A nanometer is the measure of our future.
It's one billionth of a meter—and by manipulating substances at the nanoscale, MIT scientists and engineers are inventing powerful new ways to put those substances to use. But they are constrained by the current configuration at MIT, where tools and equipment are dispersed throughout the campus.

- MIT.nano will house the Institute’s nanotechnology, materials, engineering systems, and fabrication tools under one roof.
- A world-class facility, the building will double MIT’s capacity for nano innovation, modernizing our research efforts, and create a central nexus for cross-disciplinary collaboration.
- New nanotechnology applications are needed now, to provide solutions to pressing global problems—and with MIT.nano, we can make a vital difference.

The problem-solving potential of nano is infinite.
This is because nano is a revolutionary way of understanding and working with matter across industries and disciplines. At MIT, we are harnessing the power of nanotechnology to address some of humanity’s greatest challenges.

WEIGHT/HEALTH: targeted, personalized medicines at the cellular level

ENERGY AND ENERGY SYSTEMS: new sources and astounding efficiencies

COMPUTING: smaller, more powerful components

ENVIRONMENT: tiny particles with the power to transform entire industries

MATERIALS AND STRUCTURES: substances so thin, they are called “two-dimensional”

MANUFACTURING: innovative methods of producing remarkable solutions

WHERE will the work take place?

MIT.nano will require:
- 3.4 million pounds of steel
- 53,000 square feet of glass
- 6,000 linear feet of utility piping
- 12,000 cubic yards of concrete
- 53,000 square feet of glass
- 3.4 million pounds of steel

HOW will it have an impact?

- **3.4 million pounds of steel**
- **53,000 square feet of glass**
- **6,000 linear feet of utility piping**
- **12,000 cubic yards of concrete**
- **53,000 square feet of glass**
- **3.4 million pounds of steel**

WHAT will you find inside?

- **100 cleanrooms**
- **190 miles of electrical wiring**
- **22'-0" to 29'-0" high ceilings**
- **30" pleura**
- **3.4 million pounds of steel**
- **53,000 square feet of glass**
- **Trees will be trimmed to facilitate ventilation**
- **22'-0" to 29'-0" high ceilings**
- **100 cleanrooms**
- **3.4 million pounds of steel**

WHEN / WHERE will the work take place?

- **September 2014 to March 2017**
- **Construction will proceed through 2018**
- **Occupancy commencing through 2017**
- **Construction will proceed through 2018**
- **Occupancy commencing through 2017**
- **Construction will proceed through 2018**
- **Occupancy commencing through 2017**
- **Construction will proceed through 2018**
- **Occupancy commencing through 2017**

Why this building, and why now?

We are targeting MIT.nano to be ready for occupancy in 2018. Set within the footprint of Building 12, just steps from the Infinite Corridor at the heart of the MIT campus, MIT.nano will support the activities of 2,000 MIT researchers and impact nearly all of MIT’s schools and departments.

Subscribe to updates: mitnano-info@mit.edu

Inside MIT.nano

Arne Abramson | Travis Wanat

DEPARTMENT OF FACILITIES

Why this building, and why now?

- The most environmentally quiet space on campus
- Two floors of high-performance cleanrooms optimized for energy efficiency, safety, and future flexibility
- Sustainable design elements, including:
 - Heat recovery on building exhaust
 - "Right sized" exhaust devices
 - Variable frequency drives on motors
 - Lower pressure drop ductwork and filters

Features:
- The most environmentally quiet space on campus
- Two floors of high-performance cleanrooms optimized for energy efficiency, safety, and future flexibility
- Sustainable design elements, including:
 - Heat recovery on building exhaust
 - "Right sized" exhaust devices
 - Variable frequency drives on motors
 - Lower pressure drop ductwork and filters

MIT.nano will house advanced cleanroom, imaging, and prototyping facilities.