; 
Kivisaari et al., 2019; Pereira et al., 2018). Wang et al. (2018) recently 
applied representational similarity analysis (RSA; Kriegeskorte et al., 
2008) to show that the patterns of neural activity in MEG elicited by 
prediction of the same word based on sentential context—before that 
word is presented—are more similar than patterns corresponding to 
different predicted words. One caveat with this type of design is that 
neural similarity may reflect not the similarity in the meanings of the 
predicted words but rather in the similarity of the meanings of the pre
ceding context, which is bound to correlate with the predicted target 
word. As brain decoding models are refined and become more gener
alizable (e.g., Pereira et al., 2018), researchers can begin to use them to 
track what mental constructs are most strongly represented at different 
time points during the processing of a linguistic input and what alter
natives are being considered, providing a window into the prediction 
generation process. 

6. Conclusions 

The precise mechanisms of linguistic prediction deserve further 
investigation. In this piece, we have argued that the strongest evidence 
for the role of executive resources in linguistic prediction (i.e., an 
apparent reduction or absence of predictability effects in populations 
with lower executive resources; Pickering and Gambi, 2018) can be 
accounted for in terms of language-specific predictive mechanisms. 
However, the specific hypotheses outlined remain to be evaluated and 
tested against the executive-resource-based accounts in future behav
ioral, computational modeling, and brain imaging studies, as discussed 
in Section 5. With respect to the latter, we have suggested that brain 
imaging investigations can meaningfully inform the nature of linguistic 
predictive behavior, as long as we can interpret the loci of the observed 
effects as indexing particular mental computations/sets of computations 
(e.g., Mather et al., 2013). In particular, a functional localization 
approach where brain regions are targeted with independent tasks, thus 
avoiding the problem of reverse inference from anatomy to function 
(Poldrack, 2006, 2011), is promising for understanding prediction 
mechanisms. A recent study by Shain and colleagues (2019, this issue) 
took this approach and found robust evidence for prediction in the 
language-specific fronto-temporal network (e.g., Fedorenko et al., 
2011), but not in the fronto-parietal network that has been linked to 
executive functions (Duncan, 2010b). These results align with a con
strual of linguistic prediction rooted in our experience with language, 
and provide one illustration of how functional brain imaging can inform 
human cognitive architecture (Mather et al., 2013). We have also sug
gested that decoding approaches applied to brain imaging data (e.g., 
Haxby et al., 2001; Baker and van Gerven, 2018; Norman et al., 2006) 
hold substantial promise for probing the representations that underlie 
linguistic predictive processing. These methods will both spur, and be 
informed by, the development of more precise theories of prediction. 
Elucidating the basic component processes (domain-general vs. 
language-specific computations) is a first step toward this end. 
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