Heteronuclear Decoupling and Recoupling

Christopher Jaroniec, Ohio State University

- 1. Brief review of nuclear spin interactions, MAS, etc.
- 2. Heteronuclear decoupling (average Hamiltonian analysis of CW decoupling, intro to improved decoupling schemes)
- 3. Heteronuclear recoupling (R³, REDOR)
- 4. AHT analysis of finite pulse REDOR
- 5. ¹³C-¹⁵N distance measurements in multispin systems (frequency selective REDOR, 3D TEDOR methods)
- 6. Intro to dipole tensor correlation experiments for measuring torsion angles

 Relevant interactions expressed in general as coupling of two vectors by a 2nd rank Cartesian tensor (3 x 3 matrix)

Rotate Tensors: $PAS \rightarrow Lab$ $\boldsymbol{\sigma}_{LAB} = \mathbf{R}(\Omega) \cdot \boldsymbol{\sigma}_{PAS} \cdot \mathbf{R}(\Omega)^{-1}; \quad \Omega = \{\alpha, \beta, \gamma\}$

- SSNMR spectra determined by interactions in lab frame
- Rotate tensors from their principal axis systems (matrices diagonal) into lab frame (B₀ || z-axis)
- In general, a rotation is accomplished using a set of 3 Euler angles {α,β,γ}

Multiple Interactions

- In case of multiple interactions first transform all tensors into common frame (molecular- or crystallitefixed frame)
- Powder samples: rotate each crystallite into lab frame

High Field Truncation: H_{CS}

$$H_{I}^{CS} = \gamma_{I}B_{0}\sigma_{zz}^{LAB}I_{z} = \gamma_{I}B_{0}\left(\sigma_{xx}\sin^{2}\theta\cos^{2}\phi + \sigma_{yy}\sin^{2}\theta\sin^{2}\phi + \sigma_{zz}\cos^{2}\theta\right)I_{z}$$
$$= \left\{\gamma_{I}B_{0}\sigma_{iso} + \gamma_{I}B_{0}\delta\frac{1}{2}\left[3\cos^{2}\theta - 1 - \eta\sin^{2}\theta\cos(2\phi)\right]\right\}I_{z}$$

Retain only parts of H^{CS} that commute with I_z

High Field Truncation: H_J and H_D

Dipolar Couplings in Proteins

Spin 1	Spin 2	r ₁₂ (Å)	b ₁₂ /2π (Hz)
¹ H	¹³ C	1.12	~21,500
¹ H	¹⁵ N	1.04	~10,800
¹³ C	¹³ C	1.5	~2,200
¹³ C	¹⁵ N	1.5	~900
¹³ C	¹⁵ N	2.5	~200
¹³ C	¹⁵ N	4.0	~50

NMR of Rotating Samples

$$H_{I}^{CS} = \omega_{I}(t)I_{z}$$

$$H_{IS}^{D} = \omega_{IS}(t)2I_{z}S_{z}$$

$$H_{IS}^{J} = \pi J_{IS}2I_{z}S_{z}$$

$$\omega_{\lambda}(t) = \sum_{m=-2}^{2} \omega_{\lambda}^{(m)} \exp\{im\omega_{r}t\}$$

H_D for Rotation at Magic Angle ($\theta_m = 54.74^\circ$)

$$H_{IS}^{D} = \left\{ \sum_{m=-2}^{2} \omega_{IS}^{(m)} \exp\left(im\omega_{r}t\right) \right\} 2I_{z}S_{z}$$
$$\omega_{IS}^{(0)} = b_{IS} \frac{\left(3\cos^{2}\beta_{PR}-1\right)\left(3\cos^{2}\theta_{m}-1\right)}{2} = 0$$
$$\omega_{IS}^{(\pm 1)} = -\frac{b_{IS}}{2\sqrt{2}} \sin\left(2\beta_{PR}\right) \exp\left\{\pm i\gamma_{PR}\right\}$$
$$\omega_{IS}^{(\pm 2)} = \frac{b_{IS}}{4} \sin^{2}\beta_{PR} \exp\left\{\pm i2\gamma_{PR}\right\}$$

• For spinning at the magic angle the time-independent dipolar (and CSA) components vanish; terms modulated at ω_r and $2\omega_r$ vanish when averaged over the rotor cycle

¹³C SSNMR Spectra at High MAS Rates

 Presence of many strong ¹H-¹H couplings leads to an incomplete averaging of ¹³C-¹H dipolar coupling by MAS

M. Ernst, JMR 2003

High-Power CW Decoupling

- Average ¹³C-¹H couplings by simultaneously using MAS and high-power ¹H RF irradiation
- Traditionally for efficient decoupling ¹H RF fields of ~50-200 kHz were used (i.e., ω_{1H} >> b_{HH}, b_{HX})

CW Decoupling: AHT Analysis (I) ¹H CW_{X} $\int \omega_{1} = n\omega_{r}$ (S) ¹³C $H_{tot} = \omega_S^{iso} S_z + \omega_S(t) S_z + \omega_I^{iso} I_z + \omega_I(t) I_z$ $+\pi J_{IS} 2I_{Z}S_{Z} + \omega_{IS}(t) 2I_{Z}S_{Z} + \omega_{I}I_{Y}$

 Average Hamiltonian analysis: RF and MAS modulations must be synchronized to obtain cyclic propagator

AHT: Summary

 $\rho(t) = U_{tot}(t)\rho(0)U_{tot}(t)^{-1}; \quad U_{tot}(t) = T\exp\left\{-i\int_0^t dt'(H+H_{RF})\right\}$

$$U_{tot}(t) = U_{RF}(t)U(t) = U_{RF}(t) \cdot T \exp\left\{-i\int_{0}^{t} dt'\tilde{H}\right\}; \quad \tilde{H} = U_{RF}^{-1}HU_{RF}$$

$$U_{tot}(t_c) = U(t_c) = T \exp\left\{-i\int_0^{t_c} dt' \tilde{H}\right\} = \exp\left\{-i\bar{\tilde{H}}t_c\right\} \quad \text{(for } U_{RF}(t_c) = 1\text{)}$$

$$\overline{\tilde{H}} = \overline{\tilde{H}}^{(0)} + \overline{\tilde{H}}^{(1)} + \overline{\tilde{H}}^{(2)} + \dots
\overline{\tilde{H}}^{(0)} = \frac{1}{t_c} \int_0^{t_c} dt' \widetilde{H}; \quad \overline{\tilde{H}}^{(1)} = \frac{1}{2it_c} \int_0^{t_c} dt'' \int_0^{t''} dt' \Big[\widetilde{H}(t''), \widetilde{H}(t') \Big]; \quad \dots$$

Haeberlen & Waugh, Phys. Rev. 1968

Interaction Frame Hamiltonian

$$\tilde{H} = U_{RF}^{-1} H U_{RF} = \exp\left\{i\omega_1 t I_x\right\} H \exp\left\{-i\omega_1 t I_x\right\}$$

$$\begin{split} \tilde{H} &= \tilde{H}_{S} + \tilde{H}_{I} + \tilde{H}_{IS}^{J} + \tilde{H}_{IS}^{D} \\ \tilde{H}_{S} &= \omega_{S}^{iso} S_{z} + \omega_{S}(t) S_{z} \\ \tilde{H}_{IS}^{J} &= \pi J_{IS} 2S_{z} \left\{ I_{z} \cos(\omega_{1}t) + I_{y} \sin(\omega_{1}t) \right\} \\ &= \pi J_{IS} S_{z} \left\{ I_{z} \left(e^{in\omega_{r}t} + e^{-in\omega_{r}t} \right) - iI_{y} \left(e^{in\omega_{r}t} - e^{-in\omega_{r}t} \right) \right\} \\ \tilde{H}_{IS}^{D} &= \omega_{IS}(t) 2S_{z} \left\{ I_{z} \cos(\omega_{1}t) + I_{y} \sin(\omega_{1}t) \right\} \\ &= \omega_{IS}(t) S_{z} \left\{ I_{z} \left(e^{in\omega_{r}t} + e^{-in\omega_{r}t} \right) - iI_{y} \left(e^{in\omega_{r}t} - e^{-in\omega_{r}t} \right) \right\} \end{split}$$

Interaction Frame Cont.

$$\begin{split} \tilde{H}_{IS}^{D} &= \omega_{IS}(t) 2S_{z} \left\{ I_{z} \cos(\omega_{1}t) + I_{y} \sin(\omega_{1}t) \right\} \\ &= \omega_{IS}(t) S_{z} \left\{ I_{z} \left(e^{in\omega_{r}t} + e^{-in\omega_{r}t} \right) - iI_{y} \left(e^{in\omega_{r}t} - e^{-in\omega_{r}t} \right) \right\} \\ &= \sum_{m=-2}^{2} \left\{ \omega_{IS}^{(m)} \left[e^{i(m+n)\omega_{r}t} + e^{i(m-n)\omega_{r}t} \right] I_{z} S_{z} \right\} \\ &- i\omega_{IS}^{(m)} \left[e^{i(m+n)\omega_{r}t} - e^{i(m-n)\omega_{r}t} \right] I_{y} S_{z} \right\} \end{split}$$

Lowest-Order Average Hamiltonian

$$\overline{\tilde{H}}^{(0)} = \overline{\tilde{H}}_{S}^{(0)} + \overline{\tilde{H}}_{J,IS}^{(0)} + \overline{\tilde{H}}_{D,IS}^{(0)}$$

$$\overline{\tilde{H}}_{S}^{(0)} = \frac{\omega_{S}^{iso}S_{z}}{\tau_{r}}\int_{0}^{\tau_{r}}dt + \sum_{m=-2}^{2} \left\{ \frac{S_{z}}{\tau_{r}}\int_{0}^{\tau_{r}}dt\omega_{S}^{(m)}e^{im\omega_{r}t} \right\} = \omega_{S}^{iso}S_{z}$$

$$\overline{\tilde{H}}_{J,IS}^{(0)} = \frac{\pi J_{IS} S_z}{\tau_r} \int_0^{\tau_r} dt \left\{ I_z \left(e^{in\omega_r t} + e^{-in\omega_r t} \right) - iI_y \left(e^{in\omega_r t} - e^{-in\omega_r t} \right) \right\} = 0$$

 S-spin CSA refocused by MAS, I-S J-coupling eliminated by I-spin decoupling RF field

Lowest-Order Average H_D

$$\begin{split} \bar{\tilde{H}}_{S}^{(0)} &= \frac{1}{\tau_{r}} \int_{0}^{\tau_{r}} dt \sum_{m=-2}^{2} \left\{ \omega_{IS}^{(m)} \left[e^{i(m+n)\omega_{r}t} + e^{i(m-n)\omega_{r}t} \right] I_{z} S_{z} \right. \\ &\left. - i \omega_{IS}^{(m)} \left[e^{i(m+n)\omega_{r}t} - e^{i(m-n)\omega_{r}t} \right] I_{y} S_{z} \right\} \end{split}$$

$$\frac{1}{\tau_r} \int_0^{\tau_r} dt \omega_{IS}^{(m)} e^{i(m \pm n)\omega_r t} = \begin{cases} 0 & \text{if } m \pm n \neq 0 \\ \omega_{IS}^{(\mp n)} & \text{if } m \pm n = 0 \end{cases}$$

Lowest-Order Average H_D

 $n \neq 1,2 \longrightarrow I-S$ Decoupling

$$\overline{\tilde{H}}_{D,IS}^{(0)} = 0$$

$n = 1, 2 \rightarrow I$ -S Dipolar Recoupling!

$$\overline{\tilde{H}}_{D,IS}^{(0)} = \left(\omega_{IS}^{(-n)} + \omega_{IS}^{(n)}\right) I_z S_z - i \left(\omega_{IS}^{(-n)} - \omega_{IS}^{(n)}\right) I_y S_z$$

- **Rotary resonance recoupling** (R³) arises from the interference of MAS and I-spin RF (when $\omega_1 = \omega_r$ or $2\omega_r$)
- Additional (much-weaker) resonances (n = 3,4,...) are also possible due to higher order average Hamiltonian terms involving the I-spin CSA

Improved heteronuclear decoupling: Two pulse phase modulation (TPPM)

- The first truly effective pulse scheme (and still one of the best) for achieving efficient heteronuclear decoupling in samples under MAS
- TPPM reduces magnitude of cross-term between ¹H CSA and ¹H-X dipolar coupling which dominates the residual linewidth ...

Bennett, Rienstra, Auger & Griffin, JCP 1995

Optimization of TPPM Decoupling

- Parameters optimized empirically
- Under moderate MAS rates (~10-25 kHz) and ¹H RF fields (~70-100 kHz) best results usually obtained for ϕ and β in ranges given above

Other Useful Decoupling Schemes

- TPPM-related schemes (similar to TPPM for most rigid solids):
 - FMPM (Gan & Ernst, SSNMR 1997) frequency and phase modulated decoupling
 - SPINAL (Fung et al., JMR 2000) TPPM combined with supercycles
- XiX (Detken et al., Chem. Phys. Lett. 2002) offers improvements over TPPM at high MAS rates (>20 kHz) and high ¹H RF (>100 kHz)
- Low-power CW decoupling (~10 kHz) at very high MAS rates, 30-50+ kHz (Ernst, Samoson & Meier, Chem. Phys. Lett. 2001)

X inverse-X (XiX) Decoupling

• Technically XiX is equivalent to TPPM with $\Delta \phi = 180^{\circ}$ but pulse width considerations are very different

XiX Decoupling

- Performance determined mainly by t_p in units of τ_r
- Best when $t_p > \tau_r$ (e.g., optimize around 2.85 τ_r) and when strong resonances at $t_p = n\tau_r/4$ avoided

XiX Decoupling

Rotary Resonance Recoupling

Oas, Levitt & Griffin, JCP 1988

Rotary Resonance Recoupling

$$\rho(t) = \exp\{-i\tilde{H}_{D,CN}^{(0)}t\}C_x \exp\{i\tilde{H}_{D,CN}^{(0)}t\}$$
$$= C_x \cos(\tilde{\omega}t) + 2C_y N_\gamma \sin(\tilde{\omega}t)$$

$$N_{\gamma} = N_z \cos \gamma_{PR} - N_y \sin \gamma_{PR}$$

R³ in Real Systems: Effect of CSA of Irradiated Spin

- R³ also recouples ¹⁵N CSA, which doesn't commute with dipolar term
- Dipolar dephasing depends on CSA magnitude and orientation: problem for quantitative distance measurements
- In experiments also have to consider effects of RF inhomogeneity

Rotational Echo Double Resonance (REDOR)

- Apply a series of rotor-synchronized π pulses (2 per τ_r) to ¹⁵N spins (this is usually called a dephasing or S experiment)
- Typically a reference (or S_0) experiment with pulses turned off is also, acquired normally report S/S₀ ratio (or Δ S/S₀ = 1-S/S₀)

Gullion & Schaefer, JMR 1989

REDOR: AHT Summary

 $H_{IS}(t) = \omega_{IS}(t) 2I_z S_z = -\frac{1}{2} b_{IS} \{ \sin^2(\beta) \cos[2(\gamma + \omega_r t)] - \sqrt{2} \sin(2\beta) \cos(\gamma + \omega_r t) \} 2I_z S_z$

$$\mathbf{S} \underbrace{\prod_{r=1}^{n} \prod_{r=1}^{n} \prod_{r=1}^{n} \tilde{S}_{z}}_{\mathbf{T}_{r}} = \begin{cases} S_{z} & 0 < t \le \tau \\ -S_{z} & \tau < t \le \tau + \tau_{r}/2 \\ S_{z} & \tau + \tau_{r}/2 < t \le \tau_{r} \end{cases}$$

 $\overline{\tilde{H}}_{IS}^{(0)} = \frac{\sqrt{2}}{\pi} b_{IS} \sin(2\beta) \sin(\gamma + \psi) \cdot 2I_z S_z; \quad \psi = \omega_r \tau \quad \text{(sequence phase)}$

$$\bar{H}_{IS}^{(0)} = \begin{cases} -\frac{\sqrt{2}}{\pi} b_{IS} \sin(2\beta) \sin(\gamma) \cdot 2I_z S_z & \text{for } \tau = \tau_r/2 \\ \frac{\sqrt{2}}{\pi} b_{IS} \sin(2\beta) \sin(\gamma) \cdot 2I_z S_z & \text{for } \tau = 0 \end{cases}$$

 Effective Hamiltonian changes sign as a function of position of pulses within the rotor cycle (must be careful about this in some implementations of REDOR)

REDOR: Typical Implementation

- Rotor synchronized spin-echo on ¹³C channel refocuses ¹³C isotropic chemical shift and CSA evolution
- 2nd group of pulses moved by $-\tau_r/2$ relative to 1st group to change sign of H_D and avoid refocusing the ¹³C-¹⁵N dipolar coupling
- xy-type phase cycling of ¹⁵N pulses is critical (*Gullion, JMR 1990*)

REDOR Dipolar Evolution

REDOR: Example

- Experiment highly robust toward ¹⁵N CSA, experimental imperfections, resonance offset and finite pulse effects (xy-4/xy-8 phase cycling is critical for this)
- REDOR is used routinely to measure distances up to ~5-6 Å (D ~ 25 Hz) in isolated ¹³C-¹⁵N spin pairs

REDOR: More Challenging Case

S112(¹³C')-Y114(¹⁵N) Distance Measurement in TTR(105-115) Amyloid Fibrils

REDOR: 15N CSA Effects

xy - 4:xyxyGullion, Baker & Conradi, JMR 1990xy - 8:xyxy yxyxxy - 16: $xyxy yxyx \overline{xyxy} \overline{yxyx}$

- Simpler schemes (xy-4, xy-8) seem to perform better with respect to ¹⁵N CSA compensation than the longer xy-16
- Since $[\overline{H}_D^{(0)}, \overline{H}_{CSA}^{(0)}] = 0$ the behavior is likely due to finite pulses and higher order terms in the average Hamiltonian expansion

REDOR at High MAS Rates

τ _p (μ s)	v _r (kHz)	φ
10	5	0.1
10	10	0.2
10	20	0.4
20	20	0.8

REDOR (xy-4) at High MAS: AHT

$$\tilde{H}_{IS}(t) = \omega_{IS}(t) \left\{ f(t) 2I_z S_z + g(t) 2I_z S_x + h(t) 2I_z S_y \right\}$$

$$\frac{\tau_{p}^{2}}{\tau_{p}} \frac{x}{\tau_{p}} \frac{y}{\tau_{p}} \frac{x}{\tau_{r}} \frac{y}{3\tau_{r}/2} \frac{z}{2\tau_{r}} = \frac{1}{\tilde{H}_{15}^{(0)}} \propto \frac{1}{\tau_{r}} \left\{ \int_{\tau_{1}} (ac'' + bc')dt \cdot 2I_{z}S_{z} + \int_{\tau_{2}} (ac'' + bc')\sin[\theta(t)]dt \cdot 2I_{z}S_{y} + \int_{\tau_{2}} (ac'' + bc')\sin[\theta(t)]dt \cdot 2I_{z}S_{y} + \int_{\tau_{2}} (ac'' + bc')\sin[\theta(t)]dt \cdot 2I_{z}S_{y} + \int_{\tau_{2}} (ac'' + bc')\sin[\theta(t)]dt \cdot 2I_{z}S_{z} + \int_{\tau_{2}} (ac'' + bc')\sin[\theta(t)]dt \cdot 2I_{z}S_{z} + \int_{\tau_{2}} (ac'' + bc')\sin[\theta(t)]dt \cdot 2I_{z}S_{z} + \int_{\tau_{2}} (ac'' + bc')\sin[\theta(t)]dt \cdot 2I_{z}S_{y} + \int_{\tau_{2}} (ac'' + bc')\cos[\theta(t)]dt \cdot 2I_{z}S_{z} + \int_{\tau_{2}} (ac'' + bc')\sin[\theta(t)]dt \cdot 2I_{z}S_{y} + \int_{\tau_{2}} (ac'' + bc')\cos[\theta(t)]dt \cdot 2I_{z}S_{z} + \int_{\tau_{2}} (ac'' + bc')\sin[\theta(t)]dt \cdot 2I_{z}S_{y} + \int_{\tau_{2}} (ac'' + bc')\sin[\theta(t)]dt \cdot 2I_{z}S_{y} + \int_{\tau_{2}} (ac'' + bc')\cos[\theta(t)]dt \cdot 2I_{z}S_{z} + \int_{\tau_{2}} (ac'' + bc')\sin[\theta(t)]dt \cdot 2I_{z}S_{y} + \int_{\tau_{2}} (ac'' + bc')\sin[\theta(t)]dt \cdot 2I_{z}S_{y} + \int_{\tau_{2}} (ac'' + bc')\cos[\theta(t)]dt \cdot 2I_{z}S_{z} + \int_{\tau_{2}} (ac'' + bc')\sin[\theta(t)]dt \cdot 2I_{z}S_{z} + \int_{\tau_$$

REDOR (xy-4) at High MAS: AHT

$$\bar{\tilde{H}}_{IS}^{(0)} = \begin{cases} -\frac{\sqrt{2}}{\pi} b_{IS} \frac{\cos\left(\frac{\pi}{2}\varphi\right)}{1-\varphi^2} \sin(2\beta) \sin(\gamma) 2I_z S_z; & \text{finite pulses} \\ -\frac{\sqrt{2}}{\pi} b_{IS} \sin(2\beta) \sin(\gamma) 2I_z S_z; & \text{ideal pulses} \end{cases}$$

$$\kappa \equiv \frac{b_{IS}^{eff}}{b_{IS}} = \frac{\cos\left(\frac{\pi}{2}\varphi\right)}{1-\varphi^2}; \qquad \pi/4 \le \kappa \le 1$$

- For xy-4 phase cycling, finite π pulses result only in a simple scaling of the dipolar coupling constant by an additional factor, κ, between π/4 and 1
- For xx-4 spin dynamics are more complicated and converge to R³ dynamics in the limit of ϕ = 1

REDOR (xy-4) at High MAS: AHT vs. Numerical Simulations

REDOR (xy-4) Experiments

REDOR in Multispin Systems

$$H_{IS} = \omega_1 2 I_z S_{1z} + \omega_2 2 I_z S_{2z}$$
$$I_x(t) = \left\langle \cos\left(\omega_1 t\right) \cos\left(\omega_2 t\right) \right\rangle$$

 Strong ¹³C-¹⁵N couplings dominate REDOR dipolar dephasing; weak couplings become effectively 'invisible'

Frequency Selective REDOR

- Use a pair of weak frequency-selective pulses to 'isolate' the ¹³C-¹⁵N dipolar coupling of interest; all other couplings refocused
- This trick is possible because all relevant interactions commute

FS-REDOR Evolution

Dipolar evolution under only b_{kl}

¹³C Selective Pulses: U-¹³C Thr

FS-REDOR: U-13C,15N Asn

FS-REDOR: U-13C,15N Asn

FS-REDOR: U-¹³C,¹⁵N-f-MLF

FS-REDOR: U-¹³C,¹⁵N-f-MLF

Leu C^β-Phe N

Met C^β-Phe N

0.4

0.2

0.0

0

4

X-ray: 2.50 Å NMR: 2.46 ± 0.02 Å

Time (ms)

8

12

16

20

X-ray: 3.12 Å NMR: 3.24 ± 0.12 Å X-ray: 4.06 Å NMR: 4.12 ± 0.15 Å

FS-REDOR: U-¹³C,¹⁵N-f-MLF

- 16 ¹³C-¹⁵N distances could be measured in MLF tripeptide
- Selectivity of ¹⁵N pulse + need of prior knowledge of which distances to probe is a major limitation to U-¹³C,¹⁵N proteins

Simultaneous ¹³C-¹⁵N Distance Measurements in U-¹³C,¹⁵N Molecules

General Pseudo-3D HETCOR (Heteronuclear Correlation) Scheme

- I-S coherence transfer as function of $\mathrm{t}_{\mathrm{mix}}$ via D_{IS}
- Identify coupled I and S spins by chemical shift labeling in t_1 , t_2

Transferred Echo Double Resonance

3D TEDOR Pulse Sequence π/2 ^{1}H Decouple CP $\pi/2$ $\pi/2$ π ¹³C t_{mix} ۲<u>mix</u> 4 π/2 π/2 π τ_{mix} $\frac{\tau_{mix}}{4}$ ¹⁵N Hing, Vega & Schaefer, JMR 1992 $S_x \xrightarrow{REDOR} 2I_z S_v \sin(\omega_{IS} t_{mix} / 2) \xrightarrow{(\pi/2)I_x + (\pi/2)S_x}$ $-2I_{v}S_{z}\sin(\omega_{IS}t_{mix}/2) \xrightarrow{REDOR} I_{v}\sin^{2}(\omega_{IS}t_{mix}/2)$

- Similar idea to INEPT experiment in solution NMR
- Cross-peak intensities depend on <u>all</u> ¹³C-¹⁵N dipolar couplings
- Experiment not directly applicable to U-¹³C-labeled samples

3D TEDOR: U-13C, 15N Molecules

Modified 3D TEDOR Pulse Sequence

Michal & Jelinski, JACS 1997

3D TEDOR: U-13C, 15N Molecules

 $t_{mix} = 3.6 ms$

 Cross-peak intensities roughly proportional to ¹³C-¹⁵N dipolar couplings

3D TEDOR: U-13C, 15N N-ac-VL

 Spectral artifacts (spurious cross-peaks, phase twisted lineshapes) appear at longer mixing times as result of ¹³C-¹³C J-evolution

Improved Scheme: 3D Z-Filtered TEDOR

3D ZF TEDOR Pulse Sequence

• Unwanted anti-phase and mulitple-quantum coherences responsible for artifacts eliminated using two z-filter periods

Jaroniec, Filip & Griffin, JACS 2002

Results in N-ac-VL

- 3D ZF TEDOR generates purely absorptive 2D spectra
- Cross-peak intensities give qualitative distance information

¹³C-¹³C J-Evolution Effects: ZF-TEDOR

```
Simulated <sup>13</sup>C Cross-Peak Buildup
4 Å C-N Distance (D_{CN} = 50 Hz)
```


• ¹³C-¹⁵N cross-peak intensities reduced 2- to 5-fold

¹³C Band-Selective 3D TEDOR Scheme

- ¹³C-¹³C J-couplings refocused using band-selective ¹³C pulses (no z-filters required)
- Most useful for strongly J-coupled sites (e.g., C') but requires resolution in ¹³C dimension

ZF-TEDOR vs. BASE-TEDOR

Cross-Peak Trajectories in TEDOR Expts.

3D BASE TEDOR

$$V_{ij} = V_i(0) \prod_{l \neq i}^{m_i} \cos^2(\pi J_{il}\tau) \times \\ \left\langle \sin^2(\omega_{ij}\tau) \prod_{k \neq j}^{N_i} \cos^2(\omega_{ik}\tau) \right\rangle$$

$$V_{ij} = V_i(0) \left\langle \sin^2 \left(\omega_{ij} \tau \right) \prod_{k \neq j}^{N_i} \cos^2 \left(\omega_{ik} \tau \right) \right\rangle$$

- Intensities depend on all spin-spin couplings to particular ¹³C
- Use approximate models based on Bessel expansions of REDOR signals to describe cross-peak trajectories (**Mueller**, *JMR* 1995)

3D ZF-TEDOR: N-ac-VL

3D BASE TEDOR: N-ac-VL

Summary of Distance Measurements in N-ac-VL

Application to TTR(105-115) Amyloid Fibrils

 ~70 ¹³C-¹⁵N distances measured by 3D ZF TEDOR in several U-¹³C,¹⁵N labeled fibril samples (30+ between 3-6 Å)

REDOR in Multispin Systems

$$H_{IS} = \omega_1 2 I_z S_{1z} + \omega_2 2 I_z S_{2z}$$
$$I_x(t) = \left\langle \cos\left(\omega_1 t\right) \cos\left(\omega_2 t\right) \right\rangle$$

 Strong ¹³C-¹⁵N couplings dominate REDOR dipolar dephasing; weak couplings become effectively 'invisible'

Dipole Tensor Correlation Experiments: Torsion Angles

Observable signal

 $S(t) = \left\langle f_{mix} \cos(\Phi_1) \cos(\Phi_2) \right\rangle$ $\Phi_{\lambda} \equiv \Phi_{\lambda} \left(D_{\lambda}, \Omega_{\lambda}, t \right)$

- 1. Torsion angle methods:
- Evolve a correlated spin state between two nuclei under their local dipolar fields
- Evolution highly sensitive to deviations from parallel arrangement of dipole vectors
- 2. Typical experiments:
- ${}^{1}\text{H}{}^{15}\text{N}{}^{13}\text{C}^{\alpha}{}^{1}\text{H} \Rightarrow \phi$
- ${}^{15}N{}^{-13}C^{\alpha}{}^{-13}C'{}^{-15}N \Rightarrow \psi$
- ${}^{1}H{}^{-13}C{}^{-13}C{}^{-1}H \Rightarrow \chi$

Measurement of ψ in Peptides

DQ-NCCN Pulse Sequence

- ¹³C-¹³C DQC generated using SPC-5 (Hohwy et al. JCP 1999)
- ¹³C-¹⁵N dipolar interactions recoupled using REDOR

Costa, Gross, Hong & Griffin, CPL 1997 Levitt et al., JACS 1997

Dephasing Trajectories vs. ψ

• Dephasing of ¹³C-¹³C DQ coherence is very sensitive to the relative orientation of ¹³C-¹⁵N dipolar tensors for $|\psi| \approx 150-180^{\circ}$

Application to TTR(105-115) Fibrils

Reference DQ-SQ correlation spectrum for U-¹³C,¹⁵N YTIA labeled sample

of CO and C^{α} resonance offsets during t_1

TTR(105-115): Dephasing Trajectories

