

Calculation of Thermally Averaged
Contact Shift & Dipolar ShiftGeneralHigh fieldIsotropic g
$$\cdot H_{CON} = A < S > \cdot I$$
 $A < S_2 > I_2$ $A < S_2 > I_2$ $(I = I)$ $A < S_2 > I_2$ $(I = I)$ $\cdot H_{PC} = \{<\mu > /g_{\theta}\} \cdot D \cdot I$ $\{(<\mu > /g_{\theta}) \cdot D\}_2 / I_2$ $D < S_2 > I_2$ $(I = I)$ $I = I$ $(<\mu > /g_{\theta}) \cdot D\}_2 / I_2$ $I = I < I$ $- Let's$ obtain $<\mu > \& < S >$ first.

Magnetic Moment under Averaging 2 Case 2: A more general case $<\mathbf{S} = Tr\{\mathbf{S}\exp(-H/kT)\}/Tr\{\exp(-H/kT)\} \quad \exp(-A) \sim 1-A$ $\sim Tr\{\mathbf{S}(1 - \frac{\mu_B \mathbf{S} \cdot \mathbf{g} \cdot \mathbf{B}_0}{kT} \}/Tr\{1 - \frac{\mu_B \mathbf{S} \cdot \mathbf{g} \cdot \mathbf{B}_0}{kT} \}$ $= \sum_{\varsigma} < \zeta \mid (\sum_{jkl} \mathbf{e}_j S_j)(S_k g_{kl} B_{0l}) \mid \zeta > \mu_B/(kT) Tr\{1\}$ where \mathbf{e}_i is an unit vector along the axis j (j = x, y, z) and $|\zeta|$ denotes a basis ket. $<\mathbf{S} = \sum_{\varsigma} \sum_{jkl} \mathbf{e}_j g_{kl} B_{0l} < \zeta \mid S_j S_k \mid \zeta > \mu_B/(kT) Tr\{1\}$ $= \sum_{jkl} \mathbf{e}_j g_{kl} B_{0l} \{\delta_{jk} S(S+1)/3\} \mu_B/(kT)$ $= \mathbf{g} \cdot \mathbf{B}_0 \{S(S+1)/3\} \mu_B/(kT)$ In the high field approximation for the parameterized g tensor, $<\mu>$ is given by $<\boldsymbol{\mu} = \mu_B \mathbf{g} \cdot <\mathbf{S} = \mathbf{g} \cdot \mathbf{g} \cdot \mathbf{g} \cdot \mathbf{B}_0 \{S(S+1)\} \mu_B^2/(3kT) [2.18]$

Calculation of Thermally Averaged Contact Shift & Dipolar Shift Case 1: g-anitoropy neglected $\delta_{CON} = A < S_Z = Ag_e B_0 \{S(S+1)\} \mu_B / (3kT)$ [2.22] Isotropic shift \rightarrow NOT Removable by MAS $\delta_{PC} = D(\theta) < S_Z = D(\theta, R)g_e B_0 \{S(S+1)\} \mu_B / (3kT)$ Anisotropic shift $D(\theta, R) = (1-3\cos^2\theta)/R^3$ \Rightarrow Removable by MAS

Thermally Averaged Hyperfine Shifts Case 2: g-anitoropy NOT neglected $\delta_{\text{CON}} = A < S_z > I_z$ $= \{A(\boldsymbol{g} \cdot \boldsymbol{B}_0)_Z C / (\mu_B T)\} I_Z \quad \text{This is actually anisotropic}$ $=\frac{AB_0C}{\mu_0T}\{g_{xx}\sin^2\beta+g_{yy}\cos^2\beta\sin^2\alpha+g_{zz}\cos^2\beta\cos^2\alpha\}$ [2.24] $\delta_{PC} = (\langle \mu \rangle / g_e \cdot D)_z / z_z$ (α,β,γ) denote Euler angles that define the g-tensor orientation with $= (C/g_eT)(\boldsymbol{B}_0 \cdot \boldsymbol{g} \cdot \boldsymbol{g} \cdot \boldsymbol{D})_Z I_Z$ [2.25] The tensor $(\boldsymbol{g} \cdot \boldsymbol{g} \cdot \boldsymbol{D})$ is NOT traceless $(g^2 \boldsymbol{D}$ is traceless). \rightarrow This term also includes both anisotropic and isotropic shifts Bertini et al. "Solution NMR of Paramagnetic Molecules" 26 Yesnowski et al JCP 89, 4600 (1988)

