Spin Diffusion NMR For Distance Determination

Mei Hong
Department of Chemistry
Iowa State University

U.S.-Canada Winter School on Biomolecular Solid State NMR Stowe, Vermont, January 20-25, 2008

Spin Diffusion Methods in SSNMR

- ${ }^{1} \mathrm{H}$-driven X-spin isotropic spin diffusion:
- no ${ }^{1} \mathrm{H}$ decoupling (PDSD)
- with ${ }^{1} \mathrm{H}$ decoupling, $\omega_{1}=\omega_{\mathrm{r}}$ (DARR/RAD)

- ${ }^{1} \mathrm{H}$-driven X -spin anisotropic spin diffusion: CODEX

-> distances between chemically equivalent but orientationally inequivalent spins.
- Direct ${ }^{1} \mathrm{H}$ spin diffusion:
- With ${ }^{1} \mathrm{H}$ evolution and X -spin detection

- With X-spin evolution and X / Y detection (XHHY)
-> lipid-protein distances ~<20 Å.

Oligomeric Structure From Anisotropic Spin Diffusion

Goal: determine the intermolecular packing and distances of oligomeric protein assemblies.

- The sequence detects reorientations due to either slow motion or spin diffusion. Can distinguish the two by:
- varying temperature to affect motion, or
- varying ${ }^{1} \mathrm{H}$ decoupling during t_{m} to affect spin diffusion.
- Mechanism of spin diffusion: dipolar coupling -> distance determination.

As $\mathrm{t}_{\mathrm{m}} \rightarrow 0, \mathrm{~S} / \mathrm{S}_{0} \rightarrow 1 / n$, where n is the number of orientationally inequivalent sites.
\rightarrow spin counting

short t_{m}
$n=3$

Spin Counting: ${ }^{13} \mathrm{C}$ CODEX

shortest C-C distance: 4.22 A

C-C distances: $4.17 \AA, 5.23 \AA$

Buffy et al, JACS, 2004, 127, 4477 (2005).

${ }^{19}$ F Spin Diffusion: Faster than ${ }^{13} \mathrm{C}$

F-F coupling is 14 -fold stronger than C-C coupling for the same distance.

CODEX Decay Trajectory: Rate Matrix Approach

- For spin diffusion among $n \times$ spins, the time-evolution of the n-dimensional vector of the z magnetization, $M(t)$, is given by the differential equation:

$$
\begin{aligned}
& \frac{d \vec{M}(t)}{d t}=-K \vec{M}(t) \quad\binom{d M_{1}(t) / d t}{d M_{n}(t) / d t}=\underbrace{\left(\begin{array}{ccc}
k_{11} & \ldots & k_{1 n} \\
\ldots & \ldots & \ldots \\
k_{n 1} & \ldots & k_{n n}
\end{array}\right)}_{K}\binom{M_{1}(t)}{\left(M_{n}(t)\right.} \\
& \text {-M(t)=M}(t)-M(0) .
\end{aligned}
$$

- $\mathrm{K}: n$-D exchange matrix of rate constants k_{ij}.
- T_{1} relaxation not included since it's removed by

$$
\mathrm{k}_{\mathrm{ij}}=0.5 \pi \cdot \omega_{\mathrm{ij}}^{2} \cdot \mathrm{~F}_{\mathrm{ij}}(0)
$$ the CODEX control S_{0}.

- Detailed balance of equilibrium M requires:
- the sum of each column of the K matrix is zero, $\mathrm{k}_{\mathrm{ii}}=-\sum_{\mathrm{j} \neq \mathrm{i}} \mathrm{k}_{\mathrm{ji}}$

$$
\begin{aligned}
& \frac{d M_{1}}{d t}+\ldots+\frac{d M_{n}}{d t}=0 \rightarrow\left(k_{11} M_{1}+\ldots+k_{1 n} M_{n}\right)+(\ldots)+\left(k_{n 1} M_{1}+\ldots+k_{n n} M_{n}\right)=0 \rightarrow \\
& \left(k_{11}+k_{21} \ldots+k_{n 1}\right) M_{1}+(\ldots)+\left(k_{n 1}+k_{n 2} \ldots+k_{n n}\right) M_{n} \equiv 0 \\
& \Rightarrow k_{11}+k_{21 \ldots} \ldots k_{n 1}=0, \quad \ldots k_{n 1}+k_{n 2} \ldots+k_{n n}=0 \rightarrow-\sum_{j \neq i} k_{j i}=k_{i i}
\end{aligned}
$$

$$
\mathbf{K}=\left(\begin{array}{ccc}
k_{11} & \ldots & k_{1 n} \\
\ldots & \ldots & \ldots \\
k_{n 1} & \ldots & k_{n n}
\end{array}\right) \quad \mathrm{k}_{\mathrm{ij}}=0.5 \pi \cdot \omega_{\mathrm{ij}}^{2} \cdot \mathrm{~F}_{\mathrm{ij}}(0)
$$

- $\mathrm{k}_{\mathrm{ij}}=\mathrm{k}_{\mathrm{ji}}$ for equal populations of equilibrium M .
- Thus sum of each row is also zero.
- e.g. 4-spin K matrix:

$$
\mathbf{K}=\left(\begin{array}{cccc}
k_{A B}+k_{A C}+k_{A D} & -k_{B A} & -k_{C A} & -k_{D A} \\
-k_{A B} & k_{B A}+k_{B C}+k_{B D} & -k_{C B} & -k_{D B} \\
-k_{A C} & -k_{B C} & k_{C A}+k_{C B}+k_{C D} & -k_{D C} \\
-k_{A D} & -k_{B D} & -k_{C D} & k_{D A}+k_{D B}+k_{D C}
\end{array}\right)
$$

- The rate matrix includes both direct and relayed transfer effects. e.g. magn. transfer from A to C : $-\mathrm{k}_{\mathrm{AC}},-\mathrm{k}_{\mathrm{AB}}$ and $-\mathrm{k}_{\mathrm{BC}}$.
- CODEX is a natural method to measure distances in inherently multi-spin environments, among spins of the same identity but in different molecules \rightarrow intermolecular distance constraints in oligomeric assemblies.

CODEX Decay to Equilibrium Value

- The solution to the differential equation of $M(t)$ is:

$$
\overrightarrow{\mathrm{M}}(\mathrm{t})=\mathrm{e}^{-\mathrm{Kt}} \overrightarrow{\mathrm{M}}(0)
$$

- The exponential operator can be treated by diagonalization of \mathbf{K} or calculated in a matrix-based software. Expressed in terms of the diagonalized exchange matrix $\Lambda=\mathbf{U K} \mathbf{U}^{-1}\left(\mathbf{K}=\mathbf{U}^{-1} \Lambda \mathbf{U}\right)$ where \mathbf{U} is the eigenvector matrix of \mathbf{K},
$\vec{M}(t)=e^{-K t} \cdot \vec{M}(0)=e^{-\left(U \Lambda U^{-1}\right) t} \vec{M}(0)=\left(U e^{-\Lambda t} U^{-1}\right) \vec{M}(0)=U\left(\begin{array}{ccc}e^{-\lambda_{1} t} & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & e^{-\lambda_{n} t}\end{array}\right) U^{-1} \cdot \vec{M}(0)$
- For an n-D matrix (for n spins) with zero-sum columns, one eigenvalue is always zero with the eigenvector of $\left(\begin{array}{lll}1 / \sqrt{n} & \ldots & 1 / \sqrt{n}\end{array}\right)^{\top}$, while all other eigenvalues are positive.

Proof:

$$
\mathbf{K} \cdot\left(\begin{array}{l}
1 / \sqrt{n} \\
\cdots \\
1 / \sqrt{n}
\end{array}\right)=\sum_{n} K_{m n} \cdot \frac{1}{\sqrt{n}}=\frac{1}{\sqrt{n}} \underbrace{\sum_{n} \mathrm{~K}_{m n}}_{\text {sum over row }} \xrightarrow{\substack{\sum_{m n} \mathrm{~K}_{m n}=0}}=\frac{1}{\sqrt{n}} \cdot 0=0 \cdot\left(\begin{array}{c}
1 / \sqrt{n} \\
\cdots \\
1 / \sqrt{n}
\end{array}\right)
$$

- Thus, at long mixing times t_{m},

$$
\left.\begin{array}{l}
\vec{M}(t)=\left(U^{-\Lambda t} U^{-1}\right) \cdot \vec{M}(0) \quad \Rightarrow \\
\vec{M}\left(t \gg \frac{1}{\lambda_{i}}\right)=\sum_{i=1}^{n} \vec{M}(0) \cdot\left(\vec{u}_{i} \cdot e^{-\lambda_{i} t} \cdot \vec{u}_{i}^{-1}\right)=\sum_{i=1}^{n-1} \vec{M}(0) \cdot\left(\vec{u}_{i} \cdot e^{-\infty} \cdot \vec{u}_{i}^{-1}\right.
\end{array}\right)+\vec{M}(0) \cdot\left(\begin{array}{c}
1 / \sqrt{n} \\
\ldots \\
1 / \sqrt{n}
\end{array}\right) e^{-0 \cdot t\left(\begin{array}{c}
1 / \sqrt{n} \\
\cdots \\
1 / \sqrt{n}
\end{array}\right)} \begin{aligned}
& =0+\left(\begin{array}{llll}
0 & \ldots & 1 & \ldots 0
\end{array}\right)\left(\begin{array}{l}
1 / \sqrt{n} \\
\cdots \\
1 / \sqrt{n}
\end{array}\right) \cdot 1 \cdot\left(\begin{array}{l}
1 / \sqrt{n} \\
\cdots \\
1 / \sqrt{n}
\end{array}\right)=1 / \sqrt{n} \cdot\binom{1 / \sqrt{n}}{1 / \sqrt{n}}=\left(\begin{array}{c}
1 / n \\
\cdots \\
1 / n
\end{array}\right)
\end{aligned}
$$

$\mathrm{M}\left(\mathrm{t} \gg \frac{1}{\lambda_{\mathrm{i}}}\right)=(1 / n, 1 / n, \ldots 1 / n) \quad$ Complete equilibration of CODEX magnetization.

Rate Constant and Overlap Integral

- In the rate constant expression: $\mathrm{k}_{\mathrm{ij}}=0.5 \pi \cdot \omega_{\mathrm{ij}}^{2} \cdot \mathrm{~F}_{\mathrm{ij}}(0) \quad \omega_{\mathrm{ij}}=\frac{\mu_{0}}{4 \pi} \frac{\gamma^{2} \hbar}{r_{\mathrm{ij}}^{3}} \frac{\left(1-3 \cos ^{2} \theta_{\mathrm{ij}}\right)}{2}$
- The angular term, $\left(1-3 \cos ^{2} \theta_{\mathrm{ij}}\right)$ depends on the powder angles of the molecules in the B_{0} field. The square of ω_{ij} can be simplified by its powder-averaged value, 0.8.

Main adjustable parameter in the ω_{ij} extraction: $\mathrm{F}_{\mathrm{ij}}(0)$

- Overlap integral: probability that SQ transitions occur at the same frequency for spins i and j :

$$
F_{i j}(0)=\int_{-\infty}^{+\infty} f_{i}\left(\omega-\omega_{i}\right) f_{j}\left(\omega-\omega_{j}\right) d \omega
$$

- $\mathrm{f}_{\mathrm{i}}\left(\omega-\omega_{\mathrm{i}}\right)$: normalized SQ lineshape of spin i without ${ }^{1} \mathrm{H}$ decoupling.
- ω_{i} : center of the lineshape.
- $\mathrm{F}_{\mathrm{ij}}(0)$: reflects the overlap area of two ${ }^{1} \mathrm{H}$ undecoupled SQ lines, and is related to the normalized $Z Q$ lineshape at 0 frequency.
- The larger the $F_{i j}(0)$, the faster the decay, the larger the spin diffusion rate k_{ij}, and the smaller the decay constant τ_{SD}.
- $\mathrm{F}_{\mathrm{ij}}(0)$ has the unit of time (s).

Overlap Integral

$$
F_{i j}(0)=\int_{-\infty}^{+\infty} f_{i}\left(\omega-\omega_{i}\right) f_{j}\left(\omega-\omega_{j}\right) d \omega
$$

- $F_{i j}(0)$ depends on the
- isotropic shift difference
- anisotropic chemical shift
- $\mathrm{X}-{ }^{-1} \mathrm{H}$ dipolar coupling
- ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ dipolar coupling
- Spinning speed
- For singly labeled systems, can approximate $\mathrm{F}_{\mathrm{ij}}(0)$ as the same for all intermolecular spin pairs ij .
- The rate constant $\mathrm{k}_{\mathrm{ij}}=0.5 \pi \cdot \omega_{\mathrm{ij}}^{2} \cdot \mathrm{~F}_{\mathrm{ij}}(0)$ was developed for ${ }^{1} \mathrm{H}$-driven X -spin diffusion. But it has been used to analyze direct ${ }^{1} \mathrm{H}$ spin diffusion as well, and on small molecule compounds it gives good agreement with the

Zero-quantum spectrum

Single-quantum spectrum
 crystal-structure distances.

Determining $\mathrm{F}(0)$ from Model Compounds

For small-molecule compounds, need to consider distances over a number of unit cells.

$$
\omega_{i j}^{2} \longrightarrow \sum_{m, n} \omega_{i_{m} \cdot j_{n}}^{2} \begin{aligned}
& \text { second moment } \\
& \text { coupling }
\end{aligned}
$$

shortest distance between spin pair dipolar coupling square $\omega_{u}{ }^{2}$

Smallest RMSD?
$F(0)$ value is determined

$F(0)$ of ${ }^{13} \mathrm{C}$ CODEX

13C'-Leu

Spinning speed dependence of $F(0)$

- At 5 kHz MAS, $F(0) \approx 80 \mu \mathrm{~s}$.
- Faster spinning reduces $F(0)$-> slower spin diffusion.
- $F(0) \sim\left(1 / v_{r}\right)^{0.5-1}$.

$F(0)$ of ${ }^{19} F$ CODEX

5-19F-Tryptophan

nearest neighbor: $1.1 \mathrm{kHz}(4.6 \AA$) second moment: $1.6 \mathrm{kHz}(4.0 \AA$)

4-19F-2'-nitroacetanilide

nearest neighbor: $70 \mathrm{~Hz}(11.5 \AA$) second moment: 470 Hz ($6.1 \AA$ Å)

Consensus ${ }^{19} \mathrm{FF}(0)$ at 8 kHz MAS is $37 \mu \mathrm{~s}$.
$\mathrm{k}_{\mathrm{ij}}=0.5 \pi \cdot \omega_{\mathrm{ij}}^{2} \cdot \mathrm{~F}_{\mathrm{ij}}(0) \propto \mathrm{F}_{\mathrm{ij}}(0) / r^{6} \Rightarrow \mathrm{k}$ is much less sensitive to $\mathrm{F}(0)$ than r .

M2-TMP: a Tetrameric H^{+}Channel in the Membrane

Ala30 -> [4-19F] Phe30, $P: L=1: 15, D M P C$ bilayers, 240 K, 8 kHz MAS

Luo \& Hong, JACS, 128, 7242 (2006)

Other Practical Aspects of CODEX for Oligomeric Structure Determination

- Symmetric oligomers: only one unknown distance in the \mathbf{K} matrix.

$$
\begin{aligned}
& \text { e.g. } k_{A B}=k_{A D}=0.5 \pi F(0) \cdot \omega(r)^{2} \\
& k_{A C}=0.5 \pi F(0) \cdot \omega(\sqrt{2 r})^{2}=\frac{1}{2^{3 / 2}} 0.5 \pi F(0) \cdot \omega(r)^{2}
\end{aligned}
$$

- Asymmetric oligomers: multiple distances unknown. Unclear whether the CODEX curve can yield multiple distances. The rigorous approach: measure multiple distances to avoid under-determining the problem.
- With ${ }^{19} \mathrm{~F}-{ }^{19} \mathrm{~F}$ dipolar coupling, the maximum distance detected in model compounds is $\sim 15 \AA$.
- Phenylene ring $4-{ }^{19}$ F position insensitive to ring flip: good for distance expts.
- CF_{3} labels not recommended: fast ${ }^{19} \mathrm{~F} \mathrm{~T}_{1}$ relaxation during t_{m}.
- Other aromatic ${ }^{19} \mathrm{~F}$-labels for proteins: $5-{ }^{19} \mathrm{~F}$-Trp, 6-19F-Trp.
- Large ${ }^{19}$ F CSA is sensitive to small-angle differences between two molecules.
E.g. $\delta \approx 55 \mathrm{ppm}$ for $4-{ }^{19}$ F-Phe; at $9.4 \mathrm{~T}, \delta \approx 20 \mathrm{kHz}$. With $\mathrm{Nt}_{\mathrm{r}}=250 \mu \mathrm{~s}, 2 \pi \delta \mathrm{Nt}_{\mathrm{r}} \approx$ 10π, sensitive to 10° orientation differences between molecules.
- Need to ensure no slow motion is present at the desired temperature.

${ }^{1} \mathrm{H}$ Spin Diffusion of Membrane Proteins

Purposes:

- Protein distance to the membrane center.
- Protein distance to the membrane surface.
- Main features:
- Undecoupled ${ }^{1} \mathrm{H} \mathrm{T}_{2}$ filter before t_{1} selects mobile components.
- ${ }^{1} \mathrm{H}$ undecoupled t_{1} evolution further suppresses rigid components.
- direct ${ }^{1} \mathrm{H}$ spin diffusion, mobile $->$ rigid transfer.
- X spin detection can be ${ }^{13} \mathrm{C},{ }^{15} \mathrm{~N},{ }^{31} \mathrm{P}$, etc.
- Application modes:
- ambient temp. (LC phase): lipid (L) -> protein (P) transfer,
- $2 \tau \sim 2 \mathrm{~ms}$
- $\mathrm{t}_{\mathrm{m}} \sim[10 \mathrm{~ms}, 10 \mathrm{~s}]$
- mainly 2D (can also be 1D), to resolve multiple mobile ${ }^{1} \mathrm{H}$ signals.
- low temp. (gel phase): water (W) -> protein transfer,
- $2 \tau \sim 0.2 \mathrm{~ms}$
- $\mathrm{t}_{\mathrm{m}} \sim[0.1 \mathrm{~ms}, 25 \mathrm{~ms}]$
- 1D, no ${ }^{1} \mathrm{H}$ evolution needed (only water remains).

LC Phase ${ }^{1} \mathrm{H}$ Spin Diffusion: Intensity Buildup Reflects Minimum L-P Distance

- ${ }^{1} \mathrm{H}$ spectrally resolved mobile components in a membrane sample:
- $\mathrm{H}_{2} \mathrm{O}: \mathrm{S} \sim 0.03$
- lipid $\mathrm{CH}_{3}: \mathrm{S} \sim 0.02-0.04$
- lipid $\left(\mathrm{CH}_{2}\right)_{\mathrm{n}}$: S ~ 0.08-0.20
- lipid $\mathrm{H} \gamma$: S very small
- If the protein is mostly immobile, $S>\sim 0.7$, then spin diffusion is slow within the soft lipid matrix and water, and rapid within the protein.
- A rate-limiting step in the L/W $->P$ transfer is transfer across the intermolecular interface due to translational and rotational diffusion of L/W.
- Once intermolecular transfer occurs, ${ }^{1} \mathrm{H}$ magnetization equilibrates in the protein in $\leq 1 \mathrm{~ms}$ ($\sim \mathrm{CHHC}$), obliterating distance resolution for typical t_{m} values of $\sim 100 \mathrm{~ms}$ and higher.
- Buildup curve (Intensity vs $\sqrt{\mathrm{t}_{\mathrm{m}}}$) reflects the shortest distance from the source spin to the protein \rightarrow qualitative information of protein topology.
- It doesn't matter where the ${ }^{13} \mathrm{C} /{ }^{15} \mathrm{~N}$ label is in the protein.

2D Data and Buildup Curves

Colicin la channel domain in POPC/POPG membrane

Transmembrane model

Huster et al, JACS, 124, 874 (2002)

Surface model

Distances from Linear-Chain Spin Diffusion Calculation

- General 1D diffusion equation (Fick's $2^{\text {nd }}$ Law): $\frac{\partial \mathrm{M}}{\partial \mathrm{t}}=\mathrm{D} \cdot \frac{\partial^{2} \mathrm{M}}{\partial \mathrm{x}^{2}}$ (Nature abhors a wrinkle.)
- On a discrete 1D lattice (along the bilayer normal):

$$
\begin{aligned}
\frac{\Delta \mathrm{M}_{\mathrm{i}}}{\Delta \mathrm{t}} & =\mathrm{D} \cdot \frac{1}{a^{2}}\left[\left(\mathrm{M}_{\mathrm{i}+1}-\mathrm{M}_{\mathrm{i}}\right)-\left(\mathrm{M}_{\mathrm{i}}-\mathrm{M}_{\mathrm{i}-1}\right)\right] \\
& =\Omega\left(-2 \mathrm{M}_{\mathrm{i}}+\mathrm{M}_{\mathrm{i}+1}+\mathrm{M}_{\mathrm{i}-1}\right)
\end{aligned}
$$

D: diffusion coefficient ($\mathrm{nm}^{2} / \mathrm{ms}$)
Ω : transfer rate $=\mathrm{D} / a^{2}$
a : lattice spacing, 2 Å or 1 Å

- Ω or D is related to the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ dipolar couplings. In rigid polymers, $D \approx 0.8$ $\mathrm{nm}^{2} / \mathrm{ms}$ has been measured, equivalent to $\Omega \approx 20 \mathrm{kHz}$ for two protons $2.0 \AA$ apart.
- Two lipid vicinal protons are $\sim 2.4 \AA$ apart (rigid-limit $\delta=8.8 \mathrm{kHz}$).
- Using a $S \approx 0.04$ for protons close to the acyl chain termini, the motionally averaged ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ coupling is $\Omega \approx 350 \mathrm{~Hz}$.
- With a spacing a of $2 \AA$, the resulting $\mathrm{D}_{\mathrm{L}}=\Omega a^{2}$ is $\sim 0.014 \mathrm{~nm}^{2} / \mathrm{ms}$.
- For proteins with $\mathrm{S} \approx 0.7$, the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ coupling is $\Omega(2.4 \AA) \sim 6.0 \mathrm{kHz},=>D_{P} \approx$ $0.25 \mathrm{~nm}^{2} / \mathrm{ms}(a=2 \AA$ Å).
- For interfacial transfer, typical $D_{\text {int }} \sim 0.002 \mathrm{~nm}^{2} / \mathrm{ms}$ (order of magnitude).

Sample simulation:	D $\left(n m^{2} / m s\right)$	$r(\AA)$
Source - lipid $\mathrm{CH}_{3}:$	0.012	$4 \AA$
Source $-\mathrm{H}_{2} \mathrm{O}:$	0.03	$2 \AA$
Gap:	0.012	$x \AA$
Interface:	0.00125	$2 \AA$
Sink -peptide	0.3	$30 \AA$

Effects of $\mathrm{D}_{\text {int }}$ and Distance on the Buildup Curves

$\mathrm{D}_{\text {int }}$: the adjustable parameter in the SD simulation. Estimate by reproducing the slope of the experimental buildup curve.
$D_{L}=0.0125 \mathrm{~nm}^{2} / \mathrm{ms}$
$D_{p}=0.3 \mathrm{~nm}^{2} / \mathrm{ms}$
$\mathrm{D}_{\text {int }}\left(\mathrm{nm}^{2 / m s}\right)$

- 0.0125
- 0.0025
- 0.00125
- 0.00025
- 0.000125

- $\mathrm{D}_{\text {int }}$ mainly changes the slope of the buildup curve.
- r, lipid-protein distance, mainly changes the initial lag of the buildup curve.
- Empirically, phospholipid-protein mixtures have $\mathrm{D}_{\text {int }} \sim 0.0025 \mathrm{~nm}^{2} / \mathrm{ms}$, lipidDNA have $\mathrm{D}_{\text {int }} \sim 0.00025 \mathrm{~nm}{ }^{2} / \mathrm{ms}$ (low ${ }^{1} \mathrm{H}$ density in DNA), and cholesterolcontaining membranes also give $D_{\text {int }} \sim 0.00025 \mathrm{~nm}^{2} / \mathrm{ms}$.

Origin of the $t^{1 / 2}$ Dependence of Intensity Buildup

- For a point source at $x_{0}, M(x, 0)=\delta\left(x-x_{0}\right)$, the solution of the diffusion equation $\partial M / \partial t=D \cdot \partial^{2} M / \partial x^{2}$ is a Gaussian function of $x, M(x, t)=e^{-\left(x-x_{0}\right)^{2} / 4 D t} / \sqrt{\pi D t}$.
- A domain source $M_{\text {dom }}(x, t)$ is a superposition of many point sources:

$$
M_{d o m}(x, 0)=\int_{-\infty}^{0} \delta\left(x-x_{0}\right) d x_{0}
$$

- $M_{\text {dom }}(x, t)$ evolves as an error function centered at the source-sink interface:
$M_{d o m}(x, t)=\int_{-\infty}^{0} \frac{e^{-\left(x-x_{0}\right)^{2} / 4 D t}}{\sqrt{\pi D t}} d x_{0} \xrightarrow{x^{\prime}=\frac{x-x_{0}}{4 D t}}\left(\begin{array}{l}x_{0}=-\infty, x^{\prime}=+\infty \\ x_{0}=0, x^{\prime}=x / \sqrt{4 D t} \\ d x^{\prime}=-d x_{0} / \sqrt{4 D t}\end{array}\right)$
$=\frac{-\sqrt{4 \mathrm{Dt}}}{\sqrt{\pi \mathrm{Dt}}} \cdot \int_{+\infty}^{\mathrm{x} / \sqrt{4 \mathrm{Dt}}} \mathrm{e}^{-\mathrm{x}^{\prime 2}} \mathrm{dx}^{\prime}=\frac{2}{\sqrt{\pi}} \cdot \int_{\mathrm{x} / \sqrt{4 \mathrm{Dt}}}^{+\infty} \mathrm{e}^{-\mathrm{x}^{\prime 2}} \mathrm{dx}^{\prime}=\operatorname{erfc}\left(\frac{\mathrm{x}}{\sqrt{4 \mathrm{Dt}}}\right)$
- The total magn $I_{\text {sink }}(t)$ of the sink increases as $t^{1 / 2}$:

$$
\begin{aligned}
& I_{\text {sink }}(t) \propto \int_{0}^{+\infty} M_{\text {dom }}(x, t) d x=\int_{0}^{+\infty} \operatorname{erfg}\left(\frac{x}{\sqrt{4 D t}}\right) d x \xrightarrow{x^{\prime \prime}=\frac{x}{\sqrt{4 D t}}} \\
& \left(\begin{array}{l}
x=0, x^{\prime \prime}=0 \\
x=+\infty, x^{\prime \prime}=+\infty \\
d x^{\prime \prime}=d x / \sqrt{4 D t}
\end{array}\right)=\sqrt{4 D D} \int_{0}^{+\infty} \operatorname{erfd}\left(x^{\prime \prime}\right) d x^{\prime \prime}=\sqrt{4 D t} \frac{1}{\sqrt{\pi}}=\sqrt{\frac{4 D}{\pi}} \cdot \sqrt{\sqrt{t}}
\end{aligned}
$$

23

Buildup Curves Plotted with Time ${ }^{1 / 2}$ vs Time

- Thus, for domain spin diffusion, the I($\mathrm{t}^{1 / 2}$) plot is linear.
- For point-source spin diffusion, there is a latency period $(M \approx 0)$ whose duration depends on the distance from the point source.
- Plotting $I\left({ }^{1 / 2}\right)$ stretches out the initial period compared to $I(t)$, thus better distinguishing different distances.

Buildup Curves of Non-Transmembrane Systems

- In membrane systems, spin diffusion is usually from point sources, giving a lag period in the $\mathrm{I}_{\text {sink }}\left(\mathrm{t}^{1 / 2}\right)$ plot. This is especially clear in non-TM macromolecules.

DNA - cationic membrane

POPC/cholesterol membrane with PG-1

Higher-Sensitivity LC-Phase ${ }^{1} \mathrm{H}$ Spin Diffusion

- 2D HHC:
- Indirect ${ }^{1} \mathrm{H}$ dimension of lipids and water, high resolution, require long t_{1}.
- Direct ${ }^{13} \mathrm{C}$ dimension of protein, lower resolution and sensitivity.
- Buildup curves require multiple 2D, long expt time, need careful monitoring of CP stability, sample hydration etc, to obtain reliable curves.

$\tau_{1} \sim 10 \mathrm{~ms}, \tau_{2} \sim 5 \mathrm{~ms}$.
Detection sensitivity gain: $\left(\gamma_{H} / \gamma_{C}\right)^{3 / 2}=8$
- Two obstacles of 1D CHH:
- Suppressing large equilibrium ${ }^{1} \mathrm{H}$ magnetization of lipids \& water.
- Sensitivity gain limited by the fraction of labeled ${ }^{13} \mathrm{C}$ sites versus natural ${ }_{26}$ abundance lipid ${ }^{13} \mathrm{C}$.

1D CHH Protein-Lipid Spin Diffusion

TEASE U- ${ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}$-labeled colicin la channel domain in POPC/POPG membrane. $\mathrm{P} / \mathrm{L}=1: 100, \sim 50 \%{ }^{13} \mathrm{C}$ labeling.

Time-saving: 180-350 fold.

1D reproduces the 2D buildup curves.

Sensitivity of the CHH Spin Diffusion Experiment

- All detected ${ }^{1} \mathrm{H}$ magn originates from the labeled ${ }^{13} \mathrm{C}$ sites $\left(\mathrm{C}_{\mathrm{p}}\right)$ in the protein. So the sensitivity mainly depends on the ${ }^{13} \mathrm{C}$ labeling level.
- Sensitivity also depends on the \% of mobile protons $\left(\mathrm{H}_{\mathrm{L}}+\mathrm{H}_{\mathrm{W}}\right)$ in the sample.
- Assuming complete equilibrium ($\mathrm{CP}+\mathrm{SD}$), the number of detected protons is:

$$
H_{C H H}=C_{P} \times \frac{H_{P}}{H_{P}+C_{P}} \times \frac{H_{L}+H_{W}}{H_{P}+H_{L}+H_{W}}
$$

- The \% detected ${ }^{1} \mathrm{H}$'s among the total lipid and water protons is $\mathrm{H}_{\mathrm{CHH}} /\left(\mathrm{H}_{\mathrm{L}}+\mathrm{H}_{\mathrm{W}}\right)$
- For a membrane protein sample with mass ratio $P: L: W \approx 1: 3: 2$ and a ${ }^{13} \mathrm{C}$ labeling level of $\sim 50 \%$, the calculated fraction of detected protons is $\sim 2.5 \%$. This gave reproducible and correct CHH buildup curves.
- The experiment needs to suppress $\sim 98 \%$ undesired ${ }^{1} \mathrm{H}$ signals. This is achieved by the T_{2} filter, phase cycling, and a 90° purge pulse. Suppression of the rigid ${ }^{1} \mathrm{H}$ magn is easy, but of the mobile ${ }^{1} \mathrm{H}$ magn. of the natural abundance lipid ${ }^{13} \mathrm{C}$ is more difficult.
- Empirically, $<0.8 \%$ detected protons causes systematic errors in the buildup curves. Thus, ${ }^{13} \mathrm{C}$ labeling level needs to be $>\sim 15 \%$ for CHH to work.

Acknowledgement

ISU
Rajeswari Mani
Ming Tang
Tim Doherty
Sarah Cady
Yongchao Su
Yuan Zhang
Wenbin Luo
Dr. Jarrod Buffy
Dr. Xiaolan Yao
Dr. Sungsool Wi
Dr. Neeraj Sinha
Dr. Satoru Yamaguchi
Dr. Daniel Huster
Dr. Xiaodong Wu
Prof. Ken-ichi Hatano
Prof. Asoka Marasinghe

Collaborators:
Prof. Robert Lehrer (UCLA)
Prof. Alan Waring (UCLA)
Prof. Wuyuan Lu (U. Maryland)
Prof. William DeGrado (UPenn)
Prof. Wonhwa Cho (UIC)
Dr. Jacek Lubkowski (NIH)

${ }^{19}$ F Spin Diffusion for Determining Intermolecular Distances in Oligomeric Membrane Proteins

Mei Hong, Iowa State University
Membrane protein structural features:

- Orientation.
- Depth of Insertion.
- Sidechain conformation.
- Assembly of polypeptide chains: quaternary structure.

Oligomeric structure of membrane proteins:

- Oligomeric number
- Intermolecular distance constraints.

M2 Protein: a Proton Channel of Influenza A Virus

- Forms tetrameric bundles in micelles.
- Oligomeric state in the lipid bilayer unknown. Only one short interhelical distance reported (Cross et al.).

F-F Distance Confirms the Tetramer Model

Most probable rotamer:
$r=7.5 \AA, F(0)=28 \mu s$

$$
r=18.5 \AA,
$$

$$
F(0)=2000 \mu \mathrm{~s}
$$

Least probable rotamer:
ring clashes with backbone

The interhelical distance of 7.9-9.5 A for Phe30 agrees well with the M2 tetramer model obtained from ${ }^{15} \mathrm{~N}$ orientation data (Cross et al).

F-F Distance Confirms Existing Tetramer Model

- $+60^{\circ}$ rotamer: forbidden by steric clash with the backbone
- Only the trans rotamer is possible.
helix $i+1$
helix i+2

The inter-helical distance of $7.9-9.5 \AA$ for $F 30$ agrees well with the M2 tetramer model obtained from 15N orientational data.

Distance Restraint for Helix Orientation

- Functional model may have un-optimized rotation angles.

